Modern Cryptography Notes

1 Preliminaries

2 Sets

We start with one of the simplest notions in mathematics, sets, which is a
collection of distinct objects. Our first example is the infinite set of natural
numbers,

N:={1,2,3,--}.

This also gives us the opportunity to establish our first notation of “:=”, which
we will use as the assignment operator. This is to be contrasted with “=", which
is the operator used to establish equality.

The most common set we shall encounter in the course is the finite set {0, 1}.
This will often be referred to as an alphabet as we shall use it to build strings

{0,1}% == {00, 01, 10,11}
{0,1}* := {¢,0,1,00,01,10,11,000- - -}

Size. We shall restrict our discussion of size to finite sets. We denote by |S]|
the size of the set S, defined to be the number of elements in the set.

Example 1 Let the set S be defined as follows:
S ={1,01,10,100,010,001}.

Then,
S| =6

Note that by definition, a set only consists of distinct elements, and thereby it
suffices to define the size simply as the number of elements.

Membership. For an element x, we shall indicate by = € S if x is in the set
S. If not, we shall indicate it by = ¢ S.

2.1 Operations

Below we describe the common set operations:

Union. The union of two sets A and B, denoted by A U B is defined as
AUB:={z|z€ AOR z € B},

to be the set of elements that are present in either A or B.

The above shorthand notation is called the set-builder notation, that de-
scribes the properties an element x must satisfy to be a part of the set AU B.
We shall use the set-builder notation frequently in this course.

Intersection The intersection of two sets A and B, denoted by A N B is
defined as
ANB:={z |z € AAND z € B},

to be the elements present only in both A and B.

Difference The set difference of A and B, denoted by A\ B, is defined as

A\B:={z |z € AAND z ¢ B},

to be the elements present in A but not in B.
Note that the for set difference, the order of the two sets matter, and A\ B #
B\ A. Think of a simple example to illustrate this.

Complement The complement of a set A is defined with respect to the uni-
verse, denoted by U. The universe denotes all possible elements which can be
used to construct the set A. The complement of A, denoted by A, is defined as

A={x|x¢ A}

to be the elements not present in A.
These four common set operations are illustrated in Figures 1,2, 3 and 4.
For our context, it is easiest of think of the universe to be {0,1}*, the set of
all binary strings.

Cartesian product. The cartesian product of sets A and B, denoted by Ax B
is defined as
Ax B :={(a,b) |ac AAND b€ B}

is the set of all ordered pairs (a,b) when a € A and b € B. To differentiate
unordered sets from an ordered tuple, we will represented ordered tuples by
brackets (-).

Since we are talking about ordered tuples, A x B and B x A give rise to
different sets since (a,b) # (b, a) when a and b are distinct.

Subsets. For sets A and B, A is a subset of B, denoted by A C B, if every
element of A is also an element of B.

Two sets A and B are equal if both A C B and B C A. When arguing two
sets are equal, this is the go-to method for a proof.

Figure 1: AUB Figure 2: ANB

Figure 3: A\ B Figure 4: A

3 Relations and Functions

3.1 Relation

A relation R from A to B is a subset of the Cartesian product A x B. Consider
the following relation R; from A = {x1,x9, 23,24} to B == {y1,y2,¥s3,ya},

Ry = {(.%‘1, y2)’ (1‘1793)» (an y4)’ (x37y3)7 (.’L‘4, yl)}

The domain of a relation is the subset of A that appear as the first component in
arelation; and the range is the subset of B that appears as the second component
in the relation. We shall typically consider relations where the domain is the
entire set A. The set B is referred to as the co-domain of the relation.

3.2 Functions

A function f: A~ B is a relation from A to B with the additional restriction
that each element in the domain A appears in exactly one ordered pair in the
relation. The relation R; is not a function since 1 appears in two ordered pairs.
Consider Ry over the same sets A and B.

Rs = {(1'13 y2)7 ($27y1)3 (1‘3, y3)7 ($47y1)}

The relations R; and Ry are illustrated in Figures 5 and 6.

In function terminology, the elements from A are referred to as inputs, and
the corresponding second element in the pair from B to the output. When we
consider boolean functions, it is common to represent functions by a truth table,
i.e. a row corresponding to each possible input and the corresponding output
of the function.

Example 2 What are the total number of boolean functions with ny inputs and
ng outputs?

Solution Let us consider first the simple case of a single output, and we shall
see how to extend this to multiple outputs. As discussed above, every function
can be represented by the corresponding truth table. For a function with n;
inputs, any truth table will have 2™ rows.

For each row, since there is a single output, we can specify the output for
that row to be either 0 or 1. Specifying such a value for each row determines the
function. The total number of ways one can fill in this column then determines
the number of functions. Hence the total number of functions with a single bit
of output is 22"".

ENENRN N
0JO0][--] 0 "
0] 0] -] 1 >
TT1 [0 [rna
T [1] 1 N

Now let us extend this to multiple output bits. The first important point to
note is that the number of rows in the truth table remains unchanged.

[z [22 [Jan [o0 [wny |
0 0 0 T1,1 Tno,1
0] 0 |- 1 r1,2 Tny,2
1 1 0 Tl,N—l ’rng,N—l
1 1 s 1 T1,N e Tny, N

ny niy ni
22" L x 227 = gn22

notimes

We now describe some special cases of functions below.

Injective Function. Injective functions or 1-1 functions are functions where
each input has a distinct output, i.e. there does not exist x,z’ € A such that
f(z) = f(2'). This immediately requires |B| > |A].

Surjective Function. A function is surjective if the co-domain B is the same
as the range, i.e. every element of B is an output of the function for some element
of A. This requires |A| > |B].

Bijective Function. A function that is both injective and surjective is called
a bijective function.

Permutation. A permutation on a set A is defined to be a bijection from A
to itself. It is common to denote a permutation as IT: A — A.

Figure 5: An example relation Ry Figure 6: An example function R,

3.3 Logical Operations

We describe below the four most common logical/boolean operations. While
the AND, OR and XOR gate have been described with two inputs, they can
easily be extended to multiple inputs.

AND. AND gate OR. OR gate

Ty "y

070 0 0J0] 0

01| 0 01| 1

1[o] o 1[0 1

T[1] 1 11| 1
XOR. XOR gate

By NOT.

0]0] 0 EIEICEYN

01| 1 0 1

T]o| 1 1 0

T[1] o

3.4 Quantification.

We will often want to make a claim about a variable by either claiming a state-
ment holds for all values that the variable takes, or there is at least one value
satisfying the statement. The following are largely taken from the notes in [Lov],
and you should take a look there for further details.

Universal Quantification.
Ve € A, P(x)

which indicates that for all = in the set A, the statement P(z) is true.
Existential Quantification.
Jr e A, P(x)

which indicates that there is at least one z in A such that the statement
P(z) is true.

Nesting Quantifiers. We can nest the above quantifiers in an arbitrary man-
ner. For instance, the following is a valid nesting

Vx, € A17V$2 S AQ,E'Ig S A3,VI’4 S A4 P(I17I2,IL‘3,I4).

Given the fact that the nesting can be arbitrary, it is important to ask if
there order of quantification matters. If the quantifiers are the same, then the
order of nesting does not matter. Therefore, Va1 € A;,Vry € Az P(x1,x2)
and Vzo € Asg,Vr1 € Ay P(z1,22) are equivalent, and the same is true for
the existential quantifiers. But things aren’t as simple when the quantifiers are
different.

Remark 1 (Order of Quantification) When the nested quantifiers are dif-
ferent, the order of quantifiers matters. We illustrate this with an example
below.

Example 3 Consider the two following statements
1. VeeZ,yeZ st x+y=4
2. dx€Z, st VyeZx+y=4

The first statement is true, since for every fixed x, we can set y to be 4 — .
Thus existence of such a y € Z is guaranteed. On the other hand, the second
statement says that there must be a single x such that for every value of y € Z,
x+y=4. It is clear to see that this statement cannot be true.

In fact, the second ordering is a stronger claim than the first.

Negation of Quantifiers. When negating a quantified statement, negate all
the quantifiers first, from left to right (keeping the same order), then negate the
statement. By negating quantifiers we mean swapping V and 3. Below are few
examples of negation

1. ~(Vz € A, P(x)) < Jz € A, -P(x)

al

2. n(Fzx € A, P(a)) < Vz e A, -P(x)

3. ~(Jx € A\Vy € B, P(z,y)) < Vz € A,y e B, -P(x,y)
= (

4. ~(Vz € A,y € B, P(z,y)) < Jx € A,Vy € B, ~P(z,y)

Here, <= is the notation for if and only if that connects two statements,
where either both statements are true or both are false.

4 Reductio ad Absurdum

Reduction to absurdity, or proof by contradiction is a common proof technique
that we shall employ throughout this course. We start with the statement we
want to prove, and then assume that the statement is false, and then derive as
a consequence a statement we believe to be false.

The following is an example taken from Boaz Barak’s lecture notes:

Theorem 1 There are infinitely many primes.

Proof Let us assume for that the above statement is indeed false and there
are a finite number of primes. Let us denote the primes by p1,--- ,py with N
indicating the total number of primes.

Consider the following number,

P=p-p2---py+1,

i.e. P is one greater than the product of all the primes. It is clear that none
of the primes, p1,---,py divide P, since the remainder with respect to all of
them is 1.

Therefore, P has only two factors 1 and P, establishing it as a prime. But
P is clearly not in the set of finite primes, therefore a contradiction to our
assumption of a finite set of primes.

Since the same argument can be applied to any set of finite primes, it must
be the case that the number of primes are infinite. O

Another common example of this type of proof technique is to prove that
V/2 cannot be expressed as an irreducible fraction, thereby establish that it is
irrational.

5 Probability

Throughout this course, we shall see the importance of randomness, in that it
permeates every aspect of cryptography. In this section, we shall review some
of the relevant material for discrete probability.

Sample Space: Sample space S of a probabilistic experiment is the set of all
possible outcomes of the experiment. A couple points of note:

e We will only consider finite sample spaces

e In most cases, the sample space will be the set {0, 1}* of size 2"

Probability Distribution: With the sample space, we now define a distri-
bution which assigns probabilities to this sample space.

Definition 1 (Distribution) X is a distribution over a sample space
S if it assigns a probability ps to the element s € S such that

Zps =1

seS

A common distribution is a uniform distribution where each element in the
sample space is assigned the same probability ﬁ For example, when the sample

space is the set {0, 1}*, this distribution is denoted by Uy with each k-bit string
assigned probability 2%

Sampling From Distribution: We say we sample an element x from the dis-
tribution X if each element in S is picked proportional to the probability defined
by the distribution X. We denote this by x <$ X. For uniform distribution,
we shall find it convenient to denote sampling from the uniform distribution by
x +${0,1}* to indicate sampling uniformly from the set {0, 1}*.

Event: Event is a subset of the sample space. Let E C S be an event, the
probability of the event E, denoted by Pr[E], is defined as

Pr[E] = Zps

sER

Union Bound: If S is a sample space and A, A’ C S, then the probability
that either A or A’ occurs is Pr{A U A’] < Pr[A] + Pr[4’]

Random Variables: A random variable is a function that maps elements of
the sample space to another set. It assigns values to each of the experiment’s
outcomes.

Example 4 In the uniform distribution {0,1}3, Let Random Variable N denote
the number of 1s in the chosen string, i.e., for every x € {0,1}3, N(x) is the

number of 1s in x.

3
Prx<—${0,1}3[N($) = 2} =)

Expectation: The expectation of a random variable is its weighted average,
where the average is weighted according to the probability measure on the sam-
ple space. The expectation of random variable NV is defined as:

E[N] = ZN(%’) : Pry(—sss[y = 1] (1)
zeS

Here S is the sample space and Pry sg[y = z] is the probability of obtaining x
when sampling from S.

Example 5 If N is defined as in the above example,

1 3 3 1
EN]=0-g+1-2+2-2+3- 2 =15

Expectation is a linear function, i.e.,

E[N + M] = E[N] + E[M]

Variance: Variance of a random variable N is defined as the expectation of
the square of the distance of N from its expectation.

Var[N] = E[(N — E[N])’] (2)

If N is defined as in the first example,
2 1 > 3 > 3 2 1
Var[N]=(0—-15)*- -4+ (1-15)*--+(2-15)°- -+ (3-1.5)°- =
8 8 8 8
=0.75

Variance is a measure of how spread out the values in a distribution are. A
low variance means the outcomes will usually be very close to one another.

Standard Deviation: Standard deviation of N is the square root of Var[N]

Conditional Probability: The conditional probability of event B in relation
to event A is the probability of event B occurring when we know that A has
already occurred.

Pr[B |A] = =7 (3)

Example 6 Drawing Kings from a deck of cards. Event A is drawing a King
first, and Event B is drawing a King second.

Pr[A] = 4
52
Pr[BJA] = 3
51

Law of Total Probability: Throughout the course we will constantly use
the law of total probability with regards to conditional probability.

Let By, Ba,---, B, be a disjoint partition of a sample space S (i.e. Vi,j
B,NB; =0). Then for any event E,

Pr[E] = En:Pr[E N B;| = zn:Pr[E | B;]| Pr[B;]

Let’s look at a very simple example.

Example 7 Consider any event E. Let us sample a single bit b uniformly at
random. Bi is the event that b =0, and By the event that b= 1. We can write,
the probability of event E as

Pr[E] = Pr[E |b = 0] Prycg0,13[b = 0] + Pr[E [b = 1] Prys0,13[0 = 1]
1

1
=Pr[E[b=0]-5 +Pr{E[b=1]

:%-(Pr[E|b:O]+Pr[E|b=1])

10

Independent Events: We say that B is independent from A if Pr[B | A] =
Pr[B], i.e.,
Pr[A N B] = Pr[4] - Pr[B]

Example 8 Tossing a coin. The probability that heads shows up on two con-
secutive coin tosses,
Pr[HH] = Pr[H|.Pr[H| = =0.25

N —
DN | =

Each toss of a coin is an Independent Fvent.

Now let’s look at example where the individual samples are random, but the
joint distributions are not.

Example 9 Consider the following random variables X and Y both taking val-
ues in {0, 1} with the following joint distribution:

PHX =0AY =0]= &, PiX=0AY=1]=
X =1AY =0]= 1, PiX=1AV=1]=2
Using the law of total probability, we have
Pr[X =0]=Pr[X =1] =
Pr[Y =0]=Pr[Y =1] =

but for each z,y € {0,1} we have
Pr[X =aAY =] #Pr[X =a] - Pr[X =]

Note that we’re using the symbol A indicating ‘AND’ to indicate indepen-
dence while we’ve previously spoken about the set intersection N when describ-
ing independence. These two symbols will be used to convey the same meaning;
while N will be used exclusively for sets, A will be used when we talk about
random variables.

Pairwise Independent Random Variables: Let X, Xs...... X,, be random
variables. We say that the X;’s are pairwise-independent if for every i # j and
all a and b, it holds that:

PriX; =aAX; =b =Pr[X, =a] - Pr[X; = q] (4)

Example 10 We throw two dice. Let (i) A be the event “the sum of the points
is 77; (ii) B the event “die #1 came up 3”; and (iii) C the event “die #2 came
up 47,

HW=HW=HM=é

11

Pr[AN B] = Pr[BNC] = PrlANC] =

But,
Pr[ANBNC| = % # Pr[A] - Pr[B] - Pr[C]

A, B and C are pairwise independent but not independent as a triplet.

6 Model of Computation - Turing Machines

Throughout this course, it is important to understand the model of computation
that we shall work with. This will be useful when we want to model various
participants in the primitives and protocols we develop.

In this course, we shall limit our model of computation to that of Turing
Machines, which we describe informally below. While it is not important to
understand the workings of a Turing Machine, it is presented here for complete-
ness. The below description is taken verbatim from [Kat].

A Turing Machine is defined by an integer k > 1, a finite set of states @, an
alphabet I, a transition function § : Q x T'* +— Q x T*~1 x {L,S, R}k where:

e [is the number of infinite, one-dimensional tapes used by the machine.
We typically have k > 3, where the first tape is denoted as the the input
tape, and the last tape the output tape. The position of the tape currently
being read is specified by a separate tape head for each tape.

e the set of states Q@ contains two special states: (a) the start state gstant;
and (b) the halt state gna.

e T contains {0, 1}, a special “blank symbol”, and a special “start symbol”.

The computation of a Turing machine M on input = € {0,1}* proceeds as
follows: All tapes of the Turing machine contain the start symbol followed by
the blank symbols, with the exception of the input tape which contains the
input . The machine starts in state ¢ = gstar with its k& heads at the leftmost
position of each tape. Then, until ¢ is the halt state, repeat the following;:

1. Let the current contents of the cells being scanned by the k heads be
Y155 Vk el

2. ComPUte 5(61”71,"' 7’Yk) = (qlvyéa"' 77]/67D17"' aDk) where q/ S Qa
Yy, 7y, € D and D; € {L,S,R}.

3. Overwrite the contents of the currently scanned cell on tape i to 7 for
2 < i < k; move head ¢ to the left, to the same position, or to the right
depending on whether D; = L, S, or R, respectively; and then set the
current state to ¢ = ¢'.

12

The output of M on input z, denoted M(z), is the binary string contained on
the output tape when the machine halts. It is possible that M never halts for
certain inputs x.

The above description is that of a Deterministic Turing Machine. We
contrast this with a Non-Deterministic Turing Machine (NDTM). An
NDTM instead of having a single transition function ¢§, has two transition func-
tion dp,d1 and at each step decides in a non-deterministic/arbitrary manner.
Therefore, after n steps the machine can be in at most 2" configurations, where
a configuration is the joint description of all the tapes of the Turing Machine.

We fill often find it more convenient to talk about algorithms, defined below.

Definition 2 (Algorithm) An algorithm is a Turing Machine whose input
and output are strings over the binary alphabet 3 = {0, 1}.

Note, that the two terms Turing Machine and Algorithm will be used inter-
changeably from now on.

Definition 3 (Running Time) An algorithm A is said to run in time T(n)
if for all strings of length n over the input alphabet (z € {0,1}™), A(z) halts
within T(|z]) steps.

In this course, we will primarily focus on algorithms that have a polynomial
running time.

Definition 4 (Polynomial Running Time) An algorithm A is said to run
in polynomial time if there exists a constant ¢ such that A runs in time T'(n) =
ne.

We say an algorithm is efficient if it runs in polynomial time. FEven for
efficient algorithms, the constant ¢ can be a large value. For example, consider
c=100. In practice, n'%0 may actually be considered “inefficient”. For our
purposes, however, we will stick with this definition of efficiency.

If an algorithm runs exponential or super-polynomial time, i.e., T'(n) = 2"
or T'(n) = n1°8™) then we will say it is inefficient.

One might consider other notions of efficiency, and there is nothing pristine
about using polynomial time as the measure of efficiency. But throughout this
course, we shall see that this is often a convenient measure since the composition
of polynomials remain a polynomial.

So far, we have only considered deterministic algorithms. In computer sci-
ence, and specifically cryptography, randomness plays a central role. Therefore,
throughout the course, we will be interested in randomized (a.k.a. probabilistic)
algorithms.

Definition 5 (Randomized Algorithm) A randomized algorithm,
also called a probabilistic polynomial time Turing machine (PPT) is a
Turing machine that runs in polynomial time and is equipped with an

13

extra randomness tape. FEach bit of randomness tape is uniformly and
independently chosen.The output of a randomized algorithm is a distri-
bution.

Remark 2 Note that we do not place any limits on the length of the ranom tape,
once the randmness has been fixed, the computation is completely determinisitic.

When we talk about randomized algorithms, we will often make explicit the
randomness used. So an algorithm M(z;r) indicates that M runs on input
using randomness r that is sampled as r «$ {0,1}" for some m. In fact, one
can think of the output of M(z;) as a random variable with randomness from
T

As mentioned earlier, in practice, everyone including the adversary has some
bounded computational resources. These resources can be used in a variety
of intelligent ways, but they are still limited. Turing machines are able to
capture all the types of computations possible given these resources. Therefore,
a adversary will be a computer program or algorithm modeled as a Turing
machine.

This captures what we can do efficiently ourselves and can be described as a
uniform PPT Turing machine. When it comes to adversaries, we will allow them
to have some extra power. Instead of having only one algorithm that works for
different input lengths, it can write down potentially a different algorithm for
every input size. Each of them individually could be efficient. If that is the
case, overall the adversary still runs in polynomial time.

Definition 6 (Non-Uniform PPT Machine) A non-uniform proba-
bilistic polynomial time Turing machine is a Turing machine A made
up of a sequence of probabilistic machines M = {My, My, ---} for which
there exists a polynomial p(-) such that for every M; € M, the description
size |M;| and the running time of M; are at most p(i). We write M(z)
to denote the distribution obtained by running Mg (z).

Our adversary will usually be a non-uniform probabilistic polynomial run-
ning time algorithm (n.u. PPT).

7 Asymptotic Notation

When describing the running time of algorithms, instead of describing the run-
ning as a complicated function in the size of the input, it is more convenient to
describe the running time with the function that reflects its growth.

Big-O. The function f(n) is O(g(n)) if 3 constants ¢, ng, such that Vn > ng

0< f(n) <c-g(n)

14

Big-Omega. The function f(n) is Q(g(n)) if 3 constants ¢, ng, such that ¥n >
o
0<ec-g(n) < fn)

Theta. The function f(n)is 6(g(n)) if 3 constants ¢, ¢z, ng, such that ¥n > ng

0<ec-g(n) < f(n)<ca-gn)

We have illustrated these notions, and the importance of the constants ¢ and
ng, in Figure 7.

c1-g(n)

f(n)
e

Figure 7: Here we give examples of the O, Q and 6 notations.

The above asymptotic notations of O and €2 may not be asymptotically tight,
so below we describe their corresponding asymptotically tight notions.

Small-o. The function is f(n) is o(g(n)) if V constant ¢, 3 constant ng, such
that V
0< f(n) < e g(n)

Small-omega. The function is f(n) is w(g(n)) if V constant ¢, 3 constant nyg,
such that V
0<c-g(n) < fn)

Note how the quantifiers, and their order, have changed in the above def-
inition. Recall from our discussion of quantifiers how the order affects the
definition.

Remark 3 We have slightly abused notation above since O(g(n)) defines sets,
but we shall find it convenient to use the above description. See Chapter 3 of
[CLRS09] for a detailed discussion of these concepts.

References

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, 3rd Edition. MIT Press,
20009.

15

[Kat] Jonathan Katz. http://www.cs.umd.edu/~jkatz/complexity/
f11/all.pdf.

[Lov] Andrew D Loveless. https://sites.math.washington.edu/
~aloveles/Math300Summer2011/m300Quantifiers.pdf.

16

