Introduction

601.442/642 Modern Cryptography

20th January 2026

Course Staff

Instructors

Aditya Hegde
(ahegde3@jhu.edu)

Harry Eldridge
(heldrid2@jhmi.edu)

Course Staff

TA

Instructors

Shruthi Prusty
(sprustyl@jhu.edu)

Aditya Hegde
(ahegde3@jhu.edu)

Harry Eldridge
(heldrid2@jhmi.edu)

What is Cryptography?

A Brief History of Cryptography

A Brief History of Cryptography

Classical Cryptography: The art of secret writing
Pre-1950

A Brief History of Cryptography

Classical Cryptography: The art of secret writing
Pre-1950

AlBICIDIE[F Caesar Cipher: Substitution cipher used by Julius Caesar for military

/// correspondence in the last century BC.

A Brief History of Cryptography

Classical Cryptography: The art of secret writing
Pre-1950

AlBICIDIE[F Caesar Cipher: Substitution cipher used by Julius Caesar for military
/// correspondence in the last century BC.
Al-Kindi (9th century AD) provided a systematic way to break

substitution ciphers.

A Brief History of Cryptography

Classical Cryptography: The art of secret writing
Pre-1950

AlBICIDIE[F Caesar Cipher: Substitution cipher used by Julius Caesar for military
/// correspondence in the last century BC.
Al-Kindi (9th century AD) provided a systematic way to break

substitution ciphers.

A Brief History of Cryptography

Classical Cryptography: The art of secret writing
Pre-1950

AlBICIDIE[F Caesar Cipher: Substitution cipher used by Julius Caesar for military
/// correspondence in the last century BC.
Al-Kindi (9th century AD) provided a systematic way to break

substitution ciphers.

Enigma Machine: Cipher device used by Germany in World War Il.

A Brief History of Cryptography

Classical Cryptography: The art of secret writing
Pre-1950

AlBICIDIE[F Caesar Cipher: Substitution cipher used by Julius Caesar for military
/// correspondence in the last century BC.
Al-Kindi (9th century AD) provided a systematic way to break

substitution ciphers.

Enigma Machine: Cipher device used by Germany in World War Il.

Finally broken by Alan Turing and his team at Bletchley Park.

A Brief History of Cryptography

Classical Cryptography: The art of secret writing
Pre-1950

AlBICIDIE[F Caesar Cipher: Substitution cipher used by Julius Caesar for military
/// correspondence in the last century BC.
Al-Kindi (9th century AD) provided a systematic way to break

substitution ciphers.

Enigma Machine: Cipher device used by Germany in World War Il.
One of the first

applications of

computing Finally broken by Alan Turing and his team at Bletchley Park.

A Brief History of Cryptography

The Origins of Modern Cryptography

A Brief History of Cryptography

The Origins of Modern Cryptography

A Brief History of Cryptography

The Origins of Modern Cryptography

YRR oy
T e
s
1 -
5
Q

Claude Shannon

A Brief History of Cryptography

The Origins of Modern Cryptography

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

Claude Shannon

A Brief History of Cryptography

The Origins of Modern Cryptography

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

Claude Shannon

A Brief History of Cryptography

The Origins of Modern Cryptography

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

v
‘‘‘
3

“A Mathematical Theory of Communication” (1948)

Founded information theory

B
Claude Shannon

From the 1970s onward, cryptography emerged as a rigorous, computational science.

A Brief History of Cryptography

The Origins of Modern Cryptography

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

Claude Shannon
From the 1970s onward, cryptography emerged as a rigorous, computational science.

The first annual international cryptography conference CRYPTO was held
in 1981 with 102 attendees.

A Brief History of Cryptography

The Origins of Modern Cryptography

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

QJA
Claude Shannon

From the 1970s onward, cryptography emerged as a rigorous, computational science.

The first annual international cryptography conference CRYPTO was held
in 1981 with 102 attendees.

8 of them have since won the Turing Award (10 in total so far).

Modern Cryptography

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Another Definition:

Algorithmic and mathematical foundations of secure communication and computation.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Another Definition:

Algorithmic and mathematical foundations of secure communication and computation.

Problems Techniques

Real-world Needs Maths and Theoretical CS

Cryptography Number theory

combinatorics, probability,
complexity-theory

Privacy, security,
Integrity, trust

Solutions

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Sectigo RSA Domain Validation Secure Server USERTrust RSA Certification
CA Authority

Subject Name

Common Name *.github.io

Validity

Not Before Fri, 07 Mar 2025 00:00:00 GMT
Not After Sat, 07 Mar 2026 23:59:59 GMT

110U P > Public Key Info

Algorithm RSA
Key Size 2048
Exponent 65537
Modulus C4:A4:0B:12:55:66:25:82:A7:67:D7:66:28:C5:AB:6F:87:F2:E0:15:85:9B:AE...

Miscellaneous

Serial Number 00:90:77:34:41:47:31:6E:F9:95:99:76:7A:EA:FD:F1:B9
Signature Algorithm SHA-256 with RSA Encryption
Version 3
Download PEM (cert) PEM (chain)

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

ithub.lo Sectigo RSA Domain Validation Secure Server USERTrust RSA Certification
github.io CA Authority

Subject Name

Common Name *.github.io

Validity

Not Before Fri, 07 Mar 2025 00:00:00 GMT

Not After Sat, 07 Mar 2026 23:59:59 GMT
@ 110U P > Public Key Info

Algorithm RSA
2048
65537
S C4:A4:0B:12:55:66:25:82:A7:67:D7:66:28:C5:AB:6F:87:F2:E0:15:85:9B:AE...

r 00:90:77:34:41:47:31:6E:F9:95:99:76:7A:EA'FD:F1:B9
Signature Algorithm SHA-256 with RSA Encryption
Version 3
Download PEM (cert) PEM (chain)

Warning: Potential Security Risk Ahead

Firefox detected a potential security threat and did not continue to self-signed.badssl.com. If you visit this site,
attackers could try to steal information like your passwords, emails, or credit card details.

Learn more...

Go Back (Recommended) Advanced...

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Sectigo RSA Domain Validation Secure Server USERTrust RSA Certification
CA Authority

Subject Name

Common Name *.github.io

Validity

Not Before Fri, 07 Mar 2025 00:00:00 GMT
Not After Sat, 07 Mar 2026 23:59:59 GMT

1100 P » Public Key Info

Algorithm RSA
Key Size 2048
Exponent 65537
Modulus C4:A4:0B:12:55:66:25:82:A7:67:D7:66:28:C5:AB:6F:87:F2:E0:15:85:9B:AE...

Miscellaneous

Serial Number 00:90:77:34:41:47:31:6E:F9:95:99:76:7A:EA:FD:F1:B9
Signature Algorithm SHA-256 with RSA Encryption
Version 3
Download PEM (cert) PEM (chain)

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

Sectigo RSA Domain Validation Secure Server USERTrust RSA Certification
CA Authority

Subject Name

Common Name *.github.io

Validity

Not Before Fri, 07 Mar 2025 00:00:00 GMT
Not After Sat, 07 Mar 2026 23:59:59 GMT

1100 P » Public Key Info

Algorithm RSA
Key Size 2048
Exponent 65537
Modulus C4:A4:0B:12:55:66:25:82:A7:67:D7:66:28:C5:AB:6F:87:F2:E0:15:85:9B:AE...

Miscellaneous

Serial Number 00:90:77:34:41:47:31:6E:F9:95:99:76:7A:EA:FD:F1:B9
Signature Algorithm SHA-256 with RSA Encryption
Version 3
Download PEM (cert) PEM (chain)

Modern Cryptography

Design and analysis of systems that need to withstand malicious attempts to abuse it.

aithub.io Sectigo RSA Domain Validation Secure Server USERTrust RSA Certification
: CA Authority

Subject Name

me *.github.io

e Fri, 07 Mar 2025 00:00:00 GMT

Not Befor
Not After Sat, 07 Mar 2026 23:59:59 GMT
@ HILLpPO L Lo
i 4
Modulus C4:A4:0B:12:55:66:25:82:A7:67:D7:66:28:C5:AB:6F:87:F2:E0:15:85:9B:AE

This course is about the foundations of Cryptography.

L ; e M
. | Pseudorandomness | Hash Functions i}
| ——— e ——————————————

- | Public-key Encryption - Zero-knowledge Proofs : |
B | AN N i
?t: g - e e t
. . Digital Signatures | . Secure Computation |

NN NN NN EEE N RN NN NN EEEsssEsssEssssssmmsd . s ssEs SRR EEEANEEEEEEENEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEEEEEsEEEsEEEsEEsEEEEl

The Pillars of Modern Cryptography

Definitions Hardness Assumptions Proofs

The Pillars of Modern Cryptography

N ——

Definitions

If you cannot define something, you cannot achieve it.

The Pillars of Modern Cryptography

Definitions

If you cannot define something, you cannot achieve it.

Model Worst-case Adversary: What they know

What they can do

What are their goals

The Pillars of Modern Cryptography

~——

Hardness Assumptions

Use hard problems to constrain the adversary.

The Pillars of Modern Cryptography

~——
N ——

Hardness Assumptions

Use hard problems to constrain the adversary.

Source of hard problems: number theory,

The Pillars of Modern Cryptography

~——
N ——

Hardness Assumptions

Use hard problems to constrain the adversary.

Source of hard problems: number theory, geometry, coding theory, algebra.

The Pillars of Modern Cryptography

Hardness Assumptions

Use hard problems to constrain the adversary.

Source of hard problems: number theory, geometry, coding theory, algebra.

Cryptography is the science of useful hardness.

The Pillars of Modern Cryptography

N —

Proofs

Formally argue why a system satisfies the definition.

The Pillars of Modern Cryptography

Proofs

Formally argue why a system satisfies the definition.

Reductions: If an adversary breaks system S w.r.t. definition D
then

there is an adversary that breaks the hardness assumption.

The Pillars of Modern Cryptography

Proofs

Formally argue why a system satisfies the definition.

Reductions: If an adversary breaks system S w.r.t. definition D
Either ensure security or

then solve a hard problem!

there is an adversary that breaks the hardness assumption.

Course Objectives

Course Objectives

 Learn the modern, provable security-based approach to cryptography.

Course Objectives

 Learn the modern, provable security-based approach to cryptography.

« Learn the mathematical language used to express cryptographic concepts.

Course Objectives

 Learn the modern, provable security-based approach to cryptography.
« Learn the mathematical language used to express cryptographic concepts.

e Think intuitively but write rigorous proofs.

Course Objectives

 Learn the modern, provable security-based approach to cryptography.
« Learn the mathematical language used to express cryptographic concepts.
e Think intuitively but write rigorous proofs.

« When you encounter crypto

Course Objectives

 Learn the modern, provable security-based approach to cryptography.
« Learn the mathematical language used to express cryptographic concepts.
e Think intuitively but write rigorous proofs.

« When you encounter crypto

e« Understand key terms

Course Objectives

 Learn the modern, provable security-based approach to cryptography.
« Learn the mathematical language used to express cryptographic concepts.
e Think intuitively but write rigorous proofs.

« When you encounter crypto
e« Understand key terms

« Framework to reason about security guarantees

Course Objectives

 Learn the modern, provable security-based approach to cryptography.
« Learn the mathematical language used to express cryptographic concepts.
e Think intuitively but write rigorous proofs.
« When you encounter crypto
e« Understand key terms
« Framework to reason about security guarantees

 Understand what goes on “under the hood”

Course Objectives

 Learn the modern, provable security-based approach to cryptography.
« Learn the mathematical language used to express cryptographic concepts.
e Think intuitively but write rigorous proofs.
« When you encounter crypto
e« Understand key terms
« Framework to reason about security guarantees
 Understand what goes on “under the hood”

e« Develop “crypto mindset”

Topics

e Perfect Security

« Computational Security

« One-way Functions
 Pseudorandomness

« Symmetric-key Encryption
e Key Agreement

e Public-key Encryption

« Message Authentication Codes
e Hash Functions

« Digital Signatures

o Zero-knowledge Proofs

« Secure Computation

Topics

o Perfect Security
« Computational Security

e One-way Functions

Foundations of provable security

e Pseudorandomness

« Symmetric-key Encryption
« Key Agreement

o Public-key Encryption

« Message Authentication Codes

e Hash Functions
o Digital Signatures
o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security

« Computational Security
« One-way Functions

« Pseudorandomness

« Symmetric-key Encryption

ﬂ

Ciphertext ct

e Key Agreement

e Public-key Encryption ,
/ yP Message m Recelves m

« Message Authentication Codes

Encryption Schemes
« Hash Functions
« Digital Signatures

o Zero-knowledge Proofs

« Secure Computation

Topics

e Perfect Security

Eavesdropper does not learn

« Computational Security the message

« One-way Functions

e Pseudorandomness

« Symmetric-key Encryption

ﬂ

Ciphertext ct

e Key Agreement

e Public-key Encryption ,
/ yP Message m Recelves m

« Message Authentication Codes

Encryption Schemes
« Hash Functions
« Digital Signatures

o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security

« Computational Security

« One-way Functions
 Pseudorandomness

« Symmetric-key Encryption

e Key Agreement

e Public-key Encryption

« Message Authentication Codes
e Hash Functions Authentication and Integrity
o Digital Signatures

o Zero-knowledge Proofs

« Secure Computation

Topics

e Perfect Security
« Computational Security
« One-way Functions

e Pseudorandomness

ﬂ

« Symmetric-key Encryption

« Key Agreement Downloads software update
e Public-key Encryption

« Message Authentication Codes

e Hash Functions Authentication and Integrity

e Digital Signatures

o Zero-knowledge Proofs

« Secure Computation

Topics

e Perfect Security
« Computational Security
« One-way Functions

« Pseudorandomness ﬂ

« Symmetric-key Encryption N

« Key Agreement Downloads software update

o Public-key Encryption

« Message Authentication Codes

e Hash Functions Authentication and Integrity
o Digital Signatures

o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security

« Computational Security

« One-way Functions
 Pseudorandomness

« Symmetric-key Encryption

e Key Agreement

e Public-key Encryption

« Message Authentication Codes
e Hash Functions

. Digital Signatures Prove that a statement is true without conveying any additional knowledge.
o Zero-knowledge Proofs

« Secure Computation

Topics

e Perfect Security

« Computational Security

o . . | know a

« One-way Functions solution t6

« Pseudorandomness ﬂ

« Symmetric-key Encryption “

e Key Agreement | Bob
Alice

o Public-key Encryption

« Message Authentication Codes

e Hash Functions

. Digital Signatures Prove that a statement is true without conveying any additional knowledge.

o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security

« Computational Security

| know a

« One-way Functions solution to

Prove it to me

e Pseudorandomness

ﬂ

« Key Agreement 3ob ’
Alice

« Symmetric-key Encryption

o Public-key Encryption

« Message Authentication Codes

e Hash Functions

. Digital Signatures Prove that a statement is true without conveying any additional knowledge.
o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security

« Computational Security

| know a

« One-way Functions solution to

Prove it to me

e Pseudorandomness

ﬂ

e Key Agreement > Bob ’
Alice

« Symmetric-key Encryption

e Public-key Encryption

« Message Authentication Codes

e Hash Functions

. Digital Signatures Prove that a statement is true without conveying any additional knowledge.
o Zero-knowledge Proofs

« Secure Computation

Topics

e Perfect Security

« Computational Security

o CUnct | know a
« One-way Functions solution to |
Prove it to me
e« Pseudorandomness ﬂ
e Symmetric-key Encryption g
e Key Agreement | > Bob
Alice

e Public-key Encryption

Bob is convinced that Alice has a solution
« Message Authentication Codes
e« Hash Functions
. Digital Signatures Prove that a statement is true without conveying any additional knowledge.

o Zero-knowledge Proofs

« Secure Computation

Topics

e Perfect Security

« Computational Security

o S | know a
« One-way Functions solution to |
Prove It to me
e Pseudorandomness ﬂ
e Symmetric-key Encryption g
e Key Agreement | > Bob
Alice

e Public-key Encryption

Bob is convinced that Alice has a solution
* Message Authentication Codes Bob learns nothing about the solution
e« Hash Functions
. Digital Signatures Prove that a statement is true without conveying any additional knowledge.

o Zero-knowledge Proofs

« Secure Computation

Topics

e Perfect Security

« Computational Security

« One-way Functions
 Pseudorandomness

« Symmetric-key Encryption

e Key Agreement

e Public-key Encryption

« Message Authentication Codes
e Hash Functions

. Digital Signatures Compute on private inputs to only learn the output.
o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security
« Computational Security
« One-way Functions

e Pseudorandomness

ﬂ

« Symmetric-key Encryption

e Key Agreement

Net worth x Net worth y
e Public-key Encryption
« Message Authentication Codes
e Hash Functions
. Digital Signatures Compute on private inputs to only learn the output.

o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security
« Computational Security
« One-way Functions

e Pseudorandomness

ﬂ

« Symmetric-key Encryption

e Key Agreement

Net worth x Net worth y
e Public-key Encryption
« Message Authentication Codes
e Hash Functions
. Digital Signatures Compute on private inputs to only learn the output.

o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security
« Computational Security
« One-way Functions

e Pseudorandomness

ﬂ

« Symmetric-key Encryption

e Key Agreement
Net worth x Net worth y
e Public-key Encryption

Learns if x > v Learnsif x >y

« Message Authentication Codes
e Hash Functions

. Digital Signatures Compute on private inputs to only learn the output.
o Zero-knowledge Proofs

e Secure Computation

Topics

e Perfect Security
« Computational Security
« One-way Functions

e Pseudorandomness

ﬂ

« Symmetric-key Encryption

e Key Agreement
Net worth x Net worth y
e Public-key Encryption

Learns if x > Learnsif x >y

« Message Authentication Codes

_earns nothing about y Learns nothing about x
« Hash Functions

. Digital Signatures Compute on private inputs to only learn the output.

o Zero-knowledge Proofs

e Secure Computation

Logistics

Course Logistics

* Course website: https://adishegde.github.io/modern_crypto_sp26/
* |n person classes, no Zoom or recordings
e Use Canvas for homework submission, discussion board, and announcements
e Grading:
* 25% Homework
e 15% Midterm 1
e 25% Midterm 2
* 30% Final

5% Class participation

Homework

* Weekly assignments

* Submit via Canvas

 Must be typeset (use LaTeX or Typst)

* 48 “late hours”

* Okay to collaborate, list your collaborators

* No using Al on homeworks

Textbook and References

e No official textbook

* Free textbook A Graduate Course in Applied Cryptography is a great
reference: https://toc.cryptobook.us/

o Syllabus, lecture notes, and slides will be available on the course website

Prerequisite / Background

Required reading before next class: pre-req lecture notes

https://adishegde.github.io/modern_crypto_sp26/notes/prerequisite_notes.pdf

X y X AND y

X y x AND y X Y/ XxORy

X AND y

xORy

X XORy

X AND y

xORy

X XORy

0pl=1

X AND y

xORy

Yy |XXORy
0 0
1 1
0 1
1 0
01010
@ 11011

10001

0pl=1

XAY

X AND y

xORy

Yy |XXORy
0 0
1 1
0 1
1 0
01010
@ 11011

10001

0pl=1

XAY

X AND y

XVYy

xORy

Yy |XXORy
0 0
1 1
0 1
1 0
01010
@ 11011

10001

0pl=1

XAY xXVy
x AND y x ORy y |xXORy
0 0 0 0
0pl=1
0 1 1 1
0 1 0 1
1 1 1 0
(X AY)="xVy 01010
@ 11011

10001

XAY XVYy
x AND y xORYy y |[xXORy
0 0 0 0
01 =1
0 1 1 1
0 1 0 1
1 1 1 0
(X Ay)="xV -y A(xVy)="x ATy 01010
é 11011

10001

Logic: Implication

Logic: Implication

P=Q

Logic: Implication

P= 0 “If x = 19, then x is prime”

Logic: Implication
P= 0 “If x = 19, then x is prime”

Contrapositive:

—|Q:}—|P

Logic: Implication
P= 0 “If x = 19, then x is prime”

Contrapositive:

—_ Q = — P ‘lixisnot prime, then x = 19"

Logic: Implication
P= 0 “If x = 19, then x is prime”

Contrapositive:

—_ Q = — P ‘lixisnot prime, then x = 19"

A statement and its contrapositive are logically equivalent. Often when
we want to prove a statement we will prove its contrapositive.

Logic: Quantifiers

Logic: Quantifiers

Universal Quantifier

Vx € A, P(x)

Logic: Quantifiers
Universal Quantifier Vxe A

Vx € A, P(x) “For all integers x

Logic: Quantifiers
Universal Quantifier Vx € A P(x)

Vx € A, P(X) “For all integers x, x > 0”

Logic: Quantifiers
Universal Quantifier Vx € A P(x)

Vx € A, P(X) “For all integers x, x > 0”

Existential Quantifier

dx € A, P(x)

Logic: Quantifiers
Universal Quantifier Vx € A P(x)

Vx € A, P(X) “For all integers x, x > 0”

Existential Quantifier dx e A

dx € A, P(x) “There exists an integer x such that

Logic: Quantifiers
Universal Quantifier Vx € A P(x)

Vx € A, P(X) “For all integers x, x > 0”

Existential Quantifier 3x € A P(x)

dx € A, P(x) “There exists an integer x such that x > 0”

Logic: Nesting Quantifiers

Logic: Nesting Quantifiers

VxeA,dy e A, Px,y)

Logic: Nesting Quantifiers
VxeA

Vx e A,Iy € A, P(x, y) “For all integers x

Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

dy € A,Vx € A, P(x, y)

Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

dy € A

Jy € A,Vx € A, P(x, y) “There exists an integer y such that

Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

dy e A VxeA

- y € A, Vx € A, P(x, y) There exists an integer y such that for all integers x

Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

dy e A VxeA

- y € A, Vx € A, P(x, y) There exists an integer y such that for all integers x

X+YVY= 0” P(X,y)

Logic: Nesting Quantifiers
Vx € A Jye A

Vx € A, - y E A, P(x,)7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

Order of quantifiers really matters!

dy e A VxeA

- y € A, Vx € A, P(x, y) There exists an integer y such that for all integers x

X+Yy= 0” P(X,y)

Logic: Negating Quantifiers

Logic: Negating Quantifiers
Vx e A P(x)

Vx € A, P(x) “For all integers x x > 0”

Logic: Negating Quantifiers
Vx e A P(x)

Vx € A, P(x) “For all integers x x > 0”

“(Vx € A, P(x))

Logic: Negating Quantifiers
Vx e A P(x)

Vx € A, P(X) “For all integers x x > 0”
—(Vx € A, P(x))

dx € A, " P(x)

Logic: Negating Quantifiers
Vx e A P(x)

Vx € A, P(x) “For all integers x x > 0”

“(Vx € A, P(x))

dx e A

dx € A,) ()C) “There exists an integer x such that

Logic: Negating Quantifiers
Vx e A P(x)

Vx € A, P(x) “For all integers x x > 0”

“(Vx € A, P(x))

dx e A ~P(x)

dx € A, =P ()C) “There exists an integer x such thatx < 0

Logic: Negating Nested Quantifiers

Logic: Negating Nested Quantifiers

Vxe A,dy e B,z € C, P(x)

Logic: Negating Nested Quantifiers

Vxe A,dy e B,z € C, P(x)

(VxeA,dy e B,dz € C, P(x))

Logic: Negating Nested Quantifiers

Vxe A,dy e B,z € C, P(x)

(Vxe A,dye B,dz € C, P(x))

Logic: Negating Nested Quantifiers

Vxe A,dy e B,z € C, P(x)

(Vxe A,dye B,dz € C, P(x))

dx e A,Vye B,Vz € C,~P(x)

Logic: Putting it all Together

Logic: Putting it all Together

Vx, P(x) AVy, P(y) = Vz, O(Z)

Logic: Putting it all Together

Vx, P(x) AVy, P(y) = Vz, O(Z)

1z, 20(z) = 3x, 7 PX) vV Iy, 2P(y)

Probability: Distributions

Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,...)

Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,...)

Distribution: A distribution over a sample space assigns a probabillity to every
element of the space such that the sum of the probabilities is 7.

Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,...)

Distribution: A distribution over a sample space assigns a probabillity to every
element of the space such that the sum of the probabilities is 7.

Example: the uniform distribution (all probabilities equal)
0.14

0.105
0.07

0.035

0

000 001 010 011 100 101 110 111

Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,...)

Distribution: A distribution over a sample space assigns a probabillity to every
element of the space such that the sum of the probabilities is 7.

Example: the uniform distribution (all probabilities equal)

0.14
Example: some other distribution

0.105 0.5
007 0.375
0.25

0.035 0.125
0

0 000 001 010 O11 100 101 110 111

000 001 010 011 100 101 110 111

Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,...)

Distribution: A distribution over a sample space assigns a probabillity to every
element of the space such that the sum of the probabilities is 7.

Example: the uniform distribution (all probabilities equal)

0.14 ST
Example: some other distribution
0.105 0.5
007 0.375
0.25
0.035 0.125
0
0 000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Turing Machines

Turing Machines

To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Turing Machines

To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Turing Machines

To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Input tape

o,o0,0}|1T 101

Turing Machines

To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Input tape

0

1

1

0

1

1

0

0

0

0

Randomness tape (uniform Os and 1s)

Turing Machines

To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Input tape

0|00 |1]1]0]1 Output tape

0

0

0

0

0

1

1

0

0

0

0

Randomness tape (uniform Os and 1s)

Turing Machines

To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

Input tape
0/ 0|0|1]1]0]|1 Output tape
Processes inputs
INn a sequence of
steps, eventually 0/ 0, 00|00

halting.

Randomness tape (uniform Os and 1s)

Turing Machines

To reason formally about computation we need to have a
formal definition of it. We will use the Probabilistic Turing
Machine model.

What we care about:
The maximum number
of steps the machine

takes before halting as

Input tape a function of the input
length.
0/ 0|0|1]1]0]|1 Output tape
Processes inputs
INn a sequence of
steps, eventually 0/ 0, 0]0]|0|O0]1

halting.

Randomness tape (uniform Os and 1s)

Turing Machines

To reason formally about computation we need to have a

formal definition of it. We will use the Probabilistic Turing What we care about:
Machine model. The maximum number

of steps the machine

takes before halting as
Input tape a function of the input

length.

0/ 0|0|1]1]0]|1 Output tape
Processes inputs
INn a sequence of
steps, eventually 0/ 0, 0]0]|0|O0]1

halting.

Example: 7(x) = x°

Randomness tape (uniform Os and 1s)

Turing Machines

To reason formally about computation we need to have a

formal definition of it. We will use the Probabilistic Turing What we care about:
Machine model. The maximum number

of steps the machine

takes before halting as
Input tape a function of the input

length.

0/ 0|0|1]1]0]|1 Output tape
Processes inputs
INn a sequence of
steps, eventually 0/ 0, 0]0]|0|O0]1

halting.

Example: T(x) = x°

Randomness tape (uniform 0s and 1s) “Polynomial runtime”: efficient!

Turing Machines

To reason formally about computation we need to have a

formal definition of it. We will use the Probabilistic Turing What we care about:
Machine model. The maximum number

of steps the machine

takes before halting as
Input tape a function of the input

length.

0/ 0|0|1]1]0]|1 Output tape
Processes inputs
INn a sequence of
steps, eventually 0/ 0, 0]0]|0|O0]1

halting.

Example: T(x) = x°

Randomness tape (uniform 0s and 1s) “Polynomial runtime”: efficient!

Example: 7(x) = 2*

Turing Machines

To reason formally about computation we need to have a

formal definition of it. We will use the Probabilistic Turing What we care about:
Machine model. The maximum number

of steps the machine

takes before halting as
Input tape a function of the input

length.

0/ 0|0|1]1]0]|1 Output tape
Processes inputs
INn a sequence of
steps, eventually 0/ 0, 0]0]|0|O0]1

halting.

Example: T(x) = x°
Randomness tape (uniform 0s and 1s) “Polynomial runtime”: efficient!

PPT = “Probabilistic | o
Polynomial Time” Example: 7(x) = 2

Non-uniform Turing Machines

Non-uniform Turing Machines

We can make an algorithm “more powerful” by letting it be completely
different for every input length

Non-uniform Turing Machines

We can make an algorithm “more powerful” by letting it be completely
different for every input length

TM for length 7

input

Non-uniform Turing Machines

We can make an algorithm “more powerful” by letting it be completely
different for every input length

TM for length 7
input

TM for length 4
iInput

Non-uniform Turing Machines

We can make an algorithm “more powerful” by letting it be completely
different for every input length

TM for length 7
input

Might behave totally
differently!

TM for length 4
iInput

Non-uniform Turing Machines

We can make an algorithm “more powerful” by letting it be completely
different for every input length

TM for length 7
input

Might behave totally
differently!

M= {M,,M,, ...} where each M, is a

TM for length 4
iInput

PPT Turing Machine is called a Non-
uniform PPT Turing Machine (NUPPT)

Asymptotic Notation

Asymptotic Notation

* Helps us answer the question: “how efficient is your algorithm”

Asymptotic Notation

* Helps us answer the question: “how efficient is your algorithm”

 We care about how the runtime (hnumber of steps) scales as a function of the
Input length

Asymptotic Notation

* Helps us answer the question: “how efficient is your algorithm”

 We care about how the runtime (hnumber of steps) scales as a function of the
Input length

o Specifically, we care about the limit of this function: what does it trend
towards”?

Asymptotic Notation

Asymptotic Notation

Big O: f(x) € O(g(x)) if
dc,ny € {1,2,3,...} such that Vn > n,, 0 < f(n) < c - g(n)

Big O: f(x) € O(g(x)) if 0
dc,ny € {1,2,3,...} such that Vn > n,, 0 < f(n) < c - g(n)

Asymptotic Notation e

Big O: f(x) € O(g(x)) if g
dc,ny € {1,2,3,...} such that Vn > n,, 0 < f(n) < c - g(n)

Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function 7(x) is in O(x%) for some constant d.

Asymptotic Notation e

Big O: f(x) € O(g(x)) if 0
dc,ny € {1,2,3,...} such that Vn > n,, 0 < f(n) < c - g(n)

Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function 7(x) is in O(x%) for some constant d.

Little Omega: f(x) € w(g(x)) if
dc,np € {1,2,3,...} such that Vn > n,, 0 < g(n) < c - f(n)

Asymptotic Notation

Big O: f(x) € O(g(x)) if Q(/

dc,ny € {1,2,3,...} such that Vn > n,, 0 < f(n) < c - g(n)

Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function 7(x) is in O(x%) for some constant d.

Little Omega: f(x) € w(g(x)) if
dc,np € {1,2,3,...} such that Vn > n,, 0 < g(n) < c - f(n)

Little omega means that f(x) grows strictly
faster than g(x)

Asymptotic Notation

Big O: f(x) € O(g()) if
dc,np € {1,2,3,...} such that Vn > ny, 0 < f(n) < c- g(n)

Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function 7(x) is in O(x%) for some constant d.

Little Omega: f(x) € w(g(x)) if
dc,np € {1,2,3,...} such that Vn > n,, 0 < g(n) < c - f(n)

Little omega means that f(x) grows strictly We may say that a f(x) is “super-polynomial”
faster than g(x) to mean that f(x) € w(x?) for any constant d

