Ethics, Prosperity and Society: Moral Evaluation Using Virtue Ethics And Utilitarianism

Aditya Hegde, Vibhav Agarwal, Shrisha Rao

IJCAI-PRICAI 2020

Introduction

- Agent Based Modelling
 - Model operations and interactions of agents to understand complex phenomena.
 - Emergent macro-properties from micro-scale agent behaviours.
 - Used for modelling spread of epidemics, population dynamics, financial markets, evacuation during emergencies, etc.

Introduction

- Agent Based Modelling
 - Model operations and interactions of agents to understand complex phenomena. •
 - Emergent macro-properties from micro-scale agent behaviours. •
 - Used for modelling spread of epidemics, population dynamics, financial markets, • evacuation during emergencies, etc.
- Incorporating ethics into Agent Based Modelling •
 - Practical implications of ethical theories.
 - Understand and analyse social phenomena and interactions. •

Virtue Ethics and Utilitarianism

- Virtue Ethics
 - Emphasises the inherent moral nature of actions.
- Utilitarianism •
 - Emphasises the betterment of society as a whole.

Normative Ethics: Branch of ethics that discusses when an action is right or wrong.

Our Work

- behaviour.
 - Moral Interactions capture ethical decision making.
 - Evaluation of agent behaviour using virtue ethics and utilitarianism.
- Virtue agents
 - Parametrised by level of ethics.
 - Behaviour depends on the agent's level of ethics.

Framework for modelling ethical decision making as well as evaluation of agent

Our Work

- Simulations
 - Are unethical agents more prosperous?
 - How does societal bias towards positive and negative actions impact agent prosperity?

How does the ethical composition of agent population affect society as a whole?

Prior Work

- Danielson [Danielson, 1992].
- Ethics in Agent Based Modelling

 - •

[Cointe et al., 2016] Nicolas Cointe, Grégory Bonnet, and Olivier Boissier. Ethical judgment of agents' behaviors in multi-agent systems. AAMAS '16, page 1106–1114, Richland, SC, 2016. **[Danielson, 1992]** Peter Danielson. Artificial Morality: Virtuous Robots for Virtual Games. Routledge, 1992. [Korb et al., 2010] Kevin B. Korb, Ann E. Nicholson, and Owen Woodberry. Evolving Ethics: The New Science of Good and Evil. Imprint Academic, 2010. [Gaudou et al., 2014] Benoit Gaudou, Emiliano Lorini, and Eunate Mayor. Moral Guilt: An Agent-Based Model Analysis. In Advances in Social Simulation, Advances in Intelligent Systems and Computing, pages 95–106, Berlin, Heidelberg, 2014. Springer. [Wiegel and van den Berg, 2009] Vincent Wiegel and Jan van den Berg. Combining Moral Theory, Modal Logic and Mas to Create Well-Behaving Artificial Agents. International Journal of Social Robotics, 1(3):233–242, August 2009.

One of the first instances of using ethics in computer simulations is the work of

Evaluation of agent behaviour using ethics [Korb et al., 2010; Cointe et al., 2016].

Ethical decision making [Wiegel and van den Berg, 2009; Gaudou et al., 2014].

Framework and Virtue Agents

Framework

- Cellular automaton •
- Each iteration
 - Every agent performs an interaction with one of its neighbours.
 - Random order every iteration.
- Interactions governed by agent strategies and parameters.

Framework

- Cellular automaton •
- Each iteration
 - Every agent performs an interaction with one of its neighbours.
 - Random order every iteration.
- Interactions governed by agent strategies and parameters.
- S: Set of all agents. •
- $\mathcal{N}(A)$: Neighbours of agent A.

Agent Parameters - Resource

- Agent's prosperity in society.
- r_A : Agent A's resource.
- All agents start with the same resource value.
- Changes through interactions.

Agent Parameters - Opinion

- $\Psi_A(B)$: A's opinion of B.
 - B is any agent in the simulation.
 - Between 0 and 1. •
 - A's perception of B's ethicality.

Opinion

Agent Parameters - Opinion

- $\Psi_A(B)$: A's opinion of B.
 - *B* is any agent in the simulation.
 - Between 0 and 1.
 - A's perception of B's ethicality.
- Reputation: Average opinion of A across all agents. •
 - How ethical is A perceived to be in general.

$$\frac{\sum_{x \in S \setminus \{A\}} \Psi_x(A)}{S - 1}$$

Reputation

Virtue Agents

• Several well-known agent strategies like Tit For Tat (TFT), Suspicious TFT, Grim Trigger, etc.

• No straightforward way to instantiate agents with ethical and unethical behaviour.

Virtue Agents

- Virtue Agents are parametrised by **level of ethics**, ϵ where $0 \le \epsilon \le 1$.
 - Behaviour depends on agent's level of ethics. •

• Several well-known agent strategies like Tit For Tat (TFT), Suspicious TFT, Grim Trigger, etc.

No straightforward way to instantiate agents with ethical and unethical behaviour.

Virtue Agents

- Virtue Agents are parametrised by **level of ethics**, ϵ where $0 \le \epsilon \le 1$.
 - Behaviour depends on agent's level of ethics. •
- Make use of opinion in their interactions.
 - Motivation: Our actions are based on social perception [Smith, 1982].
 - Opinion is interpreted as the perceived ethicality of an agent.

[Smith, 1982] Christopher Upham Murray Smith. Evolution and the problem of mind: Part 1. Herbert Spencer. Journal of the History of Biology, 15(1):55–88, 1982.

Several well-known agent strategies like Tit For Tat (TFT), Suspicious TFT, Grim Trigger, etc.

• No straightforward way to instantiate agents with ethical and unethical behaviour.

Agent Interactions

- Two types of interactions
 - Continuous Prisoner's Dilemma (CPD)
 - Moral Interactions.

Agent Interactions

- Two types of interactions
 - Continuous Prisoner's Dilemma (CPD)
 - Moral Interactions.
- Prisoner's Dilemma
 - Agent's opt to either cooperate or defect.

Agent Interactions

- Two types of interactions
 - Continuous Prisoner's Dilemma (CPD)
 - Moral Interactions.
- Prisoner's Dilemma •
 - Agent's opt to either cooperate or defect.

Prisoner's Dilemma Matrix

	B Cooperates B Defects	
A Cooperates	-1, -1	-3, 0
A Defects	0, -3	-2, -2

Continuous Prisoner's Dilemma

- Similar to the Iterated Prisoner's Dilemma •
 - •
 - Payoffs are scaled based on the cooperation levels.
- Agents interact with a random neighbour.
- Donation game payoff matrix. •
 - Trade of goods between A and B.
 - Payoffs can be positive or negative.

Cooperation levels between 0 and 1 instead of complete defection or cooperation.

Donation Game Payoff Matrix

	B Cooperates	B Defects
A Cooperates	$\alpha - \beta, \alpha - \beta$	$-\beta, \alpha$
A Defects	$\alpha, -\beta$	0, 0

Continuous Prisoner's Dilemma

- Similar to the Iterated Prisoner's Dilemma •

 - Payoffs are scaled based on the cooperation levels.
- Agents interact with a random neighbour.
- Donation game payoff matrix. •
 - Trade of goods between A and B.
 - Payoffs can be positive or negative.

Cooperation levels between 0 and 1 instead of complete defection or cooperation.

Donation Game Payoff Matrix

	B Cooperates	B Defects	
A Cooperates	$\alpha - \beta, \alpha - \beta$	-eta, lpha	
A Defects	$\alpha, -\beta$	0, 0	

Continuous Prisoner's Dilemma

- Similar to the Iterated Prisoner's Dilemma •
 - •
 - Payoffs are scaled based on the cooperation levels.
- Agents interact with a random neighbour.
- Donation game payoff matrix. •
 - Trade of goods between A and B.
 - Payoffs can be positive or negative.

Cooperation levels between 0 and 1 instead of complete defection or cooperation.

Donation Game Payoff Matrix

	B Cooperates B Defects		
A Cooperates	$\alpha - \beta, \alpha - \beta$	$-\beta, \alpha$	
A Defects	$\alpha, -\beta$	0, 0	

- Campbell-Meiklejohn et al., 2010].
- Virtue agents aggregate neighbour's opinion when outputting cooperation level.
 - It weighs the opinion of a neighbour proportional to the perceived ethicality of its neighbour.

[Moussaïd et al., 2013] Mehdi Moussaïd, Juliane E. Kämmer, Pantelis Pipergias Analytis, and Hansjörg Neth. Social influence and the collective dynamics of opinion formation. PLOS ONE, 8(11):1–8, 11 2013.

[Campbell-Meiklejohn et al., 2010] Daniel K. Campbell-Meiklejohn, Dominik R. Bach, Andreas Roepstorff, Raymond J. Dolan, and Chris D. Frith. How the opinion of others affects our valuation of objects. Current Biology, 20(13):1165–1170, 2010.

• Interactions are influenced by those around us, especially those who we hold in high regard [Moussaïd et al., 2013;

- Campbell-Meiklejohn et al., 2010].
- Virtue agents aggregate neighbour's opinion when outputting cooperation level.
 - It weighs the opinion of a neighbour proportional to the perceived ethicality of its neighbour.
- A is performing a CPD interaction with B

[Moussaïd et al., 2013] Mehdi Moussaïd, Juliane E. Kämmer, Pantelis Pipergias Analytis, and Hansjörg Neth. Social influence and the collective dynamics of opinion formation. PLOS ONE, 8(11):1–8, 11 2013.

[Campbell-Meiklejohn et al., 2010] Daniel K. Campbell-Meiklejohn, Dominik R. Bach, Andreas Roepstorff, Raymond J. Dolan, and Chris D. Frith. How the opinion of others affects our valuation of objects. Current Biology, 20(13):1165–1170, 2010.

• Interactions are influenced by those around us, especially those who we hold in high regard [Moussaïd et al., 2013;

- Campbell-Meiklejohn et al., 2010].
- Virtue agents aggregate neighbour's opinion when outputting cooperation level.
 - It weighs the opinion of a neighbour proportional to the perceived ethicality of its neighbour.
- A is performing a CPD interaction with B
 - It asks each neighbour $x \in \mathcal{N}(A)$ what it thinks about B and receives $\psi_{x}(B)$.

[Moussaïd et al., 2013] Mehdi Moussaïd, Juliane E. Kämmer, Pantelis Pipergias Analytis, and Hansjörg Neth. Social influence and the collective dynamics of opinion formation. PLOS ONE, 8(11):1–8, 11 2013.

[Campbell-Meiklejohn et al., 2010] Daniel K. Campbell-Meiklejohn, Dominik R. Bach, Andreas Roepstorff, Raymond J. Dolan, and Chris D. Frith. How the opinion of others affects our valuation of objects. Current Biology, 20(13):1165–1170, 2010.

• Interactions are influenced by those around us, especially those who we hold in high regard [Moussaïd et al., 2013;

- Campbell-Meiklejohn et al., 2010].
- Virtue agents aggregate neighbour's opinion when outputting cooperation level.
 - It weighs the opinion of a neighbour proportional to the perceived ethicality of its neighbour.
- A is performing a CPD interaction with B
 - It asks each neighbour $x \in \mathcal{N}(A)$ what it thinks about B and receives $\psi_{x}(B)$.
 - It scales $\psi_{x}(B)$ according to $\psi_{A}(x)$.

[Moussaïd et al., 2013] Mehdi Moussaïd, Juliane E. Kämmer, Pantelis Pipergias Analytis, and Hansjörg Neth. Social influence and the collective dynamics of opinion formation. PLOS ONE, 8(11):1–8, 11 2013.

[Campbell-Meiklejohn et al., 2010] Daniel K. Campbell-Meiklejohn, Dominik R. Bach, Andreas Roepstorff, Raymond J. Dolan, and Chris D. Frith. How the opinion of others affects our valuation of objects. Current Biology, 20(13):1165–1170, 2010.

• Interactions are influenced by those around us, especially those who we hold in high regard [Moussaïd et al., 2013;

- Campbell-Meiklejohn et al., 2010].
- Virtue agents aggregate neighbour's opinion when outputting cooperation level.
 - It weighs the opinion of a neighbour proportional to the perceived ethicality of its neighbour.
- A is performing a CPD interaction with B
 - It asks each neighbour $x \in \mathcal{N}(A)$ what it thinks about B and receives $\psi_x(B)$.
 - It scales $\psi_{x}(B)$ according to $\psi_{A}(x)$.

$$c_{A} = \frac{\sum_{x \in \mathcal{N}(A) \setminus B} w_{A}(x) \Psi_{x}(B)}{\sum_{x \in \mathcal{N}(A) \setminus B} w_{A}(x)}$$

[Moussaïd et al., 2013] Mehdi Moussaïd, Juliane E. Kämmer, Pantelis Pipergias Analytis, and Hansjörg Neth. Social influence and the collective dynamics of opinion formation. PLOS ONE, 8(11):1–8, 11 2013.

[Campbell-Meiklejohn et al., 2010] Daniel K. Campbell-Meiklejohn, Dominik R. Bach, Andreas Roepstorff, Raymond J. Dolan, and Chris D. Frith. How the opinion of others affects our valuation of objects. Current Biology, 20(13):1165–1170, 2010.

• Interactions are influenced by those around us, especially those who we hold in high regard [Moussaïd et al., 2013;

$w_A(x) = \mathcal{H}_{1,1}(\Psi_A(x))$

- Campbell-Meiklejohn et al., 2010].
- Virtue agents aggregate neighbour's opinion when outputting cooperation level.
 - It weighs the opinion of a neighbour proportional to the perceived ethicality of its neighbour.
- A is performing a CPD interaction with B
 - It asks each neighbour $x \in \mathcal{N}(A)$ what it thinks about B and receives $\psi_x(B)$.
 - It scales $\psi_{x}(B)$ according to $\psi_{A}(x)$.

$$c_{A} = \frac{\sum_{x \in \mathcal{N}(A) \setminus B} w_{A}(x) \Psi_{x}(B)}{\sum_{x \in \mathcal{N}(A) \setminus B} w_{A}(x)}$$

[Moussaïd et al., 2013] Mehdi Moussaïd, Juliane E. Kämmer, Pantelis Pipergias Analytis, and Hansjörg Neth. Social influence and the collective dynamics of opinion formation. PLOS ONE, 8(11):1–8, 11 2013.

[Campbell-Meiklejohn et al., 2010] Daniel K. Campbell-Meiklejohn, Dominik R. Bach, Andreas Roepstorff, Raymond J. Dolan, and Chris D. Frith. How the opinion of others affects our valuation of objects. Current Biology, 20(13):1165–1170, 2010.

• Interactions are influenced by those around us, especially those who we hold in high regard [Moussaïd et al., 2013;

$$w_A(x) = \mathcal{H}_{1,1}(\Psi_A(x))$$

Moral Interactions

- Few social interactions in real life involve ethical choices. These often have higher stakes [Kidder, 2009].
 - CPD models "normal" social interactions. •
 - Moral Interactions incorporate ethical decision making.
- θ : Probability to perform a moral interaction instead of CPD. •

Moral Interactions

- Few social interactions in real life involve ethical choices. These often have higher stakes [Kidder, 2009].
 - CPD models "normal" social interactions. •
 - Moral Interactions incorporate ethical decision making.
- θ : Probability to perform a moral interaction instead of CPD. •
- Interacting agent steals or donates to a target agent.
 - Choice of theft or donation.
 - Choice of target agent from neighbours. ٠

Moral Interactions

- Few social interactions in real life involve ethical choices. These often have higher stakes [Kidder, 2009].
 - CPD models "normal" social interactions.
 - Moral Interactions incorporate ethical decision making.
- θ : Probability to perform a moral interaction instead of CPD. •
- Interacting agent steals or donates to a target agent.
 - Choice of theft or donation.
 - Choice of target agent from neighbours.
- A donates to **B**: Transfer of δ_d units of resource from A to **B**.
- A steals from B: Transfer of δ_t units of resource from B to A.

[Kidder, 2009] Rushworth Moulton Kidder. How Good People Make Tough Choices Rev Ed: Resolving the Dilemmas of Ethical Living. HarperCollins, November 2009.

Virtue Agent Moral Interaction Strategy

- Theft vs Donation
 - Ethical agents are expected to donate.
 - Virtue agents opt for donation with probability ϵ .

Virtue Agent Moral Interaction Strategy

- Theft vs Donation
 - Ethical agents are expected to donate.
 - Virtue agents opt for donation with probability ϵ .
- Motivation for Moral Interaction strategy •
 - Loewenstein, 2011].
 - Criminals often focus on targets that they consider more lucrative [Vandeviver and Bernasco, 2019]. •

[Cryder and Loewenstein, 2011] Cynthia Cryder and George Loewenstein. The critical link between tangibility and generosity. In Society for Judgment and Decision Making series. The science of giving: Experimental approaches to the study of charity, pages 237–251. Psychology Press, 2011. [Vandeviver and Bernasco, 2019] Christophe Vandeviver and Wim Bernasco. "location, location, location": Effects of neighborhood and house attributes on burglars' target selection. Journal of Quantitative Criminology, pages 1-43, 2019.

People like to make gifts which they believe will make a tangible difference; to targets they like [Cryder and

Virtue Agent Moral Interaction Strategy

- Theft vs Donation •
 - Ethical agents are expected to donate. ٠
 - Virtue agents opt for donation with probability ϵ . •
- Motivation for Moral Interaction strategy •
 - Loewenstein, 2011].
 - Criminals often focus on targets that they consider more lucrative [Vandeviver and Bernasco, 2019]. ٠
- Donation target should have low resource and high opinion while the opposite is true for theft targets.
 - Donation target: Agent with maximum opinion to resource ratio. •
 - Theft target: Agent with minimum opinion to resource ratio.

[Cryder and Loewenstein, 2011] Cynthia Cryder and George Loewenstein. The critical link between tangibility and generosity. In Society for Judgment and Decision Making series. The science of giving: Experimental approaches to the study of charity, pages 237–251. Psychology Press, 2011. [Vandeviver and Bernasco, 2019] Christophe Vandeviver and Wim Bernasco. "location, location, location": Effects of neighborhood and house attributes on burglars' target selection. Journal of Quantitative Criminology, pages 1-43, 2019.

People like to make gifts which they believe will make a tangible difference; to targets they like [Cryder and

Opinion Updates

- Agents evaluate behaviour of interacting agents. •
 - Change in opinion.
- Virtue Ethics
 - Inherent moral nature of actions.
 - Higher cooperation levels and acts of donation.
- Utilitarianism •
 - Acts that increases the global utility are considered to be ethical.
 - Global utility: Sum of resource of all agents.

Opinion Updates - CPD

- Only interacting agents, A and B, perform updates.
- Sum of payoffs s is change in global utility.
- A updates its opinion of B
 - by ω_v , otherwise.
 - $\psi_A(B)$ is increased by ω_μ if $s > \lambda_\mu$ and decreased by ω_μ otherwise.
- Identical updates by B.

• $\psi_A(B)$ is increased by ω_V if cooperation level of B is greater than λ_V and decreased

Opinion Updates - Moral Interaction

- Broadcast: γ fraction of agents update their opinion of interacting agent A. •
- The agents *x* which receive the broadcast
 - Increase $\psi_x(A)$ by ω_d if A performed a donation.
 - Decrease $\psi_x(A)$ by ω_t if A performed a theft. •

Opinion Updates - Moral Interaction

- Broadcast: γ fraction of agents update their opinion of interacting agent A.
- The agents x which receive the broadcast •
 - Increase $\psi_x(A)$ by ω_d if A performed a donation. •
 - Decrease $\psi_x(A)$ by ω_t if A performed a theft. •
- ω_d and ω_t determine society's bias towards ethical and unethical actions
 - $\omega_d < \omega_t$: Negativity bias
 - $\omega_d > \omega_t$: Positivity bias
 - $\omega_d = \omega_t$: No bias

Experiments

Experiment Setup

- Analyse emergent trends through simulations. •
- Simulations consist of virtue agents with different levels of ethics.
 - 50 agents for a given value of ϵ . •
 - All agents randomly arranged on the grid. •
 - 1500 iterations.
- Moral interactions are fewer and have high stakes •
 - $\cdot \theta = 0.05 \ll 1$
 - $\omega_d, \omega_t \gg \omega_v, \omega_u$

·		

Comparing Agent Resource Across Time

 Unethical agents have higher resources the long run.

· Unethical agents have higher resources initially but have significantly lower resources in

Effects of Ethics on Resource in the Long Run

• Resource and reputation steeply increases with ethics.

Bias in Society - Negativity Bias

- High rate of change in the high-ethics range.
 - Ethical agents have large incentive to be more ethical to increase their reputation as well as resource.
- Lower rate of change in the low ethics range.
 - Unethical agents might become munethical for short-term gains.
- Societies with negativity bias show divergent trends.

Bias in Society - Negativity Bias

- High rate of change in the high-ethics range.
 - Ethical agents have large incentive to be more ethical to increase their reputation as well as resource.
- Lower rate of change in the low ethics range.
 - Unethical agents might become munethical for short-term gains.
- Societies with negativity bias show divergent trends.

Bias in Society - Negativity Bias

- High rate of change in the high-ethics range.
 - Ethical agents have large incentive to be more ethical to increase their reputation as well as resource.
- Lower rate of change in the low ethics range.
 - Unethical agents might become munethical for short-term gains.
- Societies with negativity bias show divergent trends.

Bias in Society - Positivity and No Bias

- High rate of change in the low ethics range.
 - Unethical agents have incentive to be more ethical.
- Low rate of change in the high ethics range.
 - Not much incentive for ethical agents to change.
- Societies with positivity bias show divergent trends.
- Societies without bias don't seem to provide strong incentives.

Conclusion

- Other results
 - Even a small population of ethical agents leads to a significant increase in the global utility.
 - Ethics of different agent strategies.
- Rewarding good deeds might provide a stronger incentive for people to be ethical.
 - Our society emphasises penalising unethical behaviour [Galak and Chow, 2019].
 - Nowak 2011; Dreber et al. 2008].

[Dreber et al., 2008] Anna Dreber, David G. Rand, Drew Fudenberg, and Martin A. Nowak. Winners don't punish. Nature, 452(7185):348–351, 2008. [Galak and Chow, 2019] Jeff Galak and Rosalind M. Chow. Compensate a little, but punish a lot: Asymmetric routes to restoring justice. PLOS ONE, 14(1), 2019. https://doi.org/10.1371/ journal.pone.0210676.

[Rand and Nowak, 2011] David G. Rand and Martin Andreas Nowak. The evolution of antisocial punishment in optional public goods games. Nature Communications, 2(1):1–7, 2011.

Prior work shows that rewards are more effective than punishments at securing cooperation [Rand and

Our work shows that rewarding ethical behaviour might provide a stronger incentive for people to be ethical.

References

- University Press, 2014.
- [Boyles, 2017] Robert James M. Boyles. Philosophical signposts for artificial moral agent frameworks. Suri, 6(2), 2017.
- · [Campbell-Meiklejohn et al., 2010] Daniel K. Campbell-Meiklejohn, Dominik R. Bach, Andreas Roepstorff, Raymond J. Dolan, and Chris D. Frith. How the opinion of others affects our valuation of objects. Current Biology, 20(13):1165-1170, 2010.
- science of giving: Experimental approaches to the study of charity, pages 237-251. Psychology Press, 2011.
- [Danielson, 1992] Peter Danielson. Artificial Morality: Virtuous Robots for Virtual Games. Routledge, 1992.
- [Dreber et al., 2008] Anna Dreber, David G. Rand, Drew Fudenberg, and Martin A. Nowak. Winners don't punish. Nature, 452(7185):348-351, 2008.
- · [Galak and Chow, 2019] Jeff Galak and Rosalind M. Chow. Compensate a little, but punish a lot: Asymmetric routes to restoring justice. PLOS ONE, 14(1), 2019. https://doi.org/10.1371/ journal.pone.0210676.
- Computing, pages 95–106, Berlin, Heidelberg, 2014. Springer.
- [Kidder, 2009] Rushworth Moulton Kidder. How Good People Make Tough Choices Rev Ed: Resolving the Dilemmas of Ethical Living. HarperCollins, November 2009.
- [Korb et al., 2010] Kevin B. Korb, Ann E. Nicholson, and Owen Woodberry. Evolving Ethics: The New Science of Good and Evil. Imprint Academic, 2010.
- 8(11):1-8, 11 2013.
- [Rand and Nowak, 2011] David G. Rand and Martin Andreas Nowak. The evolution of antisocial punishment in optional public goods games. Nature Communications, 2(1):1–7, 2011.
- [Smith, 1982] Christopher Upham Murray Smith. Evolution and the problem of mind: Part 1. Herbert Spencer. Journal of the History of Biology, 15(1):55–88, 1982.
- · [Vandeviver and Bernasco, 2019] Christophe Vandeviver and Wim Bernasco. "location, location, location": Effects of neighborhood and house attributes on burglars' target selection. Journal of Quantitative Criminology, pages 1–43, 2019.
- [Wiegel and van den Berg, 2009] Vincent Wiegel and Jan van den Berg. Combining Moral Theory, Modal Logic and Mas to Create Well-Behaving Artificial Agents. International Journal of Social Robotics, 1(3):233–242, August 2009.

· [Bostrom and Yudkowsky, 2014] Nick Bostrom and Eliezer Yudkowsky. The ethics of artificial intelligence. In The Cambridge Handbook of Artificial Intelligence, page 316–334. Cambridge

• [Cointe et al., 2016] Nicolas Cointe, Grégory Bonnet, and Olivier Boissier. Ethical judgment of agents' behaviors in multi-agent systems. AAMAS '16, page 1106–1114, Richland, SC, 2016.

• [Cryder and Loewenstein, 2011] Cynthia Cryder and George Loewenstein. The critical link between tangibility and generosity. In Society for Judgment and Decision Making series. The

[Gaudou et al., 2014] Benoit Gaudou, Emiliano Lorini, and Eunate Mayor. Moral Guilt: An Agent-Based Model Analysis. In Advances in Social Simulation, Advances in Intelligent Systems and

• [Moussaïd et al., 2013] Mehdi Moussaïd, Juliane E. Kämmer, Pantelis Pipergias Analytis, and Hansjörg Neth. Social influence and the collective dynamics of opinion formation. PLOS ONE,

