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Agenda

e Private communication and encryption schemes
o Defining an encryption scheme

o First crypto definition!
e One-time pads

e First crypto scheme!
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e Ask questions!
e At any point during the lecture.
e As many as you want.
e« Review material after class and ask questions on Canvas.
e Build intuition!
o Definitions are tools for modeling security goals, not universal truths. Think about alternatives.
e Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

« Sometimes intuition may not align with the proof. But it will, once we make the intuition robust.

“It is by logic that we prove, but by intuition that we discover.”

- Henri Poincaré
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The Private Communication Problem

ﬂ

Alice Bob

Eve

Alice wants to send a message m to Bob, while keeping the message
hidden from an eavesdropper Eve.
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ct . ’ Goal: Bob can decrypt ct
but not Eve.

Alice Bob

m-—| Enc [——ct ct——| Dec [—m

« Alice and Bob must have additional “information” compared to Eve.
« Should we rely on keeping the details of the Enc and Dec algorithms secret from Eve?

« No! If Eve eventually learns the details of Enc and Dec, we will have to invent new algorithms.

e Security through obscurity is fragile and unsustainable.
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Kerckhoft’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

e Security of encryption still requires Alice and Bob to have some secret information.
e« Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.
e Advantages

e |tis easier to change a compromised secret key than invent new algorithms.

e |tis easier to ensure the secrecy of a key than that of an algorithm.

e Algorithms can be made public, analyzed and standardized. Crucial for large-scale deployments.
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Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

Key space: Set of all

» KeyGen() — koutputs akey k € % possible keys

Has to be
probabilistic
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Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

« KeyGen() — koutputsakeyk € K.
« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

o Dec(k,ct) — m takes key k and ciphertext ct and outputs message m.
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Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.
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What are we (not) trying to do?

« We are not trying to hide the existence of private communication (aka steganography).
« We are not guaranteeing that Bob will necessarily receive the ciphertext.

« We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

« For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the
course, we will look at key exchange.

« We are assuming that keys can be kept private in a reliable manner. We are not discussing how to do key
management.

e Simplification: We will focus on the case of encrypting a single message. We will consider multi-message security
later in the course.
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Let A be a positive integer and let Z = M/ = € = {0,1 }'1.
. KeyGen(): k & (0,1}
. Enc(k,m): ct :=k @ m. Sampling uniformly at

random from the set
o Dec(k,ct):m :=k @ ct.

One-Time Pad

Set of all A-bit
strings
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One-Time Pad
Let A be a positive integer and let # = /4 = 6 = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad Correctness

Claim: Vk € &, Vm € [ we have Dec(k, Enc(k,m)) = m.
Proof: Fix arbitrary k € & and m € 4. We have
Dec(k, Enc(k, m)) = Dec(k, k @ m)
=—kDkPDm

= m.
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Let A be a positive integer and let # = /# = ¢ = {0,1 }’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct .=k m.
e Dec(k,ct):m := ke ct.

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

We do not assume anything about the adversary’s strategy.

Why is one-time pad secure?
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e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

message m by XORing it with a uniformly random key k <$; {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

e |f the ciphertext is always uniformly random then it cannot carry any
information about the message!

e Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

« Paradox? How can the ciphertext decrypt to the correct message if it
does not carry any information?
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e Letus analyze Eve’s view to understand why the scheme is secure.

« From Eve's viewpoint, the ciphertext ct is a transformation of the

message m by XORing it with a uniformly random key k <$; {0,1 }’1.

« Let us analyze the resulting ciphertext distribution.

The ciphertext is uniformly distributed,
irrespective of the message

e |f the ciphertext is always uniformly random then it cannot carry any
information about the message!

e Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

« Paradox? How can the ciphertext decrypt to the correct message if it
does not carry any information?

e« Eve’s view does not include the secret key!

For any
message

Alice

kS (0.1}
ct:=kP m

k0.1
ct :=k'Pm

~~

encryption
transforms
the message
Into

ct

ct

uniformly
random
ciphertexts.
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Basics of Provable Security

« We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.
« Two types of properties

« Ones that should hold in the absence of an attacker e.g., correctness

« Ones that specify what can happen to a system in the presence of an attacker e.g., security.

e« Eventual Goal: Write formal definitions to capture all required properties from any given system.
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Encryption: Correctness

Encryption Scheme Syntax
An encryption scheme consists of three (possibly probabilistic) algorithms:

« KeyGen() — koutputsakeyk € HZ.

« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

o Dec(k,ct) — m takes key k and ciphertext ct and outputs message m.

Encryption Scheme Correctness

An encryption scheme satisfies correctness if Vk € #, Vmm € 4, we have

Pr[Dec(k, Enc(k,m)) = m] = 1,

where the probability is over the randomness used in encryption and decryption.
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One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
Dy =4 ct:
ct <« Enc(k, m)

Dlz{ct:cti%}

Claim: One-time pad is one-time uniform ciphertext secure.
Proof:

We need to show that Vm € {0,1 }’1 Fix arbitrarym € # andc € 6.
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Insecure Encryption

e An encryption scheme does NOT satisfy one-time uniform ciphertext security if dm € . such that

k < KeyG
Dy= 4 ct:  KeyGen() = D1={Ct:ct<$;?€}
ct <« Enc(k, m)

e |sthe following encryption scheme secure?
« KeyGen() : k )] (0,1}

e Enclk,m):ct:=kAm

Ans: For m = 0%,

Pr [ct=0"=1,

ct<D,

Pr [ct=0"=1/2"

ct<D,
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« The key is only used to encrypt one plaintext.

o The-ciphertextlocksuniformlyrandemteEve- Encryptions of my, look like encryptions of m, to Eve.

(One-Time) Perfect Security

An encryption scheme is one-time perfectly secure if Vi, m; € A,

k «— KeyGen() _ k — KeyGen()
DO — ct . — Dl — ct:
ct < Enc(k, m) ct < Enc(k, m,)

From Eve’s view, the ciphertext carries no information about the plaintext.
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" ct < Enc(k, my)

We will consider the following sequence of distributions, called hybrids.
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Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Corollary: One-time pad is perfectly secure.




