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Limitations of Perfect Security
601.442/642 Modern Cryptography



Announcement

• Homework 1 due this Thursday (29th January) 

• Please start early and come to office hours with any questions!
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Kerckhoffs’ Principle: The security of a cryptosystem shouldn’t rely on the 
secrecy of the algorithm (only the key)
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An encryption scheme satisfies correctness if , , we have 

 

where the probability is over the randomness used in encryption and decryption.

∀k ∈ 𝒦 ∀m ∈ ℳ

𝖯𝗋[𝖣𝖾𝖼(k, 𝖤𝗇𝖼(k, m)) = m] = 1,

Encryption Scheme Correctness
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• What the security definition should capture for encryption schemes like OTP 

• The secret key should be kept hidden from Eve. 

• The key is only used to encrypt one plaintext. 

• The ciphertext looks uniformly random to Eve.

An encryption scheme is one-time uniform ciphertext secure if ,∀m ∈ ℳ
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D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
𝖼𝗍 ← 𝖤𝗇𝖼(k, m)} D1 = {𝖼𝗍 : 𝖼𝗍 $← 𝒞}≡

What we want Eve’s view 
to look like

Security:  carries no information about the messageD1

Eve’s view when 
Alice encrypts m



Alternative View of One-Time Uniform Ciphertext Security

Encryption scheme is one-time uniform ciphertext secure if the above two scenarios seem identical to Eve.

Consider the following two interactions between Eve and a challenger.
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One-Time Pad

Let  be a positive integer and let . 

• : . 

• : . 

• : .

λ 𝒦 = ℳ = 𝒞 = {0,1}λ

𝖪𝖾𝗒𝖦𝖾𝗇() k $← {0,1}λ

𝖤𝗇𝖼(k, m) 𝖼𝗍 := k ⊕ m

𝖣𝖾𝖼(k, 𝖼𝗍) m := k ⊕ 𝖼𝗍

Theorem: One-time pad is correct and has one-time uniform ciphertext security.
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Security: The ciphertext distribution is independent of the message.
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Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.
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Claim: If an encryption scheme is one-time uniform ciphertext secure, then it is also perfectly secure.

Claim: Perfect security does not necessarily imply one-time uniform ciphertext security.

Therefore, perfect security is weaker than one-time uniform ciphertext security. 

Security (Intuitive): The ciphertext does not reveal any information about the plaintext to Eve, no matter what she 
does with the ciphertext. 

Perfect security exactly captures our intuition.

One-time uniform ciphertext security might be too strong.
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• Statistical security requires that the distribution of encryptions of  is “close” to the distribution of encryptions of .m0 m1

An encryption scheme is one-time -statistically secure if ,ϵ ∀m0, m1 ∈ ℳ
(One-Time) Statistical Security 

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} ϵ≈ D1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()
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Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.



Limitations of Perfect and Statistical Security

• Both perfect and statistical security seem too strong. Can 
we further weaken the definition?



Limitations of Perfect and Statistical Security

• Both perfect and statistical security seem too strong. Can 
we further weaken the definition?

• Consider an Eve that tries all possible keys for one-time 
pad



Limitations of Perfect and Statistical Security

• Both perfect and statistical security seem too strong. Can 
we further weaken the definition?

• Consider an Eve that tries all possible keys for one-time 
pad

• Example: Let  and let Eve obtain a ciphertext 
.

λ = 3
𝖼𝗍 = 010

m = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋



Limitations of Perfect and Statistical Security

• Both perfect and statistical security seem too strong. Can 
we further weaken the definition?

• Consider an Eve that tries all possible keys for one-time 
pad

• Example: Let  and let Eve obtain a ciphertext 
.

λ = 3
𝖼𝗍 = 010

• Eve does not learn anything about the message even if 
she carries out a brute force attack.

m = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋



Limitations of Perfect and Statistical Security

• Both perfect and statistical security seem too strong. Can 
we further weaken the definition?

• Consider an Eve that tries all possible keys for one-time 
pad

• Example: Let  and let Eve obtain a ciphertext 
.

λ = 3
𝖼𝗍 = 010

• Eve does not learn anything about the message even if 
she carries out a brute force attack.

• How much computation is needed for a brute force 
attack on -bit keys?λ

m = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋



Limitations of Perfect and Statistical Security

• Both perfect and statistical security seem too strong. Can 
we further weaken the definition?

• Consider an Eve that tries all possible keys for one-time 
pad

• Example: Let  and let Eve obtain a ciphertext 
.

λ = 3
𝖼𝗍 = 010

• Eve does not learn anything about the message even if 
she carries out a brute force attack.

• How much computation is needed for a brute force 
attack on -bit keys?λ

m = k ⊕ 010k

000
001
010
011
100
101
110
111

010
011
000

110
001

111
100
101

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

𝖯𝗋

2λ



Limitations of Perfect and Statistical Security

• Both perfect and statistical security seem too strong. Can 
we further weaken the definition?

• Consider an Eve that tries all possible keys for one-time 
pad

• Example: Let  and let Eve obtain a ciphertext 
.

λ = 3
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• Eve does not learn anything about the message even if 
she carries out a brute force attack.
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attack on -bit keys?λ

• What if we relax security to only hold against attacks that 
are feasible to carry out?
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