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Classical Cryptography: The art of secret writing
Pre-1950

AlBICIDIE[F Caesar Cipher: Substitution cipher used by Julius Caesar for military
/// correspondence in the last century BC.
Al-Kindi (9th century AD) provided a systematic way to break

substitution ciphers.

Enigma Machine: Cipher device used by Germany in World War Il.
One of the first

applications of

computing Finally broken by Alan Turing and his team at Bletchley Park.
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The Origins of Modern Cryptography

“Communication Theory of Secrecy Systems” (1949)
Mathematical foundations of secrecy

“A Mathematical Theory of Communication” (1948)

Founded information theory

QJA
Claude Shannon

From the 1970s onward, cryptography emerged as a rigorous, computational science.

The first annual international cryptography conference CRYPTO was held
in 1981 with 102 attendees.

8 of them have since won the Turing Award (10 in total so far).
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Design and analysis of systems that need to withstand malicious attempts to abuse it.

Another Definition:

Algorithmic and mathematical foundations of secure communication and computation.

Problems Techniques

Real-world Needs Maths and Theoretical CS

Cryptography Number theory

combinatorics, probability,
complexity-theory

Privacy, security,
Integrity, trust

Solutions
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This course is about the foundations of Cryptography.
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Model Worst-case Adversary: What they know

What they can do

What are their goals
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Use hard problems to constrain the adversary.

Source of hard problems: number theory, geometry, coding theory, algebra.

Cryptography is the science of useful hardness.
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Proofs

Formally argue why a system satisfies the definition.

Reductions: If an adversary breaks system S w.r.t. definition D
Either ensure security or

then solve a hard problem!

there is an adversary that breaks the hardness assumption.
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Course Objectives

 Learn the modern, provable security-based approach to cryptography.
« Learn the mathematical language used to express cryptographic concepts.
e Think intuitively but write rigorous proofs.
« When you encounter crypto
e« Understand key terms
« Framework to reason about security guarantees
 Understand what goes on “under the hood”

e« Develop “crypto mindset”
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« Symmetric-key Encryption
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Net worth x Net worth y
e Public-key Encryption
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« Message Authentication Codes
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« Hash Functions
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Course Logistics

* Course website: https://adishegde.github.io/modern_crypto_sp26/
* |n person classes, no Zoom or recordings
e Use Canvas for homework submission, discussion board, and announcements
e Grading:
* 25% Homework
e 15% Midterm 1
e 25% Midterm 2
* 30% Final

5% Class participation



Homework

* Weekly assignments

* Submit via Canvas

 Must be typeset (use LaTeX or Typst)

* 48 “late hours”

* Okay to collaborate, list your collaborators

* No using Al on homeworks



Textbook and References

e No official textbook

* Free textbook A Graduate Course in Applied Cryptography is a great
reference: https://toc.cryptobook.us/

o Syllabus, lecture notes, and slides will be available on the course website



Prerequisite / Background



Required reading before next class: pre-req lecture notes

https://adishegde.github.io/modern_crypto_sp26/notes/prerequisite_notes.pdf
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Logic: Implication
P= 0 “If x = 19, then x is prime”

Contrapositive:

—_ Q = — P  ‘lixisnot prime, then x = 19"

A statement and its contrapositive are logically equivalent. Often when
we want to prove a statement we will prove its contrapositive.
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Universal Quantifier Vx € A P(x)

Vx € A, P(X) “For all integers x, x > 0”

Existential Quantifier 3x € A P(x)

dx € A, P(x) “There exists an integer x such that x > 0”



Logic: Nesting Quantifiers



Logic: Nesting Quantifiers

VxeA,dy e A, Px,y)



Logic: Nesting Quantifiers
VxeA

Vx e A,Iy € A, P(x, y) “For all integers x



Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that



Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)



Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

dy € A,Vx € A, P(x, y)



Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

dy € A

Jy € A,Vx € A, P(x, y) “There exists an integer y such that



Logic: Nesting Quantifiers
Vx e A Jy e A

Vx € A, - y E A, P(x, }7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

dy e A VxeA

- y € A, Vx € A, P(x, y) There exists an integer y such that for all integers x



Logic: Nesting Quantifiers
Vx e A Jy e A
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Logic: Nesting Quantifiers
Vx € A Jye A

Vx € A, - y E A, P(x, )7) For all integers x, there exists an integer y such that

X+Yy= 0” P(x,y)

Order of quantifiers really matters!

dy e A VxeA

- y € A, Vx € A, P(x, y) There exists an integer y such that for all integers x

X+Yy= 0” P(X,y)
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Logic: Negating Quantifiers
Vx e A P(x)

Vx € A, P(x) “For all integers x x > 0”

“(Vx € A, P(x))

dx e A ~P(x)

dx € A, =P ()C) “There exists an integer x such thatx < 0
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Logic: Negating Nested Quantifiers

Vxe A,dy e B,z € C, P(x)

(Vxe A,dye B,dz € C, P(x))

dx e A,Vye B,Vz € C,~P(x)
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Logic: Putting it all Together

Vx, P(x) AVy, P(y) = Vz, O(Z)

1z, 20(z) = 3x, 7 PX) vV Iy, 2P(y)



Probability: Distributions



Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment



Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,...)



Probability: Distributions
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Probability: Distributions

Sample Space: the possible outcomes of a probabilistic experiment

Example: All binary strings of length 3 (000, 001, 010,...)

Distribution: A distribution over a sample space assigns a probabillity to every
element of the space such that the sum of the probabilities is 7.

Example: the uniform distribution (all probabilities equal)

0.14 ST
Example: some other distribution
0.105 0.5
007 0.375
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0.035 0.125
0
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Turing Machines

To reason formally about computation we need to have a

formal definition of it. We will use the Probabilistic Turing What we care about:
Machine model. The maximum number

of steps the machine

takes before halting as
Input tape a function of the input

length.

0/ 0|0|1]1]0]|1 Output tape
Processes inputs
INn a sequence of
steps, eventually 0/ 0, 0]0]|0|O0]1

halting.

Example: T(x) = x°
Randomness tape (uniform 0s and 1s) “Polynomial runtime”: efficient!

PPT = “Probabilistic | o
Polynomial Time” Example: 7(x) = 2
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Non-uniform Turing Machines

We can make an algorithm “more powerful” by letting it be completely
different for every input length

TM for length 7
input

Might behave totally
differently!

M= {M,,M,, ...} where each M, is a

TM for length 4
iInput

PPT Turing Machine is called a Non-
uniform PPT Turing Machine (NUPPT)
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Asymptotic Notation

* Helps us answer the question: “how efficient is your algorithm”

 We care about how the runtime (hnumber of steps) scales as a function of the
Input length

o Specifically, we care about the limit of this function: what does it trend
towards”?
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Asymptotic Notation

Big O: f(x) € O(g()) if
dc,np € {1,2,3,...} such that Vn > ny, 0 < f(n) < c- g(n)

Another way of saying that an algorithm is “efficient” is to say that its input-length to
runtime function 7(x) is in O(x%) for some constant d.

Little Omega: f(x) € w(g(x)) if
dc,np € {1,2,3,...} such that Vn > n,, 0 < g(n) < c - f(n)

Little omega means that f(x) grows strictly We may say that a f(x) is “super-polynomial”
faster than g(x) to mean that f(x) € w(x?) for any constant d



