Perfect Security

601.442/642 Modern Cryptography

22nd January 2026

Agenda

e Private communication and encryption schemes
o Defining an encryption scheme

o First crypto definition!
e One-time pads

e First crypto scheme!

A Few Remarks

e Ask questions!

A Few Remarks

e Ask questions!

e At any point during the lecture.

A Few Remarks

e Ask questions!
e At any point during the lecture.

e As many as you want.

A Few Remarks

e Ask questions!
e At any point during the lecture.
e As many as you want.

e« Review material after class and ask questions on Canvas.

A Few Remarks

e Ask questions!
e At any point during the lecture.
e As many as you want.
e« Review material after class and ask questions on Canvas.

e Build intuition!

A Few Remarks

e Ask questions!

e At any point during the lecture.

e As many as you want.

e« Review material after class and ask questions on Canvas.
e Build intuition!

o Definitions are tools for modeling security goals, not universal truths. Think about alternatives.

A Few Remarks

e Ask questions!
e At any point during the lecture.
e As many as you want.
e« Review material after class and ask questions on Canvas.
e Build intuition!
o Definitions are tools for modeling security goals, not universal truths. Think about alternatives.

e Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

A Few Remarks

e Ask questions!
e At any point during the lecture.
e As many as you want.
e« Review material after class and ask questions on Canvas.
e Build intuition!
o Definitions are tools for modeling security goals, not universal truths. Think about alternatives.
e Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

« Sometimes intuition may not align with the proof. But it will, once we make the intuition robust.

A Few Remarks

e Ask questions!
e At any point during the lecture.
e As many as you want.
e« Review material after class and ask questions on Canvas.
e Build intuition!
o Definitions are tools for modeling security goals, not universal truths. Think about alternatives.
e Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

« Sometimes intuition may not align with the proof. But it will, once we make the intuition robust.

“It is by logic that we prove, but by intuition that we discover.”

- Henri Poincaré

Private Communication

Private Communication

The Private Communication Problem

ﬂ

Alice Bob

Eve

Alice wants to send a message m to Bob, while keeping the message
hidden from an eavesdropper Eve.

Encryption

Alice Bob

Encryption

Alice Bob

m-—— Enc [——ct

Encryption

c -

Alice Bob

m— Enc |[——Cct

Encryption

Alice

Enc

ct

ct—

Bob

Dec

Encryption

B

Eve

ct N ’ Goal: Bob can decrypt ct
but not Eve.

Alice Bob

m Enc ct ct——| Dec |——m

Encryption

Eve

ct N ’ Goal: Bob can decrypt ct
but not Eve.

Alice Bob

m-—— Enc [——ct

ct—| Dec [—m

« Alice and Bob must have additional “information” compared to Eve.

Encryption

Eve

ct N ’ Goal: Bob can decrypt ct
but not Eve.

Alice Bob

m-—| Enc [——ct ct——| Dec [—m

« Alice and Bob must have additional “information” compared to Eve.

« Should we rely on keeping the details of the Enc and Dec algorithms secret from Eve?

Encryption

Eve

ct . ’ Goal: Bob can decrypt ct
but not Eve.

Alice Bob

m-—| Enc [——ct ct——| Dec [—m

« Alice and Bob must have additional “information” compared to Eve.
« Should we rely on keeping the details of the Enc and Dec algorithms secret from Eve?

« No! If Eve eventually learns the details of Enc and Dec, we will have to invent new algorithms.

Encryption

Eve

ct . ’ Goal: Bob can decrypt ct
but not Eve.

Alice Bob

m-—| Enc [——ct ct——| Dec [—m

« Alice and Bob must have additional “information” compared to Eve.
« Should we rely on keeping the details of the Enc and Dec algorithms secret from Eve?

« No! If Eve eventually learns the details of Enc and Dec, we will have to invent new algorithms.

e Security through obscurity is fragile and unsustainable.

Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

e Security of encryption still requires Alice and Bob to have some secret information.

Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

e Security of encryption still requires Alice and Bob to have some secret information.

e« Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

e Security of encryption still requires Alice and Bob to have some secret information.
e« Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

e Advantages

Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

e Security of encryption still requires Alice and Bob to have some secret information.
e« Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.
e Advantages

e |tis easier to change a compromised secret key than invent new algorithms.

Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

e Security of encryption still requires Alice and Bob to have some secret information.
e« Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.
e Advantages

e |tis easier to change a compromised secret key than invent new algorithms.

e |tis easier to ensure the secrecy of a key than that of an algorithm.

Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

e Security of encryption still requires Alice and Bob to have some secret information.
e« Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.
e Advantages

e |tis easier to change a compromised secret key than invent new algorithms.

e |tis easier to ensure the secrecy of a key than that of an algorithm.

e Algorithms can be made public, analyzed and standardized. Crucial for large-scale deployments.

Encryption: Syntax

S

Alice Bob
k k

Encryption: Syntax

Alice Bob
k k

ct « Enc(k, m) m <« Dec(k, ct)

Encryption: Syntax

S

Ct .

Alice Bob
k k
ct « Enc(k, m) m <« Dec(k, ct)

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

Encryption: Syntax

Ct .

S

Alice

k

ct « Enc(k, m)

Bob
k

m <« Dec(k, ct)

« KeyGen() — koutputsakeyk € K.

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

Encryption: Syntax

S

Ct .

Alice Bob
k k
ct « Enc(k, m) m <« Dec(k, ct)

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

Key space: Set of all

» KeyGen() — koutputs akey k € % possible keys

Encryption: Syntax

S

Ct .

Alice Bob
k k
ct « Enc(k, m) m <« Dec(k, ct)

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

Key space: Set of all

» KeyGen() — koutputs akey k € % possible keys

Has to be
probabilistic

Encryption: Syntax

~ . -

A
Alice Bob
k k
ct « Enc(k, m) m <« Dec(k, ct)

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:
« KeyGen() — koutputsakeyk € K.

« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

Message space Ciphertext space

Encryption: Syntax

~ . -

A
Alice Bob
k k
ct « Enc(k, m) m <« Dec(k, ct)

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

« KeyGen() — koutputsakeyk € K.
« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

o Dec(k,ct) — m takes key k and ciphertext ct and outputs message m.

Encryption: Syntax

S

Alice Bob

Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.

Encryption: Syntax

S

Ct -

Alice Bob
k k
ct « Enc(k, m) m <« Dec(k, ct)

Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.

Encryption: Syntax

S

Alice Bob
k k
ct « Enc(k, m) m <« Dec(k, ct)

B

Ct -

Eve

Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.

What are we (not) trying to do?

What are we (not) trying to do?

« We are not trying to hide the existence of private communication (aka steganography).

What are we (not) trying to do?

« We are not trying to hide the existence of private communication (aka steganography).

« We are not guaranteeing that Bob will necessarily receive the ciphertext.

What are we (not) trying to do?

« We are not trying to hide the existence of private communication (aka steganography).
« We are not guaranteeing that Bob will necessarily receive the ciphertext.

« We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

What are we (not) trying to do?

« We are not trying to hide the existence of private communication (aka steganography).
« We are not guaranteeing that Bob will necessarily receive the ciphertext.

« We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

« For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the
course, we will look at key exchange.

What are we (not) trying to do?

« We are not trying to hide the existence of private communication (aka steganography).
« We are not guaranteeing that Bob will necessarily receive the ciphertext.

« We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

« For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the
course, we will look at key exchange.

« We are assuming that keys can be kept private in a reliable manner. We are not discussing how to do key
management.

What are we (not) trying to do?

« We are not trying to hide the existence of private communication (aka steganography).
« We are not guaranteeing that Bob will necessarily receive the ciphertext.

« We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

« For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the
course, we will look at key exchange.

« We are assuming that keys can be kept private in a reliable manner. We are not discussing how to do key
management.

e Simplification: We will focus on the case of encrypting a single message. We will consider multi-message security
later in the course.

One-Time Pad

One-Time Pad
Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

One-Time Pad

Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k & m.
e Dec(k,ct):m := ke ct.

One-Time Pad

Set of all A-bit
strings

One-Time Pad

Let A be a positive integer and let Z = M/ = € = {0,1 }'1.
. KeyGen(): k & (0,1}
. Enc(k,m): ct :=k @ m. Sampling uniformly at

random from the set
o Dec(k,ct):m :=k @ ct.

One-Time Pad

Set of all A-bit
strings

One-Time Pad: Correctness

One-Time Pad
Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad: Correctness

One-Time Pad
Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad Correctness

One-Time Pad: Correctness

One-Time Pad
Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad Correctness

Claim: Vk € &, Vm € [we have Dec(k, Enc(k,m)) = m.

One-Time Pad: Correctness

One-Time Pad
Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad Correctness

Claim: Vk € &, Vm € [we have Dec(k, Enc(k,m)) = m.
Proof: Fix arbitrary k € & and m € 4. We have
Dec(k, Enc(k, m)) = Dec(k, k @ m)
=—kDkPDm

= m.

One-Time Pad: Security

One-Time Pad
Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

One-Time Pad: Security

One-Time Pad
Let A be a positive integer and let # = /# = ¢ = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

We do not assume anything about the adversary’s strategy.

One-Time Pad: Security

One-Time Pad
Let A be a positive integer and let # = /# = ¢ = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

We do not assume anything about the adversary’s strategy.

Why is one-time pad secure?

One-Time Pad: Security

e Letusanalyze Eve’s view to understand why the scheme is secure.

One-Time Pad: Security

Let us analyze Eve's view to understand why the scheme is secure.

From Eve’s viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

Alice

ke (0,11
ct.=kPm

ct

One-Time Pad: Security

Let us analyze Eve's view to understand why the scheme is secure.

From Eve’s viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

Let us analyze the resulting ciphertext distribution.

Alice

ke (0,11
ct.=kPm

ct

One-Time Pad: Security

Let us analyze Eve's view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

Concrete example: A = 3 and m = 010

Alice

ke (0,11
ct.=kPm

ct

One-Time Pad: Security

Let us analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

Concrete example: A = 3 and m = 010

Alice
3 A
k< {0,1}
m ct
ct:=kP m
Pr Kk ct=k&O010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 011 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101

One-Time Pad: Security

Let us analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

message m by XORing it with a uniformly random key k <$; {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

Concrete example: A = 3 and m = 010

« Every stringin {0,1 }3 occurs exactly once as a ciphertext.

Alice
3 p
k< {0,1}
m ct
ct:=kP m
Pr k ct=k& 010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 Ol1 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

Concrete example: A = 3 and m = 010
« Every stringin {0,1 }3 occurs exactly once as a ciphertext.

« Since the key is sampled uniformly at random, for any s € {0,1 }3, the

probability that ct = s is 1/8 i.e., the ciphertext is uniformly random
over {0,1}°.

Alice
3 A
k< {0,1}
m ct
ct:=kP m
Pr k ct=k& 010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 Ol1 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

Concrete example: A = 3 and m = 010

« Every stringin {0,1 }3 occurs exactly once as a ciphertext.

« Since the key is sampled uniformly at random, for any s € {0,1 }3, the

probability that ct = s is 1/8 i.e., the ciphertext is uniformly random
over {0,1}°.

e Trueforanym € {0,1}°

Alice
3 A
k< {0,1}
m ct
ct:=kP m
Pr k ct=k& 010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 Ol1 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

Concrete example: A = 3 and m = 010

« Every stringin {0,1 }3 occurs exactly once as a ciphertext.

« Since the key is sampled uniformly at random, for any s € {0,1 }3, the

probability that ct = s is 1/8 i.e., the ciphertext is uniformly random
over {0,1}°.

e Trueforanym € {0,1}°

Alice
3 A
k< {0,1}
m ct
ct:=kP m
Pr k ct=k& 010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 Ol1 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

Concrete example: A = 3 and m = 010

« Every stringin {0,1 }3 occurs exactly once as a ciphertext.

« Since the key is sampled uniformly at random, for any s € {0,1 }3, the

probability that ct = s is 1/8 i.e., the ciphertext is uniformly random
over {0,1}°.

e Trueforanym € {0,1}°

Alice
3 A
k< {0,1}
m ct
ct:=kP m
Pr k ct=k& 010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 Ol1 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

message m by XORing it with a uniformly random key k & (0,1}, Alice

« Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

L . $
message m by XORing it with a uniformly random key k < {0,1}". Alice

« Let us analyze the resulting ciphertext distribution.
m

The ciphertext is uniformly distributed,

irrespective of the message
m/
For any

message

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

L . $
message m by XORing it with a uniformly random key k < {0,1}*. Alice
« Let us analyze the resulting ciphertext distribution.
3 A
k< {0,1}
m
The ciphertext is uniformly distributed, ct:=k®m
irrespective of the message
- K& 0,1)
ct i =k@®m
For any encryption
message transforms

the message
Into

One-Time Pad: Security

Let us analyze Eve's view to understand why the scheme is secure.

From Eve’s viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

For any
message

Alice

kS (0.1}
ct:=kP m

—| ct

k0.1
ct :=kPdm’

—| ct

encryption
transforms
the message
Into

uniformly
random
ciphertexts.

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ctis a transformatiog of the
message m by XORing it with a uniformly random key k < {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

e |f the ciphertext is always uniformly random then it cannot carry any
information about the message!

e Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

For any
message

Alice

kS (0.1}
ct:=kP m

—| ct

k0.1
ct :=kPdm’

—| ct

encryption
transforms
the message
Into

uniformly
random
ciphertexts.

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

message m by XORing it with a uniformly random key k <$; {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

e |f the ciphertext is always uniformly random then it cannot carry any
information about the message!

e Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

« Paradox? How can the ciphertext decrypt to the correct message if it
does not carry any information?

For any
message

Alice

kS (0.1}
ct:=kP m

k0.1
ct :=k'Pm

~~

encryption
transforms
the message
Into

ct

ct

uniformly
random
ciphertexts.

One-Time Pad: Security

e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

message m by XORing it with a uniformly random key k <$; {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

e |f the ciphertext is always uniformly random then it cannot carry any
information about the message!

e Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

« Paradox? How can the ciphertext decrypt to the correct message if it
does not carry any information?

e« Eve’s view does not include the secret key!

For any
message

Alice

kS (0.1}
ct:=kP m

k0.1
ct :=k'Pm

~~

encryption
transforms
the message
Into

ct

ct

uniformly
random
ciphertexts.

Basics of Provable Security

« We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

Basics of Provable Security

« We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

o Two types of properties

Basics of Provable Security

« We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.
« Two types of properties

« Ones that should hold in the absence of an attacker e.g., correctness

Basics of Provable Security

« We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.
« Two types of properties
« Ones that should hold in the absence of an attacker e.g., correctness

« Ones that specify what can happen to a system in the presence of an attacker e.g., security.

Basics of Provable Security

« We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.
« Two types of properties

« Ones that should hold in the absence of an attacker e.g., correctness

« Ones that specify what can happen to a system in the presence of an attacker e.g., security.

e« Eventual Goal: Write formal definitions to capture all required properties from any given system.

Encryption: Correctness

Encryption Scheme Syntax
An encryption scheme consists of three (possibly probabilistic) algorithms:

« KeyGen() — koutputsakeyk € HZ.

« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

o Dec(k,ct) — m takes key k and ciphertext ct and outputs message m.

Encryption: Correctness

Encryption Scheme Syntax
An encryption scheme consists of three (possibly probabilistic) algorithms:

« KeyGen() — koutputsakeyk € HZ.

« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

o Dec(k,ct) — m takes key k and ciphertext ct and outputs message m.

Encryption Scheme Correctness

An encryption scheme satisfies correctness if Vk € #, Vmm € 4, we have

Pr[Dec(k, Enc(k,m)) = m] = 1,

where the probability is over the randomness used in encryption and decryption.

Encryption: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP

Encryption: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP

e« The secret key should be kept hidden from Eve.

Encryption: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP
« The secret key should be kept hidden from Eve.

« The key is only used to encrypt one plaintext.

Encryption: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP
« The secret key should be kept hidden from Eve.

« The key is only used to encrypt one plaintext. What happens if the key is re-used?

Encryption: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP
« The secret key should be kept hidden from Eve.
« The key is only used to encrypt one plaintext. What happens if the key is re-used?

e The ciphertext looks uniformly random to Eve.

Encryption: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP
« The secret key should be kept hidden from Eve.
« The key is only used to encrypt one plaintext.

e The ciphertext looks uniformly random to Eve.

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vim € ,

k — KeyGen()
Dy= 4 ct:
ct < Enc(k, m)

Dlz{ct:ct};%}

Encryption: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP
« The secret key should be kept hidden from Eve.
« The key is only used to encrypt one plaintext.

e The ciphertext looks uniformly random to Eve.

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vim € ,

k — KeyGen()
Dy= 4 ct:
ct < Enc(k, m)

Dlz{ct:ct};%}

|dentical

distributions

One-Time Pad: Security Proof

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.

One-Time Pad: Security Proof

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.
Proof:
We need to show that Vm € {0,1 }’1

3 A
Dy= ot k& 10}
ct:=kP m

D, = {ct:ctfi {0,1}1}

One-Time Pad: Security Proof

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.
Proof:
We need to show that Vm € {0,1 }’1 Fix arbitrarym € # andc € 6.

3 A
Dy= ot k& 10}
ct:=kP m

D, = {ct:ctfi {0,1}1}

One-Time Pad: Security Proof

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.

Proof:
We need to show that Vm € {0,1 }’1 Fix arbitrarym € # andc € 6.
$ Pr [c=Enclk,m)] = Pr [c=k m]
D, =< ct: k< {0,1} k{0,114 k(0,1}*
ct.=k®m

D, = {ct:ctfi {0,1}1}

One-Time Pad: Security Proof

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.

Proof:
We need to show that Vm € {0,1 }’1 Fix arbitrarym € # andc € 6.
$ Pr [c=Enclk,m)] = Pr [c=k m]
D, = {Ct : k — {(),1}/1 } k(0,11 k(0.1
ct:=kDm = Pr [k=c®m]
k2 0,1}

D, = {ct:ctfi {0,1}1}

One-Time Pad: Security Proof

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.

Proof:
We need to show that Vm € {0,1 }’1 Fix arbitrarym € # andc € 6.
$ Pr [c=Enck,m)] = Pr J[c=k& m]
D, = {Ct . k< 10,1 } } k0,11 k(0,11 1
ct . =kPm = Pr [k=c®dm] = —

k10,11 2

D, = {ct:ctfi {0,1}1}

One-Time Pad: Security Proof

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.
Proof:

We need to show that Vm € {0,1 }’1 Fix arbitrarym € # andc € 6.

$ Pr [c=Enclk,m)] = Pr [c=k m]
Dy = {Ct‘ k {0’1}/1} k(0,1 k(0,11
0 : 1
ct . =kPm = Pr [k=c®dm] = —
ke-{0,1} 2
$ 1 1
D, = {ct:ct<— (0.1) } Pr [ct=c] = —

P
ct (0,1} 2

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Is it correct?

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

e |s it one-time uniform ciphertext secure?

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

e s it one-time uniform ciphertext secure? J (Note that € = {0"})

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

e s it one-time uniform ciphertext secure? J (Note that € = {0"})

« Consider Enc(k,m) =: m

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

e s it one-time uniform ciphertext secure? J (Note that € = {0"})

« Consider Enc(k,m) =: m

e Is it correct?

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

e s it one-time uniform ciphertext secure? J (Note that € = {0"})

« Consider Enc(k,m) =: m

e |[sitcorrect? /

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

e s it one-time uniform ciphertext secure? J (Note that € = {0"})

« Consider Enc(k,m) =: m

e |[sitcorrect? /

e Isit one-time uniform ciphertext secure?

Requiring Both Correctness and Security

 Both correctness and security are required for a meaningful notion of encryption

. Consider Enc(k, m) =: 0%

e Isitcorrect? x

e s it one-time uniform ciphertext secure? J (Note that € = {0"})

« Consider Enc(k,m) =: m

e |[sitcorrect? /

« Is it one-time uniform ciphertext secure? x

Insecure Encryption

Insecure Encryption

e An encryption scheme does NOT satisfy one-time uniform ciphertext security if dm € . such that

k < KeyG
Dy= 4 ct: KeyGen() = D1={Ct:ct<$;?€}
ct <« Enc(k, m)

Insecure Encryption

e An encryption scheme does NOT satisfy one-time uniform ciphertext security if dm € . such that

k < KeyG
Dy= 4 ct: KeyGen() = D1={Ct:ct<$;?€}
ct <« Enc(k, m)

e |sthe following encryption scheme secure?
« KeyGen() : k)] (0,1}

e Enclk,m):ct:=kAm

Insecure Encryption

e An encryption scheme does NOT satisfy one-time uniform ciphertext security if dm € . such that

k < KeyG
Dy= 4 ct: KeyGen() = D1={Ct:ct<$;?€}
ct <« Enc(k, m)

e |sthe following encryption scheme secure?
« KeyGen() : k)] (0,1}

e Enclk,m):ct:=kAm

Ans: For m = 0%,

Pr [ct=0"=1,

ct<D,

Pr [ct=0"=1/2"

ct<D,

Encryption: Perfect Security

e An alternative idea for defining security of encryption schemes.
« The secret key should be kept hidden from Eve.

« The key is only used to encrypt one plaintext.

o The-ciphertextlocksuniformlyrandemteEve- Encryptions of my, look like encryptions of m, to Eve.

Encryption: Perfect Security

e An alternative idea for defining security of encryption schemes.
« The secret key should be kept hidden from Eve.

« The key is only used to encrypt one plaintext.

o The-ciphertextlocksuniformlyrandemteEve- Encryptions of my, look like encryptions of m, to Eve.

(One-Time) Perfect Security

An encryption scheme is one-time perfectly secure if Vi, m; € A,

k «— KeyGen() _ k — KeyGen()
DO — ct . — Dl — ct:
ct < Enc(k, m) ct < Enc(k, m,)

Encryption: Perfect Security

e An alternative idea for defining security of encryption schemes.
« The secret key should be kept hidden from Eve.

« The key is only used to encrypt one plaintext.

o The-ciphertextlocksuniformlyrandemteEve- Encryptions of my, look like encryptions of m, to Eve.

(One-Time) Perfect Security

An encryption scheme is one-time perfectly secure if Vi, m; € A,

k «— KeyGen() _ k — KeyGen()
DO — ct . — Dl — ct:
ct < Enc(k, m) ct < Enc(k, m,)

From Eve’s view, the ciphertext carries no information about the plaintext.

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We are given that Vimm € /., Dy= 4 ct: ¢ KeyGen() = D= {Ct ot <& Cg} :
ct « Enc(k, m)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof: k < KeyGen() }

Dlz{ct:cti%}.

k «— KeyGen()
D; =4 ct: .
ct < Enc(k, m,)

We are given that Vm € A/, Dy= 4 ct:
ct « Enc(k, m)

k «— KeyGen()
We want to show that Vmy,m, € M, Dy= 4 ct:

" ct < Enc(k, my)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof: k < KeyGen() }

Dlz{ct:cti%}.

k «— KeyGen()
D; =4 ct: .
ct < Enc(k, m,)

We are given that Vm € A/, Dy= 4 ct:
ct « Enc(k, m)

k «— KeyGen()
We want to show that Vmy,m, € M, Dy= 4 ct:

" ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.

k «— KeyGen()
ct < Enc(k, m)

H1={ct:ct<$¥‘(§}
k «— KeyGen
H, =4 ct: - KeyGen()
ct <« Enc(k, m,)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

k< KeyGen()
" ct « Enc(k, m)

Proof:

We are given that Vimm € /., DO:{Ct Dlz{ct:cti%}.

k «— KeyGen()
D; =< ct:
ct < Enc(k, m,)

k «— KeyGen()
We want to show that Vmy,m, € M, Dy= 4 ct:

" ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.

k «— KeyGen()
ct < Enc(k, m)

H, = {ct . ct bl cg} Our goal is to show that Hy = H,. We will do this in
two steps using the “intermediate” hybrid /7,.
k «— KeyGen
H, =4 ct: d 0
ct « Enc(k, m;)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof: k < KeyGen() }

Dlz{ct:cti%}.

k «— KeyGen()
D; =< ct:
ct < Enc(k, m,)

We are given that Vm € A/, Dy= 4 ct:
ct « Enc(k, m)

k «— KeyGen()
We want to show that Vmy,m, € M, Dy= 4 ct:

" ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.

k «— KeyGen()
ct < Enc(k, m)

le{ct:ctﬁ%}
k < KeyGen
H, =4 ct: - KeyGen()
ct <« Enc(k, m,)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof: k < KeyGen() }

Dlz{ct:cti%}.

k «— KeyGen()
D; =< ct:
ct < Enc(k, m,)

We are given that Vm € A/, Dy= 4 ct:
ct « Enc(k, m)

k «— KeyGen()
We want to show that Vmy,m, € M, Dy= 4 ct:

" ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.

H t - k — KeyGen() Hy = H, because of one-time uniform ciphertext security.
071 et < Enc(k, m,)
$
H, = {ct:ct<—<[€}
k — KeyGen
H, =4 ct: yGen()
ct « Enc(k, m)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.
Proof:

We are given that Vm € A/, D, = {Ct . k < KeyGen() }

. Dlz{ct:cti%}.
ct « Enc(k, m)

k — KeyGen
Diz{ct' Y ()}

" ct « Enc(k, m,)

k «— KeyGen()
We want to show that Vm,,m; € 4, Dj= 1 ct:
ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.

)3 { ¢ k < KeyGen() } Hy = H, because of one-time uniform ciphertext security.
0— Cct.
ct < Enc(k, mo) H, = H, because of one-time uniform ciphertext security.
H, = {ct:cti%}
k < KeyGen
H, = { ct: yGen()
ct < Enc(k,m,)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.
Proof:

We are given that Vm € A/, D, = {Ct . k < KeyGen() }

. Dlz{ct:cti%}.
ct « Enc(k, m)

k — KeyGen
Diz{ct' Y ()}

" ct « Enc(k, m,)

k «— KeyGen()
We want to show that Vm,,m; € 4, Dj= 1 ct:
ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.

)3 { ¢ k < KeyGen() } Hy = H, because of one-time uniform ciphertext security.
0=y Cct.

"¢t « En
ct c(k, my) H, = H, because of one-time uniform ciphertext security.

H, = {ct . Ct i ‘6} By transitivity, Hy = H,.
k «— KeyGen

H, =4 ct: yGen()
ct <« Enc(k, m,)

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.
Proof:

We are given that Vm € A/, D, = {Ct . k < KeyGen() }

. Dlz{ct:cti%}.
ct « Enc(k, m)

k — KeyGen
Diz{ct' Y ()}

" ct « Enc(k, m,)

k «— KeyGen()
We want to show that Vm,,m; € 4, Dj= 1 ct:
ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.

o { t k «— KeyGen() } H, = H, because of one-time uniform ciphertext security.
0 — Ctl.
ct < Enc(k, mo) H, = H, because of one-time uniform ciphertext security.
H, = {ct . Ct i ‘6} By transitivity, Hy = H,.
T k < KeyGen() The hybrid technigue is very common in cryptographic proofs.
2™ " ct <« Enc(k, m,) We will use it repeatedly throughout the course.

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Corollary: One-time pad is perfectly secure.

