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A Brief History of Cryptography

Enigma Machine: Cipher device used by Germany in World War II.

Finally broken by Alan Turing and his team at Bletchley Park.

One of the first 
applications of 

computing
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A Brief History of Cryptography

The Origins of Modern Cryptography

Claude Shannon

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

The first annual international cryptography conference CRYPTO was held 
in 1981 with 102 attendees.  

From the 1970s onward, cryptography emerged as a rigorous, computational science.

8 of them have since won the Turing Award (10 in total so far).
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Cryptography

Maths and Theoretical CS

Number theory, 
combinatorics, probability, 

complexity-theory

Real-world Needs

Privacy, security, 
integrity, trust 

Problems Techniques

Solutions
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Modern Cryptography

This course is about the foundations of Cryptography.

Pseudorandomness

Public-key Encryption

Digital Signatures

Zero-knowledge Proofs

Secure Computation

Hash Functions

Design and analysis of systems that need to withstand malicious attempts to abuse it.
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The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Source of hard problems: number theory, geometry, coding theory, algebra.

Cryptography is the science of useful hardness.
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The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Reductions: If an adversary breaks system S w.r.t. definition D

then

there is an adversary that breaks the hardness assumption.

Either ensure security or 
solve a hard problem!
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Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

• Think intuitively but write rigorous proofs.

• When you encounter crypto

• Understand key terms

• Framework to reason about security guarantees

• Understand what goes on “under the hood”

• Develop “crypto mindset”
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• Perfect Security 

• Computational Security 

• One-way Functions 

• Pseudorandomness 

• Symmetric-key Encryption 

• Key Agreement 

• Public-key Encryption 

• Message Authentication Codes 

• Hash Functions 

• Digital Signatures 

• Zero-knowledge Proofs 

• Secure Computation

Compute on private inputs to only learn the output.

Net worth x Net worth y

Learns if x > y Learns if x > y

Learns nothing about y Learns nothing about x
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Course Logistics

• Course website: https://adishegde.github.io/modern_crypto_sp26/


• In person classes, no Zoom or recordings


• Use Canvas for homework submission, discussion board, and announcements


• Grading:


• 25% Homework


• 15% Midterm 1


• 25% Midterm 2


• 30% Final


• 5% Class participation



Homework

• Weekly assignments


• Submit via Canvas


• Must be typeset (use LaTeX or Typst)


• 48 “late hours”


• Okay to collaborate, list your collaborators


• No using AI on homeworks



Textbook and References

• No official textbook


• Free textbook A Graduate Course in Applied Cryptography is a great 
reference: https://toc.cryptobook.us/


• Syllabus, lecture notes, and slides will be available on the course website



Prerequisite / Background



Required reading before next class: pre-req lecture notes

https://adishegde.github.io/modern_crypto_sp26/notes/prerequisite_notes.pdf
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Logic: Implication

P ⇒ Q “If x = 19, then x is prime”

¬Q ⇒ ¬P
Contrapositive:

“If x is not prime, then x != 19”

A statement and its contrapositive are logically equivalent. Often when 
we want to prove a statement we will prove its contrapositive.
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Universal Quantifier

“For all integers x

∀x ∈ A

, x > 0”

P(x)

∃x ∈ A, P(x)
Existential Quantifier

x > 0”
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“There exists an integer x such that
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Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

∃y ∈ A, ∀x ∈ A, P(x, y) for all integers x

∀x ∈ A

“There exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

Order of quantifiers really matters!
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Logic: Negating Quantifiers

∀x ∈ A, P(x) “For all integers x

∀x ∈ A

 x > 0”

P(x)

¬(∀x ∈ A, P(x))

∃x ∈ A, ¬P(x) “There exists an integer x such that

∃x ∈ A

x < 0

¬P(x)
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Logic: Negating Nested Quantifiers

∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x)

¬(∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x))

∃x ∈ A, ∀y ∈ B, ∀z ∈ C, ¬P(x)

Negate each quantifier in 
turn
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Logic: Putting it all Together

∀x, P(x) ∧ ∀y, P(y) ⇒ ∀z, Q(Z)

∃z, ¬Q(z) ⇒ ∃x, ¬P(X) ∨ ∃y, ¬P(y)
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Example: some other distribution
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selecting an element in accordance 
with the assigned probabilities 
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0 1 1 0 0 0 0
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Processes inputs 
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steps, eventually 
halting.

What we care about: 
The maximum number 
of steps the machine 
takes before halting as 
a function of the input 
length.

Example: T(x) = x5

Example: T(x) = 2x

“Polynomial runtime”: efficient!

PPT = “Probabilistic 
Polynomial Time”
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 where each  is a 
PPT Turing Machine is called a Non-
uniform PPT Turing Machine (NUPPT)

M = {M1, M2, …} M1
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Asymptotic Notation

• Helps us answer the question: “how efficient is your algorithm”

• We care about how the runtime (number of steps) scales as a function of the 
input length

• Specifically, we care about the limit of this function: what does it trend 
towards? 
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Big O:  if f(x) ∈ O(g(x))

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ f(n) ≤ c ⋅ g(n)
Another way of saying that an algorithm is “efficient” is to say that its input-length to 
runtime function  is in  for some constant .T(x) O(xd) d

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ g(n) < c ⋅ f(n)

Little Omega:  if f(x) ∈ ω(g(x))

Little omega means that  grows strictly 
faster than 

f(x)
g(x)

We may say that a  is “super-polynomial” 
to mean that  for any constant 

f(x)
f(x) ∈ ω(xd) d


