
22nd January 2026

Perfect Security
601.442/642 Modern Cryptography

Agenda

• Private communication and encryption schemes

• Defining an encryption scheme

• First crypto definition!

• One-time pads

• First crypto scheme!

A Few Remarks
• Ask questions!

A Few Remarks
• Ask questions!

• At any point during the lecture.

A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

• Review material after class and ask questions on Canvas.

A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

• Review material after class and ask questions on Canvas.

• Build intuition!

A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

• Review material after class and ask questions on Canvas.

• Build intuition!

• Definitions are tools for modeling security goals, not universal truths. Think about alternatives.

A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

• Review material after class and ask questions on Canvas.

• Build intuition!

• Definitions are tools for modeling security goals, not universal truths. Think about alternatives.

• Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

• Review material after class and ask questions on Canvas.

• Build intuition!

• Definitions are tools for modeling security goals, not universal truths. Think about alternatives.

• Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

• Sometimes intuition may not align with the proof. But it will, once we make the intuition robust.

A Few Remarks
• Ask questions!

• At any point during the lecture.

• As many as you want.

• Review material after class and ask questions on Canvas.

• Build intuition!

• Definitions are tools for modeling security goals, not universal truths. Think about alternatives.

• Play around with constructions and proofs. Always ask “why”. Extract the underlying idea.

• Sometimes intuition may not align with the proof. But it will, once we make the intuition robust.

“It is by logic that we prove, but by intuition that we discover.”

- Henri Poincaré

Private Communication

Private Communication

m

The Private Communication Problem

Alice wants to send a message to Bob, while keeping the message
hidden from an eavesdropper Eve.

m

Alice Bob

Eve

Encryption

Alice Bob

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

𝖼𝗍

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

𝖼𝗍

𝖣𝖾𝖼𝖼𝗍 m

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

𝖼𝗍
Eve

Goal: Bob can decrypt
but not Eve.

𝖼𝗍

𝖣𝖾𝖼𝖼𝗍 m

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

𝖼𝗍
Eve

• Alice and Bob must have additional “information” compared to Eve.

Goal: Bob can decrypt
but not Eve.

𝖼𝗍

𝖣𝖾𝖼𝖼𝗍 m

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

𝖼𝗍
Eve

• Alice and Bob must have additional “information” compared to Eve.

• Should we rely on keeping the details of the and algorithms secret from Eve?𝖤𝗇𝖼 𝖣𝖾𝖼

Goal: Bob can decrypt
but not Eve.

𝖼𝗍

𝖣𝖾𝖼𝖼𝗍 m

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

𝖼𝗍
Eve

• Alice and Bob must have additional “information” compared to Eve.

• Should we rely on keeping the details of the and algorithms secret from Eve?𝖤𝗇𝖼 𝖣𝖾𝖼

• No! If Eve eventually learns the details of and , we will have to invent new algorithms.𝖤𝗇𝖼 𝖣𝖾𝖼

Goal: Bob can decrypt
but not Eve.

𝖼𝗍

𝖣𝖾𝖼𝖼𝗍 m

Encryption

Alice Bob

𝖤𝗇𝖼m 𝖼𝗍

𝖼𝗍
Eve

• Alice and Bob must have additional “information” compared to Eve.

• Should we rely on keeping the details of the and algorithms secret from Eve?𝖤𝗇𝖼 𝖣𝖾𝖼

• No! If Eve eventually learns the details of and , we will have to invent new algorithms.𝖤𝗇𝖼 𝖣𝖾𝖼

• Security through obscurity is fragile and unsustainable.

Goal: Bob can decrypt
but not Eve.

𝖼𝗍

𝖣𝖾𝖼𝖼𝗍 m

Kerckhoff’s Principle

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Kerckhoff’s Principle

• Security of encryption still requires Alice and Bob to have some secret information.

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Kerckhoff’s Principle

• Security of encryption still requires Alice and Bob to have some secret information.

• Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Kerckhoff’s Principle

• Security of encryption still requires Alice and Bob to have some secret information.

• Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

• Advantages

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Kerckhoff’s Principle

• Security of encryption still requires Alice and Bob to have some secret information.

• Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

• Advantages

• It is easier to change a compromised secret key than invent new algorithms.

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Kerckhoff’s Principle

• Security of encryption still requires Alice and Bob to have some secret information.

• Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

• Advantages

• It is easier to change a compromised secret key than invent new algorithms.

• It is easier to ensure the secrecy of a key than that of an algorithm.

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Kerckhoff’s Principle

• Security of encryption still requires Alice and Bob to have some secret information.

• Secret key: A value generated by a probabilistic (public) algorithm and kept secret from the adversary.

• Advantages

• It is easier to change a compromised secret key than invent new algorithms.

• It is easier to ensure the secrecy of a key than that of an algorithm.

• Algorithms can be made public, analyzed and standardized. Crucial for large-scale deployments.

Design your system to be secure even if the adversary has complete knowledge of all its algorithms.

Encryption: Syntax

Alice Bob

k k

Encryption: Syntax

Alice Bob

𝖼𝗍

k k

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Encryption: Syntax

Alice Bob

𝖼𝗍

An encryption scheme consists of three (possibly probabilistic) algorithms:

Encryption Scheme Syntax

k k

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Encryption: Syntax

Alice Bob

𝖼𝗍

An encryption scheme consists of three (possibly probabilistic) algorithms:

• outputs a key .𝖪𝖾𝗒𝖦𝖾𝗇() → k k ∈ 𝒦

Encryption Scheme Syntax

k k

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Encryption: Syntax

Alice Bob

𝖼𝗍

An encryption scheme consists of three (possibly probabilistic) algorithms:

• outputs a key .𝖪𝖾𝗒𝖦𝖾𝗇() → k k ∈ 𝒦

Encryption Scheme Syntax

k k

Key space: Set of all
possible keys

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Encryption: Syntax

Alice Bob

𝖼𝗍

An encryption scheme consists of three (possibly probabilistic) algorithms:

• outputs a key .𝖪𝖾𝗒𝖦𝖾𝗇() → k k ∈ 𝒦

Encryption Scheme Syntax

k k

Key space: Set of all
possible keys

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Has to be
probabilistic

Encryption: Syntax

Alice Bob

𝖼𝗍

An encryption scheme consists of three (possibly probabilistic) algorithms:

• outputs a key .𝖪𝖾𝗒𝖦𝖾𝗇() → k k ∈ 𝒦

• takes key and message and outputs ciphertext .𝖤𝗇𝖼(k, m) → 𝖼𝗍 k m ∈ ℳ 𝖼𝗍 ∈ 𝒞

Encryption Scheme Syntax

k k

Message space Ciphertext space

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Encryption: Syntax

Alice Bob

𝖼𝗍

An encryption scheme consists of three (possibly probabilistic) algorithms:

• outputs a key .𝖪𝖾𝗒𝖦𝖾𝗇() → k k ∈ 𝒦

• takes key and message and outputs ciphertext .𝖤𝗇𝖼(k, m) → 𝖼𝗍 k m ∈ ℳ 𝖼𝗍 ∈ 𝒞

• takes key and ciphertext and outputs message .𝖣𝖾𝖼(k, 𝖼𝗍) → m k 𝖼𝗍 m

Encryption Scheme Syntax

k k

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Encryption: Syntax

Alice Bob

k k

Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.

Encryption: Syntax

Alice Bob

𝖼𝗍

k k

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.

Encryption: Syntax

Alice Bob

𝖼𝗍

k k

𝖼𝗍 ← 𝖤𝗇𝖼(k, m) m ← 𝖣𝖾𝖼(k, 𝖼𝗍)

Eve

Adversarial Model: Eve is “passive”. She reads ciphertexts but does not interfere.

What are we (not) trying to do?

What are we (not) trying to do?

• We are not trying to hide the existence of private communication (aka steganography).

What are we (not) trying to do?

• We are not trying to hide the existence of private communication (aka steganography).

• We are not guaranteeing that Bob will necessarily receive the ciphertext.

What are we (not) trying to do?

• We are not trying to hide the existence of private communication (aka steganography).

• We are not guaranteeing that Bob will necessarily receive the ciphertext.

• We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

What are we (not) trying to do?

• We are not trying to hide the existence of private communication (aka steganography).

• We are not guaranteeing that Bob will necessarily receive the ciphertext.

• We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

• For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the
course, we will look at key exchange.

What are we (not) trying to do?

• We are not trying to hide the existence of private communication (aka steganography).

• We are not guaranteeing that Bob will necessarily receive the ciphertext.

• We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

• For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the
course, we will look at key exchange.

• We are assuming that keys can be kept private in a reliable manner. We are not discussing how to do key
management.

What are we (not) trying to do?

• We are not trying to hide the existence of private communication (aka steganography).

• We are not guaranteeing that Bob will necessarily receive the ciphertext.

• We are assuming Eve is passive and cannot tamper with the ciphertext. We will consider an active Eve later in the
course.

• For now, we will ignore the issue of how Alice and Bob obtain a common secret key in the first place. Later in the
course, we will look at key exchange.

• We are assuming that keys can be kept private in a reliable manner. We are not discussing how to do key
management.

• Simplification: We will focus on the case of encrypting a single message. We will consider multi-message security
later in the course.

One-Time Pad
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

One-Time Pad
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Set of all -bit
strings

λ

One-Time Pad
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Sampling uniformly at
random from the set

Set of all -bit
strings

λ

One-Time Pad: Correctness
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad: Correctness
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad Correctness

One-Time Pad: Correctness
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad Correctness

Claim: , we have ∀k ∈ 𝒦 ∀m ∈ ℳ 𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m .

One-Time Pad: Correctness
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Correctness (Intuitive): Does decrypting the ciphertext yield the intended plaintext?

One-Time Pad Correctness

Claim: , we have ∀k ∈ 𝒦 ∀m ∈ ℳ 𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m .

Proof: Fix arbitrary and .k ∈ 𝒦 m ∈ ℳ We have

𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = 𝖣𝖾𝖼(k, k ⊕ m)
= k ⊕ k ⊕ m
= m .

One-Time Pad: Security
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

One-Time Pad: Security
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

We do not assume anything about the adversary’s strategy.

One-Time Pad: Security
One-Time Pad

Let be a positive integer and let .

• : .

• : .

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

We do not assume anything about the adversary’s strategy.

Why is one-time pad secure?

• Let us analyze Eve’s view to understand why the scheme is secure.

One-Time Pad: Security

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Concrete example: and λ = 3 m = 010

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Concrete example: and λ = 3 m = 010
𝖼𝗍 = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Concrete example: and λ = 3 m = 010

• Every string in occurs exactly once as a ciphertext.{0,1}3

𝖼𝗍 = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Concrete example: and λ = 3 m = 010

• Every string in occurs exactly once as a ciphertext.{0,1}3

• Since the key is sampled uniformly at random, for any , the
probability that is i.e., the ciphertext is uniformly random
over .

s ∈ {0,1}3

𝖼𝗍 = s 1/8
{0,1}3

𝖼𝗍 = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Concrete example: and λ = 3 m = 010

• Every string in occurs exactly once as a ciphertext.{0,1}3

• Since the key is sampled uniformly at random, for any , the
probability that is i.e., the ciphertext is uniformly random
over .

s ∈ {0,1}3

𝖼𝗍 = s 1/8
{0,1}3

• True for any m ∈ {0,1}3

𝖼𝗍 = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Concrete example: and λ = 3 m = 010

• Every string in occurs exactly once as a ciphertext.{0,1}3

• Since the key is sampled uniformly at random, for any , the
probability that is i.e., the ciphertext is uniformly random
over .

s ∈ {0,1}3

𝖼𝗍 = s 1/8
{0,1}3

• True for any m ∈ {0,1}3

𝖼𝗍 = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

𝖼𝗍
m k $← {0,1}λ

• Let us analyze the resulting ciphertext distribution.

One-Time Pad: Security

m 𝖼𝗍
k $← {0,1}λ

𝖼𝗍 := k ⊕ m

Alice

• Concrete example: and λ = 3 m = 010

• Every string in occurs exactly once as a ciphertext.{0,1}3

• Since the key is sampled uniformly at random, for any , the
probability that is i.e., the ciphertext is uniformly random
over .

s ∈ {0,1}3

𝖼𝗍 = s 1/8
{0,1}3

• True for any m ∈ {0,1}3

𝖼𝗍 = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋

The ciphertext is uniformly distributed,
irrespective of the message

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

• Let us analyze the resulting ciphertext distribution.

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

Alice

The ciphertext is uniformly distributed,
irrespective of the message

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

• Let us analyze the resulting ciphertext distribution.

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

Alice

The ciphertext is uniformly distributed,
irrespective of the message

m

m′￼

For any
message

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

• Let us analyze the resulting ciphertext distribution.

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

Alice

The ciphertext is uniformly distributed,
irrespective of the message

k $← {0,1}λ

𝖼𝗍 := k ⊕ m

k′￼
$← {0,1}λ

𝖼𝗍′￼ := k′￼⊕ m′￼

encryption
transforms

the message
into

m

m′￼

For any
message

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

• Let us analyze the resulting ciphertext distribution.

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

Alice

The ciphertext is uniformly distributed,
irrespective of the message

k $← {0,1}λ

𝖼𝗍 := k ⊕ m

k′￼
$← {0,1}λ

𝖼𝗍′￼ := k′￼⊕ m′￼

encryption
transforms

the message
into

m

m′￼

For any
message

𝖼𝗍

𝖼𝗍′￼

uniformly
random

ciphertexts.

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

• Let us analyze the resulting ciphertext distribution.

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

Alice

The ciphertext is uniformly distributed,
irrespective of the message

k $← {0,1}λ

𝖼𝗍 := k ⊕ m

k′￼
$← {0,1}λ

𝖼𝗍′￼ := k′￼⊕ m′￼

encryption
transforms

the message
into

m

m′￼

For any
message

𝖼𝗍

𝖼𝗍′￼

uniformly
random

ciphertexts.

• If the ciphertext is always uniformly random then it cannot carry any
information about the message!

• Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

• Let us analyze the resulting ciphertext distribution.

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

Alice

The ciphertext is uniformly distributed,
irrespective of the message

k $← {0,1}λ

𝖼𝗍 := k ⊕ m

k′￼
$← {0,1}λ

𝖼𝗍′￼ := k′￼⊕ m′￼

encryption
transforms

the message
into

m

m′￼

For any
message

𝖼𝗍

𝖼𝗍′￼

uniformly
random

ciphertexts.

• If the ciphertext is always uniformly random then it cannot carry any
information about the message!

• Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

• Paradox? How can the ciphertext decrypt to the correct message if it
does not carry any information?

• Let us analyze Eve’s view to understand why the scheme is secure.

• From Eve’s viewpoint, the ciphertext is a transformation of the
message by XORing it with a uniformly random key .

• Let us analyze the resulting ciphertext distribution.

𝖼𝗍
m k $← {0,1}λ

One-Time Pad: Security

Alice

The ciphertext is uniformly distributed,
irrespective of the message

k $← {0,1}λ

𝖼𝗍 := k ⊕ m

k′￼
$← {0,1}λ

𝖼𝗍′￼ := k′￼⊕ m′￼

encryption
transforms

the message
into

m

m′￼

For any
message

𝖼𝗍

𝖼𝗍′￼

uniformly
random

ciphertexts.

• If the ciphertext is always uniformly random then it cannot carry any
information about the message!

• Obtaining the ciphertext is useless to Eve. She can sample from this
distribution herself, without knowing the message.

• Paradox? How can the ciphertext decrypt to the correct message if it
does not carry any information?

• Eve’s view does not include the secret key!

Basics of Provable Security

• We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

Basics of Provable Security

• We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

• Two types of properties

Basics of Provable Security

• We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

• Two types of properties

• Ones that should hold in the absence of an attacker e.g., correctness

Basics of Provable Security

• We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

• Two types of properties

• Ones that should hold in the absence of an attacker e.g., correctness

• Ones that specify what can happen to a system in the presence of an attacker e.g., security.

Basics of Provable Security

• We want to generalize and formalize our intuition of the properties of OTP so that they hold for any encryption scheme.

• Two types of properties

• Ones that should hold in the absence of an attacker e.g., correctness

• Ones that specify what can happen to a system in the presence of an attacker e.g., security.

• Eventual Goal: Write formal definitions to capture all required properties from any given system.

Encryption: Correctness

An encryption scheme consists of three (possibly probabilistic) algorithms:

• outputs a key .

• takes key and message and outputs ciphertext .

• takes key and ciphertext and outputs message .

𝖪𝖾𝗒𝖦𝖾𝗇() → k k ∈ 𝒦

𝖤𝗇𝖼(k, m) → 𝖼𝗍 k m ∈ ℳ 𝖼𝗍 ∈ 𝒞

𝖣𝖾𝖼(k, 𝖼𝗍) → m k 𝖼𝗍 m

Encryption Scheme Syntax

Encryption: Correctness

An encryption scheme consists of three (possibly probabilistic) algorithms:

• outputs a key .

• takes key and message and outputs ciphertext .

• takes key and ciphertext and outputs message .

𝖪𝖾𝗒𝖦𝖾𝗇() → k k ∈ 𝒦

𝖤𝗇𝖼(k, m) → 𝖼𝗍 k m ∈ ℳ 𝖼𝗍 ∈ 𝒞

𝖣𝖾𝖼(k, 𝖼𝗍) → m k 𝖼𝗍 m

Encryption Scheme Syntax

An encryption scheme satisfies correctness if , , we have

where the probability is over the randomness used in encryption and decryption.

∀k ∈ 𝒦 ∀m ∈ ℳ

𝖯𝗋[𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m] = 1,

Encryption Scheme Correctness

• What the security definition should capture for encryption schemes like OTP

Encryption: One-Time Uniform Ciphertext Security

• What the security definition should capture for encryption schemes like OTP

• The secret key should be kept hidden from Eve.

Encryption: One-Time Uniform Ciphertext Security

• What the security definition should capture for encryption schemes like OTP

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

Encryption: One-Time Uniform Ciphertext Security

• What the security definition should capture for encryption schemes like OTP

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

Encryption: One-Time Uniform Ciphertext Security

What happens if the key is re-used?

• What the security definition should capture for encryption schemes like OTP

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

• The ciphertext looks uniformly random to Eve.

Encryption: One-Time Uniform Ciphertext Security

What happens if the key is re-used?

• What the security definition should capture for encryption schemes like OTP

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

• The ciphertext looks uniformly random to Eve.

Encryption: One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

• What the security definition should capture for encryption schemes like OTP

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

• The ciphertext looks uniformly random to Eve.

Encryption: One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

Identical
distributions

One-Time Pad: Security Proof

Claim: One-time pad is one-time uniform ciphertext secure.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

One-Time Pad: Security Proof

Claim: One-time pad is one-time uniform ciphertext secure.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

Proof:
We need to show that ∀m ∈ {0,1}λ

D0 = {𝖼𝗍 : k $← {0,1}λ

𝖼𝗍 := k ⊕ m}

D1 = {𝖼𝗍 : 𝖼𝗍 $← {0,1}λ}
≡

One-Time Pad: Security Proof

Claim: One-time pad is one-time uniform ciphertext secure.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

Fix arbitrary and .m ∈ ℳ c ∈ 𝒞
Proof:

We need to show that ∀m ∈ {0,1}λ

D0 = {𝖼𝗍 : k $← {0,1}λ

𝖼𝗍 := k ⊕ m}

D1 = {𝖼𝗍 : 𝖼𝗍 $← {0,1}λ}
≡

One-Time Pad: Security Proof

Claim: One-time pad is one-time uniform ciphertext secure.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

Fix arbitrary and .m ∈ ℳ c ∈ 𝒞

𝖯𝗋
k $←{0,1}λ

[c = 𝖤𝗇𝖼(k, m)] = 𝖯𝗋
k $←{0,1}λ

[c = k ⊕ m]

Proof:
We need to show that ∀m ∈ {0,1}λ

D0 = {𝖼𝗍 : k $← {0,1}λ

𝖼𝗍 := k ⊕ m}

D1 = {𝖼𝗍 : 𝖼𝗍 $← {0,1}λ}
≡

One-Time Pad: Security Proof

Claim: One-time pad is one-time uniform ciphertext secure.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

Fix arbitrary and .m ∈ ℳ c ∈ 𝒞

𝖯𝗋
k $←{0,1}λ

[c = 𝖤𝗇𝖼(k, m)] = 𝖯𝗋
k $←{0,1}λ

[c = k ⊕ m]

= 𝖯𝗋
k $←{0,1}λ

[k = c ⊕ m]

Proof:
We need to show that ∀m ∈ {0,1}λ

D0 = {𝖼𝗍 : k $← {0,1}λ

𝖼𝗍 := k ⊕ m}

D1 = {𝖼𝗍 : 𝖼𝗍 $← {0,1}λ}
≡

One-Time Pad: Security Proof

Claim: One-time pad is one-time uniform ciphertext secure.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

Fix arbitrary and .m ∈ ℳ c ∈ 𝒞

𝖯𝗋
k $←{0,1}λ

[c = 𝖤𝗇𝖼(k, m)] = 𝖯𝗋
k $←{0,1}λ

[c = k ⊕ m]

= 𝖯𝗋
k $←{0,1}λ

[k = c ⊕ m] =
1
2λ

Proof:
We need to show that ∀m ∈ {0,1}λ

D0 = {𝖼𝗍 : k $← {0,1}λ

𝖼𝗍 := k ⊕ m}

D1 = {𝖼𝗍 : 𝖼𝗍 $← {0,1}λ}
≡

One-Time Pad: Security Proof

Claim: One-time pad is one-time uniform ciphertext secure.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ

One-Time Uniform Ciphertext Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

Fix arbitrary and .m ∈ ℳ c ∈ 𝒞

𝖯𝗋
k $←{0,1}λ

[c = 𝖤𝗇𝖼(k, m)] = 𝖯𝗋
k $←{0,1}λ

[c = k ⊕ m]

= 𝖯𝗋
k $←{0,1}λ

[k = c ⊕ m]

𝖯𝗋
𝖼𝗍 $←{0,1}λ

[𝖼𝗍 = c] =
1
2λ

=
1
2λ

Proof:
We need to show that ∀m ∈ {0,1}λ

D0 = {𝖼𝗍 : k $← {0,1}λ

𝖼𝗍 := k ⊕ m}

D1 = {𝖼𝗍 : 𝖼𝗍 $← {0,1}λ}
≡

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

• Is it one-time uniform ciphertext secure?

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

• Is it one-time uniform ciphertext secure? (Note that)𝒞 = {0λ}

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

• Is it one-time uniform ciphertext secure?

• Consider 𝖤𝗇𝖼(k, m) =: m

(Note that)𝒞 = {0λ}

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

• Is it one-time uniform ciphertext secure?

• Consider 𝖤𝗇𝖼(k, m) =: m

• Is it correct?

(Note that)𝒞 = {0λ}

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

• Is it one-time uniform ciphertext secure?

• Consider 𝖤𝗇𝖼(k, m) =: m

• Is it correct?

(Note that)𝒞 = {0λ}

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

• Is it one-time uniform ciphertext secure?

• Consider 𝖤𝗇𝖼(k, m) =: m

• Is it correct?

• Is it one-time uniform ciphertext secure?

(Note that)𝒞 = {0λ}

Requiring Both Correctness and Security

• Both correctness and security are required for a meaningful notion of encryption

• Consider 𝖤𝗇𝖼(k, m) =: 0λ

• Is it correct?

• Is it one-time uniform ciphertext secure?

• Consider 𝖤𝗇𝖼(k, m) =: m

• Is it correct?

• Is it one-time uniform ciphertext secure?

(Note that)𝒞 = {0λ}

Insecure Encryption

Insecure Encryption

• An encryption scheme does NOT satisfy one-time uniform ciphertext security if such that∃m ∈ ℳ

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≢

Insecure Encryption

• An encryption scheme does NOT satisfy one-time uniform ciphertext security if such that∃m ∈ ℳ

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≢

• Is the following encryption scheme secure?

•

•

𝖪𝖾𝗒𝖦𝖾𝗇() : k $← {0,1}λ

𝖤𝗇𝖼(k, m) : 𝖼𝗍 := k ∧ m

Insecure Encryption

• An encryption scheme does NOT satisfy one-time uniform ciphertext security if such that∃m ∈ ℳ

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≢

• Is the following encryption scheme secure?

•

•

𝖪𝖾𝗒𝖦𝖾𝗇() : k $← {0,1}λ

𝖤𝗇𝖼(k, m) : 𝖼𝗍 := k ∧ m

For ,

,

.

m = 0λ

𝖯𝗋
𝖼𝗍←D0

[𝖼𝗍 = 0λ] = 1

𝖯𝗋
𝖼𝗍←D1

[𝖼𝗍 = 0λ] = 1/2λ

Ans:

Encryption: Perfect Security

• An alternative idea for defining security of encryption schemes.

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

• The ciphertext looks uniformly random to Eve. Encryptions of look like encryptions of to Eve.m0 m1

Encryption: Perfect Security

• An alternative idea for defining security of encryption schemes.

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

• The ciphertext looks uniformly random to Eve. Encryptions of look like encryptions of to Eve.m0 m1

An encryption scheme is one-time perfectly secure if ,∀m0, m1 ∈ ℳ

(One-Time) Perfect Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

Encryption: Perfect Security

• An alternative idea for defining security of encryption schemes.

• The secret key should be kept hidden from Eve.

• The key is only used to encrypt one plaintext.

• The ciphertext looks uniformly random to Eve. Encryptions of look like encryptions of to Eve.m0 m1

An encryption scheme is one-time perfectly secure if ,∀m0, m1 ∈ ℳ

(One-Time) Perfect Security

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

From Eve’s view, the ciphertext carries no information about the plaintext.

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:
We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :

k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:
We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :

k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)} .

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:
We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :

k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)} .

We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

Our goal is to show that . We will do this in
two steps using the “intermediate” hybrid .

H0 ≡ H2
H1

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

 because of one-time uniform ciphertext security.H1 ≡ H2

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

 because of one-time uniform ciphertext security.H1 ≡ H2

By transitivity, .H0 ≡ H2H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Proof:

We want to show that ,∀m0, m1 ∈ ℳ D′￼0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ≡ D′￼1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
We will consider the following sequence of distributions, called hybrids.

H0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)}

H2 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

 because of one-time uniform ciphertext security.H0 ≡ H1

 because of one-time uniform ciphertext security.H1 ≡ H2

By transitivity, .H0 ≡ H2

The hybrid technique is very common in cryptographic proofs.
We will use it repeatedly throughout the course.

H1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}

We are given that ,∀m ∈ ℳ D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞} .≡

Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Corollary: One-time pad is perfectly secure.

