Limitations of Perfect Security
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Announcement

e Homework 1 due this Thursday (29th January)

e Please start early and come to office hours with any questions!
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Kerckhoffs’ Principle: The security of a cryptosystem shouldn’t rely on the
secrecy of the algorithm (only the key)



Recap: Encryption Scheme Syntax and Correctness

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:

« KeyGen() — koutputsakeyk € K.
« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

o Dec(k,ct) — m takes key k and ciphertext ct and outputs message m.




Recap: Encryption Scheme Syntax and Correctness

Encryption Scheme Syntax

An encryption scheme consists of three (possibly probabilistic) algorithms:
« KeyGen() — koutputsakeyk € K.
« Enc(k,m) — ct takes key k and message m € ./ and outputs ciphertext ct € 6.

o Dec(k,ct) — m takes key k and ciphertext ct and outputs message m.

Encryption Scheme Correctness

An encryption scheme satisfies correctness if Vk € #, Vim € 4, we have

Pr[Dec(k, Enc(k,m)) = m] = 1,

where the probability is over the randomness used in encryption and decryption.
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Recap: One-Time Uniform Ciphertext Security

e What the security definition should capture for encryption schemes like OTP
« The secret key should be kept hidden from Eve.
« The key is only used to encrypt one plaintext.

« The ciphertext looks uniformly random to Eve.

One-Time Uniform Ciphertext Security

An encryption scheme is one-time uniform ciphertext secure if Vin € ./,

k — KeyGen()
ct <« Enc(k, m)

Dlz{ct:ct};%}

Eve’s view when What we want Eve’s view
Alice encrypts m to look like

Security: [, carries no information about the message
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Recap: One-Time Pad

One-Time Pad
Let A be a positive integer and let # = M = € = {0,1}’1.
. KeyGen(): k < {0,1}%.
« Enc(k,m):ct := k& m.
e Dec(k,ct):m := ke ct.

Theorem: One-time pad is correct and has one-time uniform ciphertext security.
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Recap: Perfect Security

« An alternative idea for defining security of encryption schemes.
« The secret key should be kept hidden from Eve.

e The key is only used to encrypt one plaintext.

o The-ciphertextlocksunitermlyrandemteEve- Encryptions of my, look like encryptions of m, to Eve.

(One-Time) Perfect Security

An encryption scheme is one-time perfectly secure if Vm,, m; € A,

k — KeyGen() _ k — KeyGen()
DO — ct . — Dl — ct .
ct < Enc(k, m) ct <« Enc(k, m,)

Eve's view when Eve's view should look like
Alice encrypts my, encryptions of m;

Security: The ciphertext distribution is independent of the message.
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Recap: Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

le{ct:ctfi%}

k — KeyGen
Ho={Ct° e O}

k — KeyGen()
. H2 — ct .
ct < Enc(k, m)

" ct « Enc(k, m,)

Corollary: One-time pad is perfectly secure.
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Proof:
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Comparing Both Security Notions

Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Claim: Perfect security does not necessarily imply one-time uniform ciphertext security.

Therefore, perfect security is weaker than one-time uniform ciphertext security.

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she
does with the ciphertext.

One-time uniform ciphertext security might be too strong.

Perfect security exactly captures our intuition.
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e Limitations of one-time pad:
« Key is as long as the message.
e A key cannot be used to encrypt more than one plaintext.

e« These limitations hold for any perfectly secure encryption scheme!

Theorem (Shannon): Any perfectly secure encryption scheme with key space & and message space ./ satisfies

| Z | 2| A

When & and . consist of fixed length strings = key is as long as the message.

Extends immediately to -message perfect security: | #Z | > | A | .
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Theorem (Shannon): Any perfectly secure encryption scheme with key space &£ and message space . satisfies

| F| > [ A .

Intuition:

« Consider some ciphertextct € 6.
e Everym € . should be a valid decryption of ct under some key.

« Follows from perfect security: Requires that ct cannot rule out any message.
« Asingle key k € # cannot decrypt ct to two different messages.

« Follows from correctness: For each m € , the key k that decrypts ct to m must be distinct.

K|z | M.

« Since there are | /| messages, there must be at least | A | keys. Thus,
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Encryption: Statistical Security

o Statistical security requires that the distribution of encryptions of m,, is “close” to the distribution of encryptions of m;.

(One-Time) Statistical Security

An encryption scheme is one-time e-statistically secure if Vi, m, € A,

k «— KeyGen() . k — KeyGen()
Dy= 4 ct: ~ Dy =4 ct: .
ct < Enc(k, m) ct <« Enc(k, m,)

Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.
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1/8 001 011
Eve does not learn anything about the message even if 1/8 010 000
she carries out a brute force attack. 1/8 011 001
1/8 100 110
« How much computation is needed for a brute force 1/8 101 111
attack on A-bit keys? 2/ 1/8 110 100
1/8 111 101



Limitations of Perfect and Statistical Security

Both perfect and statistical security seem too strong. Can

we further weaken the definition?

Consider an Eve that tries all possible keys for one-time
pad

« Example: Let A = 3 and let Eve obtain a ciphertext

ct = 010.

Eve does not learn anything about the message even if
she carries out a brute force attack.

« How much computation is needed for a brute force
attack on A-bit keys? 2*

What if we relax security to only hold against attacks that
are feasible to carry out?

Pr k m=ke 010
1/8 000 010
1/8 001 011
1/8 010 000
1/8 Ol11 001
1/8 100 110
1/8 101 111
1/8 110 100
1/8 111 101



