
20th January 2026

Introduction
601.442/642 Modern Cryptography

Harry Eldridge
(heldrid2@jhmi.edu)

Course Staf

Instructors

Aditya Hegde
(ahegde3@jhu.edu)

Harry Eldridge
(heldrid2@jhmi.edu)

Course Staf

Instructors

Aditya Hegde
(ahegde3@jhu.edu)

TA

Shruthi Prusty
(sprusty1@jhu.edu)

What is Cryptography?

A Brief History of Cryptography

Classical Cryptography:
Pre-1950

The art of secret writing

A Brief History of Cryptography

Classical Cryptography:
Pre-1950

The art of secret writing

Caesar Cipher: Substitution cipher used by Julius Caesar for military
correspondence in the last century BC.

A Brief History of Cryptography

Classical Cryptography:
Pre-1950

The art of secret writing

Al-Kindi (9th century AD) provided a systematic way to break
substitution ciphers.

Caesar Cipher: Substitution cipher used by Julius Caesar for military
correspondence in the last century BC.

A Brief History of Cryptography

Classical Cryptography:
Pre-1950

The art of secret writing

Al-Kindi (9th century AD) provided a systematic way to break
substitution ciphers.

Caesar Cipher: Substitution cipher used by Julius Caesar for military
correspondence in the last century BC.

A Brief History of Cryptography

Classical Cryptography:
Pre-1950

The art of secret writing

Al-Kindi (9th century AD) provided a systematic way to break
substitution ciphers.

Caesar Cipher: Substitution cipher used by Julius Caesar for military
correspondence in the last century BC.

A Brief History of Cryptography

Enigma Machine: Cipher device used by Germany in World War II.

Classical Cryptography:
Pre-1950

The art of secret writing

Al-Kindi (9th century AD) provided a systematic way to break
substitution ciphers.

Caesar Cipher: Substitution cipher used by Julius Caesar for military
correspondence in the last century BC.

A Brief History of Cryptography

Enigma Machine: Cipher device used by Germany in World War II.

Finally broken by Alan Turing and his team at Bletchley Park.

Classical Cryptography:
Pre-1950

The art of secret writing

Al-Kindi (9th century AD) provided a systematic way to break
substitution ciphers.

Caesar Cipher: Substitution cipher used by Julius Caesar for military
correspondence in the last century BC.

A Brief History of Cryptography

Enigma Machine: Cipher device used by Germany in World War II.

Finally broken by Alan Turing and his team at Bletchley Park.

One of the first
applications of

computing

A Brief History of Cryptography

The Origins of Modern Cryptography

A Brief History of Cryptography

The Origins of Modern Cryptography

A Brief History of Cryptography

The Origins of Modern Cryptography

Claude Shannon

A Brief History of Cryptography

The Origins of Modern Cryptography

Claude Shannon

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

A Brief History of Cryptography

The Origins of Modern Cryptography

Claude Shannon

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

A Brief History of Cryptography

The Origins of Modern Cryptography

Claude Shannon

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

From the 1970s onward, cryptography emerged as a rigorous, computational science.

A Brief History of Cryptography

The Origins of Modern Cryptography

Claude Shannon

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

The first annual international cryptography conference CRYPTO was held
in 1981 with 102 attendees.

From the 1970s onward, cryptography emerged as a rigorous, computational science.

A Brief History of Cryptography

The Origins of Modern Cryptography

Claude Shannon

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

The first annual international cryptography conference CRYPTO was held
in 1981 with 102 attendees.

From the 1970s onward, cryptography emerged as a rigorous, computational science.

8 of them have since won the Turing Award (10 in total so far).

Modern Cryptography

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Another Definition:

Algorithmic and mathematical foundations of secure communication and computation.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Another Definition:

Algorithmic and mathematical foundations of secure communication and computation.

Cryptography

Maths and Theoretical CS

Number theory,
combinatorics, probability,

complexity-theory

Real-world Needs

Privacy, security,
integrity, trust

Problems Techniques

Solutions

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

This course is about the foundations of Cryptography.

Pseudorandomness

Public-key Encryption

Digital Signatures

Zero-knowledge Proofs

Secure Computation

Hash Functions

Design and analysis of systems that need to withstand malicious attempts to abuse it.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

If you cannot define something, you cannot achieve it.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

If you cannot define something, you cannot achieve it.

Model Worst-case Adversary: What they know

What they can do

What are their goals

Use hard problems to constrain the adversary.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Use hard problems to constrain the adversary.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Source of hard problems: number theory,

Use hard problems to constrain the adversary.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Source of hard problems: number theory, geometry, coding theory, algebra.

Use hard problems to constrain the adversary.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Source of hard problems: number theory, geometry, coding theory, algebra.

Cryptography is the science of useful hardness.

Formally argue why a system satisfies the definition.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Formally argue why a system satisfies the definition.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Reductions: If an adversary breaks system S w.r.t. definition D

then

there is an adversary that breaks the hardness assumption.

Formally argue why a system satisfies the definition.

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

Reductions: If an adversary breaks system S w.r.t. definition D

then

there is an adversary that breaks the hardness assumption.

Either ensure security or
solve a hard problem!

Course Objectives

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

• Think intuitively but write rigorous proofs.

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

• Think intuitively but write rigorous proofs.

• When you encounter crypto

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

• Think intuitively but write rigorous proofs.

• When you encounter crypto

• Understand key terms

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

• Think intuitively but write rigorous proofs.

• When you encounter crypto

• Understand key terms

• Framework to reason about security guarantees

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

• Think intuitively but write rigorous proofs.

• When you encounter crypto

• Understand key terms

• Framework to reason about security guarantees

• Understand what goes on “under the hood”

Course Objectives

• Learn the modern, provable security-based approach to cryptography.

• Learn the mathematical language used to express cryptographic concepts.

• Think intuitively but write rigorous proofs.

• When you encounter crypto

• Understand key terms

• Framework to reason about security guarantees

• Understand what goes on “under the hood”

• Develop “crypto mindset”

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Foundations of provable security

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Message m

Ciphertext 𝖼𝗍

Receives m

Encryption Schemes

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Message m

Ciphertext 𝖼𝗍

Receives m

Eavesdropper does not learn
the message

Encryption Schemes

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Authentication and Integrity

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Downloads software update

Authentication and Integrity

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Downloads software update

Authentication and Integrity

?

?

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Prove that a statement is true without conveying any additional knowledge.

Bob

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Prove that a statement is true without conveying any additional knowledge.

I know a
solution to

Alice

Bob

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Prove that a statement is true without conveying any additional knowledge.

I know a
solution to

Prove it to me

Alice

Bob

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Prove that a statement is true without conveying any additional knowledge.

I know a
solution to

Prove it to me

Alice

Bob

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Prove that a statement is true without conveying any additional knowledge.

I know a
solution to

Prove it to me

Alice

Bob is convinced that Alice has a solution

Bob

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Prove that a statement is true without conveying any additional knowledge.

I know a
solution to

Prove it to me

Alice

Bob is convinced that Alice has a solution

Bob learns nothing about the solution

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Compute on private inputs to only learn the output.

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Compute on private inputs to only learn the output.

Net worth x Net worth y

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Compute on private inputs to only learn the output.

Net worth x Net worth y

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Compute on private inputs to only learn the output.

Net worth x Net worth y

Learns if x > y Learns if x > y

Topics
• Perfect Security

• Computational Security

• One-way Functions

• Pseudorandomness

• Symmetric-key Encryption

• Key Agreement

• Public-key Encryption

• Message Authentication Codes

• Hash Functions

• Digital Signatures

• Zero-knowledge Proofs

• Secure Computation

Compute on private inputs to only learn the output.

Net worth x Net worth y

Learns if x > y Learns if x > y

Learns nothing about y Learns nothing about x

Logistics

Course Logistics

• Course website: https://adishegde.github.io/modern_crypto_sp26/

• In person classes, no Zoom or recordings

• Use Canvas for homework submission, discussion board, and announcements

• Grading:

• 25% Homework

• 15% Midterm 1

• 25% Midterm 2

• 30% Final

• 5% Class participation

Homework

• Weekly assignments

• Submit via Canvas

• Must be typeset (use LaTeX or Typst)

• 48 “late hours”

• Okay to collaborate, list your collaborators

• No using AI on homeworks

Textbook and References

• No official textbook

• Free textbook A Graduate Course in Applied Cryptography is a great
reference: https://toc.cryptobook.us/

• Syllabus, lecture notes, and slides will be available on the course website

Prerequisite / Background

Required reading before next class: pre-req lecture notes

https://adishegde.github.io/modern_crypto_sp26/notes/prerequisite_notes.pdf

Logic

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

0 ⊕ 1 = 1

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

0 ⊕ 1 = 1

01010
⊕ 11011

10001

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

0 ⊕ 1 = 1

01010
⊕ 11011

10001

x ∧ y

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

0 ⊕ 1 = 1

01010
⊕ 11011

10001

x ∧ y x ∨ y

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

0 ⊕ 1 = 1

01010
⊕ 11011

10001

¬(x ∧ y) = ¬x ∨ ¬y

x ∧ y x ∨ y

Logic
x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x OR y

0 0 0

0 1 1

1 0 1

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

0 ⊕ 1 = 1

01010
⊕ 11011

10001

¬(x ∧ y) = ¬x ∨ ¬y ¬(x ∨ y) = ¬x ∧ ¬y

x ∧ y x ∨ y

Logic: Implication

Logic: Implication

P ⇒ Q

Logic: Implication

P ⇒ Q “If x = 19, then x is prime”

Logic: Implication

P ⇒ Q “If x = 19, then x is prime”

¬Q ⇒ ¬P
Contrapositive:

Logic: Implication

P ⇒ Q “If x = 19, then x is prime”

¬Q ⇒ ¬P
Contrapositive:

“If x is not prime, then x != 19”

Logic: Implication

P ⇒ Q “If x = 19, then x is prime”

¬Q ⇒ ¬P
Contrapositive:

“If x is not prime, then x != 19”

A statement and its contrapositive are logically equivalent. Often when
we want to prove a statement we will prove its contrapositive.

Logic: Quantifiers

Logic: Quantifiers

∀x ∈ A, P(x)
Universal Quantifier

Logic: Quantifiers

∀x ∈ A, P(x)
Universal Quantifier

“For all integers x

∀x ∈ A

Logic: Quantifiers

∀x ∈ A, P(x)
Universal Quantifier

“For all integers x

∀x ∈ A

, x > 0”

P(x)

Logic: Quantifiers

∀x ∈ A, P(x)
Universal Quantifier

“For all integers x

∀x ∈ A

, x > 0”

P(x)

∃x ∈ A, P(x)
Existential Quantifier

Logic: Quantifiers

∀x ∈ A, P(x)
Universal Quantifier

“For all integers x

∀x ∈ A

, x > 0”

P(x)

∃x ∈ A, P(x)
Existential Quantifier ∃x ∈ A

“There exists an integer x such that

Logic: Quantifiers

∀x ∈ A, P(x)
Universal Quantifier

“For all integers x

∀x ∈ A

, x > 0”

P(x)

∃x ∈ A, P(x)
Existential Quantifier

x > 0”

P(x)∃x ∈ A

“There exists an integer x such that

Logic: Nesting Quantifiers

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y)

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

∃y ∈ A, ∀x ∈ A, P(x, y)

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

∃y ∈ A, ∀x ∈ A, P(x, y) “There exists an integer y such that

∃y ∈ A

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

∃y ∈ A, ∀x ∈ A, P(x, y) for all integers x

∀x ∈ A

“There exists an integer y such that

∃y ∈ A

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

∃y ∈ A, ∀x ∈ A, P(x, y) for all integers x

∀x ∈ A

“There exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

Logic: Nesting Quantifiers

∀x ∈ A, ∃y ∈ A, P(x, y) “For all integers x

∀x ∈ A

, there exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

∃y ∈ A, ∀x ∈ A, P(x, y) for all integers x

∀x ∈ A

“There exists an integer y such that

∃y ∈ A

x + y = 0” P(x, y)

Order of quantifiers really matters!

Logic: Negating Quantifiers

Logic: Negating Quantifiers

∀x ∈ A, P(x) “For all integers x

∀x ∈ A

 x > 0”

P(x)

Logic: Negating Quantifiers

∀x ∈ A, P(x) “For all integers x

∀x ∈ A

 x > 0”

P(x)

¬(∀x ∈ A, P(x))

Logic: Negating Quantifiers

∀x ∈ A, P(x) “For all integers x

∀x ∈ A

 x > 0”

P(x)

¬(∀x ∈ A, P(x))

∃x ∈ A, ¬P(x)

Logic: Negating Quantifiers

∀x ∈ A, P(x) “For all integers x

∀x ∈ A

 x > 0”

P(x)

¬(∀x ∈ A, P(x))

∃x ∈ A, ¬P(x) “There exists an integer x such that

∃x ∈ A

Logic: Negating Quantifiers

∀x ∈ A, P(x) “For all integers x

∀x ∈ A

 x > 0”

P(x)

¬(∀x ∈ A, P(x))

∃x ∈ A, ¬P(x) “There exists an integer x such that

∃x ∈ A

x < 0

¬P(x)

Logic: Negating Nested Quantifiers

Logic: Negating Nested Quantifiers

∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x)

Logic: Negating Nested Quantifiers

∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x)

¬(∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x))

Logic: Negating Nested Quantifiers

∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x)

¬(∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x)) Negate each quantifier in
turn

Logic: Negating Nested Quantifiers

∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x)

¬(∀x ∈ A, ∃y ∈ B, ∃z ∈ C, P(x))

∃x ∈ A, ∀y ∈ B, ∀z ∈ C, ¬P(x)

Negate each quantifier in
turn

Logic: Putting it all Together

Logic: Putting it all Together

∀x, P(x) ∧ ∀y, P(y) ⇒ ∀z, Q(Z)

Logic: Putting it all Together

∀x, P(x) ∧ ∀y, P(y) ⇒ ∀z, Q(Z)

∃z, ¬Q(z) ⇒ ∃x, ¬P(X) ∨ ∃y, ¬P(y)

Probability: Distributions

Probability: Distributions
Sample Space: the possible outcomes of a probabilistic experiment

Probability: Distributions
Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,…)

Probability: Distributions
Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,…)

Distribution: A distribution over a sample space assigns a probability to every
element of the space such that the sum of the probabilities is 1.

Probability: Distributions
Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,…)

Distribution: A distribution over a sample space assigns a probability to every
element of the space such that the sum of the probabilities is 1.

0

0.035

0.07

0.105

0.14

000 001 010 011 100 101 110 111

Example: the uniform distribution (all probabilities equal)

Probability: Distributions
Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,…)

Distribution: A distribution over a sample space assigns a probability to every
element of the space such that the sum of the probabilities is 1.

0

0.035

0.07

0.105

0.14

000 001 010 011 100 101 110 111

Example: the uniform distribution (all probabilities equal)

Example: some other distribution

0
0.125
0.25

0.375
0.5

000 001 010 011 100 101 110 111

Probability: Distributions
Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,…)

Distribution: A distribution over a sample space assigns a probability to every
element of the space such that the sum of the probabilities is 1.

0

0.035

0.07

0.105

0.14

000 001 010 011 100 101 110 111

Example: the uniform distribution (all probabilities equal)

Example: some other distribution

0
0.125
0.25

0.375
0.5

000 001 010 011 100 101 110 111

Sampling from a distribution means
selecting an element in accordance
with the assigned probabilities

Turing Machines

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

0 0 0 0 0 0 1

Output tape

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

0 0 0 0 0 0 1

Output tape
Processes inputs
in a sequence of
steps, eventually
halting.

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

0 0 0 0 0 0 1

Output tape
Processes inputs
in a sequence of
steps, eventually
halting.

What we care about:
The maximum number
of steps the machine
takes before halting as
a function of the input
length.

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

0 0 0 0 0 0 1

Output tape
Processes inputs
in a sequence of
steps, eventually
halting.

What we care about:
The maximum number
of steps the machine
takes before halting as
a function of the input
length.

Example: T(x) = x5

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

0 0 0 0 0 0 1

Output tape
Processes inputs
in a sequence of
steps, eventually
halting.

What we care about:
The maximum number
of steps the machine
takes before halting as
a function of the input
length.

Example: T(x) = x5

“Polynomial runtime”: efficient!

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

0 0 0 0 0 0 1

Output tape
Processes inputs
in a sequence of
steps, eventually
halting.

What we care about:
The maximum number
of steps the machine
takes before halting as
a function of the input
length.

Example: T(x) = x5

Example: T(x) = 2x

“Polynomial runtime”: efficient!

Turing Machines
To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

0 0 0 1 1 0 1

Input tape

0 1 1 0 0 0 0

Randomness tape (uniform 0s and 1s)

0 0 0 0 0 0 1

Output tape
Processes inputs
in a sequence of
steps, eventually
halting.

What we care about:
The maximum number
of steps the machine
takes before halting as
a function of the input
length.

Example: T(x) = x5

Example: T(x) = 2x

“Polynomial runtime”: efficient!

PPT = “Probabilistic
Polynomial Time”

Non-uniform Turing Machines

Non-uniform Turing Machines
We can make an algorithm “more powerful” by letting it be completely
different for every input length

Non-uniform Turing Machines
We can make an algorithm “more powerful” by letting it be completely
different for every input length

0 0 0 1 1 0 1
TM for length 7
input

Non-uniform Turing Machines
We can make an algorithm “more powerful” by letting it be completely
different for every input length

0 0 0 1 1 0 1
TM for length 7
input

0 0 0 1
TM for length 4
input

Non-uniform Turing Machines
We can make an algorithm “more powerful” by letting it be completely
different for every input length

0 0 0 1 1 0 1
TM for length 7
input

0 0 0 1
TM for length 4
input

Might behave totally
differently!

Non-uniform Turing Machines
We can make an algorithm “more powerful” by letting it be completely
different for every input length

0 0 0 1 1 0 1
TM for length 7
input

0 0 0 1
TM for length 4
input

Might behave totally
differently!

 where each is a
PPT Turing Machine is called a Non-
uniform PPT Turing Machine (NUPPT)

M = {M1, M2, …} M1

Asymptotic Notation

Asymptotic Notation

• Helps us answer the question: “how efficient is your algorithm”

Asymptotic Notation

• Helps us answer the question: “how efficient is your algorithm”

• We care about how the runtime (number of steps) scales as a function of the
input length

Asymptotic Notation

• Helps us answer the question: “how efficient is your algorithm”

• We care about how the runtime (number of steps) scales as a function of the
input length

• Specifically, we care about the limit of this function: what does it trend
towards?

Asymptotic Notation

Asymptotic Notation

Big O: if f(x) ∈ O(g(x))

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ f(n) ≤ c ⋅ g(n)

Asymptotic Notation

Big O: if f(x) ∈ O(g(x))

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ f(n) ≤ c ⋅ g(n)

Asymptotic Notation

Big O: if f(x) ∈ O(g(x))

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ f(n) ≤ c ⋅ g(n)
Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function is in for some constant .T(x) O(xd) d

Asymptotic Notation

Big O: if f(x) ∈ O(g(x))

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ f(n) ≤ c ⋅ g(n)
Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function is in for some constant .T(x) O(xd) d

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ g(n) < c ⋅ f(n)

Little Omega: if f(x) ∈ ω(g(x))

Asymptotic Notation

Big O: if f(x) ∈ O(g(x))

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ f(n) ≤ c ⋅ g(n)
Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function is in for some constant .T(x) O(xd) d

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ g(n) < c ⋅ f(n)

Little Omega: if f(x) ∈ ω(g(x))

Little omega means that grows strictly
faster than

f(x)
g(x)

Asymptotic Notation

Big O: if f(x) ∈ O(g(x))

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ f(n) ≤ c ⋅ g(n)
Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function is in for some constant .T(x) O(xd) d

∃c, n0 ∈ {1,2,3,…} such that ∀n ≥ n0, 0 ≤ g(n) < c ⋅ f(n)

Little Omega: if f(x) ∈ ω(g(x))

Little omega means that grows strictly
faster than

f(x)
g(x)

We may say that a is “super-polynomial”
to mean that for any constant

f(x)
f(x) ∈ ω(xd) d

