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A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

• Review material after class and ask questions on Canvas.

• Build intuition!

• Definitions are tools for modeling security goals, not universal truths. Think about alternatives.

• Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

• Sometimes intuition may not align with the proof. But it will, once we make the intuition robust.

“It is by logic that we prove, but by intuition that we discover.”

- Henri Poincaré
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The Private Communication Problem

Alice wants to send a message  to Bob, while keeping the message 
hidden from an eavesdropper Eve.

m
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• Alice and Bob must have additional “information” compared to Eve.

• Should we rely on keeping the details of the  and  algorithms secret from Eve?𝖤𝗇𝖼 𝖣𝖾𝖼

• No! If Eve eventually learns the details of  and , we will have to invent new algorithms.𝖤𝗇𝖼 𝖣𝖾𝖼

• Security through obscurity is fragile and unsustainable.

Goal: Bob can decrypt  
but not Eve. 

𝖼𝗍

𝖣𝖾𝖼𝖼𝗍 m
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Kerckhoff’s Principle

• Security of encryption still requires Alice and Bob to have some secret information.

• Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

• Advantages

• It is easier to change a compromised secret key than invent new algorithms.

• It is easier to ensure the secrecy of a key than that of an algorithm.

• Algorithms can be made public, analyzed and standardized. Crucial for large-scale deployments.

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.
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Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.
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• We are not trying to hide the existence of private communication (aka steganography).

• We are not guaranteeing that Bob will necessarily receive the ciphertext.

• We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the 
course.

• For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the 
course, we will look at key exchange.

• We are assuming that keys can be kept private in a reliable manner. We are not discussing how to do key 
management.

• Simplification: We will focus on the case of encrypting a single message. We will consider multi-message security 
later in the course.
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Claim: ,  we have ∀k ∈ 𝒦 ∀m ∈ ℳ 𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m .

Proof:  Fix arbitrary  and .k ∈ 𝒦 m ∈ ℳ We have
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= m .
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• We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

• Two types of properties

• Ones that should hold in the absence of an attacker e.g., correctness

• Ones that specify what can happen to a system in the presence of an attacker e.g., security.

• Eventual Goal: Write formal definitions to capture all required properties from any given system.
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An encryption scheme satisfies correctness if , , we have 

 

where the probability is over the randomness used in encryption and decryption.

∀k ∈ 𝒦 ∀m ∈ ℳ

𝖯𝗋[𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m] = 1,

Encryption Scheme Correctness
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𝖪𝖾𝗒𝖦𝖾𝗇() : k $← {0,1}λ

𝖤𝗇𝖼(k, m) : 𝖼𝗍 := k ∧ m

For , 

, 

.

m = 0λ

𝖯𝗋
𝖼𝗍←D0

[𝖼𝗍 = 0λ] = 1

𝖯𝗋
𝖼𝗍←D1

[𝖼𝗍 = 0λ] = 1/2λ

Ans:
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From Eve’s view, the ciphertext carries no information about the plaintext.



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:
We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :

k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:
We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :

k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)} .



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:
We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :

k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)} .

We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

Our goal is to show that . We will do this in 
two steps using the “intermediate” hybrid .

H0 ≡ H2
H1

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

 because of one-time uniform ciphertext security.H1 ≡ H2

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

 because of one-time uniform ciphertext security.H1 ≡ H2

By transitivity, .H0 ≡ H2H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

 because of one-time uniform ciphertext security.H1 ≡ H2

By transitivity, .H0 ≡ H2

The hybrid technique is very common in cryptographic proofs. 
We will use it repeatedly throughout the course.

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡



Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Corollary: One-time pad is perfectly secure.


