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Announcement

• Homework 1 due today. 

• Homework 2 will be out today and will be due next Thursday (5th Feb).



Recap: Limitations of Perfect Security

Theorem (Shannon): Any perfectly secure encryption scheme with key space  and message space  satisfies𝒦 ℳ

|𝒦 | ≥ |ℳ | .

Perfect security is too strong. Can we weaken the definition?
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An attack that succeeds with small probability ( ) is not a practical threat.≈ 2−60
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Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish 
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small 
probability .ϵ

• Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

• Perfect Security: Even an attacker that brute forces the key does not learn anything about the plaintext.

• Brute forcing -bit keys requires  computations.λ O(2λ)

• Are brute force attacks feasible?



Cost of Computation

• One way to measure the cost of computation is through the monetary value required to carry it out.

CPU Cycles Approx. Cost Reference

250

255

265

275

292

299

2128

$3.50

$100

$130,000

$130 million

$20 trillion

$2 quadrillion

???

Cup of coffee

Tickets to Portland Trailblazers game

Median home price in Oshkosh, WI

Average budget of one of the Harry Potter movies

GDP of the United States

All human economic activity since 300,000 BC

A billion human civilizations’ worth of effort
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Cost of Computation

An attack that requires a large number of computations ( ) is not a practical threat.≈ 2128
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Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time. 
 

• Adversaries can potentially succeed with a very small probability. 
 

• Goal: Overcome the limitations of perfect security (and much more!).

• Both relaxations of perfect security are necessary!

Don’t worry about attacks that are as expensive as brute-force attacks!

Don’t worry about the adversary blindly guessing the key!

Why?
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The Concrete Security Approach

A scheme is -secure if any adversary running for time at most  succeeds in 
breaking the scheme with probability at most .

(T, ϵ) T
ϵ

-Computational Security(T, ϵ)
An encryption scheme is -computationally secure if for all , the following distributions are 

-computationally indistinguishable:
(T, ϵ) m0, m1 ∈ ℳ

(T, ϵ)

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} D1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}
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The Concrete Security Approach

• -computational security: Attacks using at most  cycles cannot break security with probability better 
than .
(2128, 2−60) 2128

2−40

• This is the type of guarantee we want to give for crypto systems deployed in the real-world.

• Limitation: 

• What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)

• How to account for future advances in computing power?

• We need a “knob” to tune the security level

• Analogy: We consider asymptotic growth in runtime for sorting algorithms; not their runtime on lists of 10,000 
values i.e., we have a “knob” to tune the runtime for lists of different length.
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• Security parameter  used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

• Intuition: Length of the key.

• Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

• We will analyze the runtime of algorithms, the adversary’s runtime, and the adversary’s success probability in terms of 
the security parameter.

• Illustrative Example: Encryption requires  CPU cycles. Adversary running for  CPU cycles can succeed in 
breaking the scheme with probability at most .

106 ⋅ λ 108 ⋅ λ4

2−λ/2

• 2GHz Computers with : Encryption takes 3.2 seconds. Adversary that runs for ~3 weeks can break security with 
probability at most .

λ = 80
2−40

• 8GHz Computers with : Encryption takes 3.2 seconds. Adversary that runs for ~13 weeks can break security 
with probability at most !

λ = 160
2−80
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Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

• We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.

• The adversary can be randomized.

• The adversary is non-uniform.

• Efficient Adversary: A non-uniform PPT Turing machine.

• Cryptographic primitives will also be PPT algorithms.

• Primitives have a fixed (small) polynomial runtime and the adversary can run for much longer (arbitrary polynomial runtime).

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.
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Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

• If she repeats the attack polynomially many times (say ), the probability that at least one of them is successful is at 
least 

λc

• This is still low for sufficiently large ; no polynomial can “rescue”  from approaching zero.λ 2−λ

• Our definition of “negligible” probability should be robust to such amplification strategies by efficient adversaries.

• Negligible Function: A function  is negligible if for every polynomial , we have .ν( ⋅ ) p( ⋅ ) lim
λ→∞

p(λ) ⋅ ν(λ) = 0

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

λc ⋅ 2−λ .

For poly-time algorithms, events that occur with negligible probability look like they never occur.
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Negligible Functions

• Alternatively, a negligible function decays faster than all inverse polynomial functions.

• That is, for all , .c > 0 ν(λ) = O(λ−c)

Negligible Function

A function  is negligible if ,  such that  and , it holds that 

.

ν : ℕ → ℝ≥0 ∀c ∈ ℤ≥0 ∃Λ ∈ ℕ ∀λ ∈ ℕ λ > Λ
ν(λ) ≤

1
λc

Examples: ν(λ) = 2−λ ν(λ) = λ−log λ
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Ensembles

• It is not very meaningful to talk about individual distributions when we want to capture asymptotic behavior. 

• For example, using longer keys leads to distributions over longer bit strings.

Our goal is to give an asymptotic definition of computational indistinguishability.

-Computational Indistinguishability(T, ϵ)

Two distributions  and  are -computationally indistinguishable if for all adversaries  that run in 
time at most ,

X Y (T, ϵ) A
T

𝖯𝗋x←X [A(x) = 1] − 𝖯𝗋y←Y [A(y) = 1] ≤ ϵ,

where the probability is over sampling from the distributions  and , and the randomness of .X Y A
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Probability Ensemble

Let  be a countable index set. An ensemble indexed by  is a sequence of random variables .ℐ ℐ {Xi}i∈ℐ
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Ensembles

• In most cases,  will be the set of natural numbers.ℐ

• An ensemble is simply sequence of random variables , , X1 X2 …

• Allows us to focus on asymptotic behavior of distributions e.g., what happens when the key is a sufficiently long, 
uniformly random bit string.

Probability Ensemble

Let  be a countable index set. An ensemble indexed by  is a sequence of random variables .ℐ ℐ {Xi}i∈ℐ



Computational Indistinguishability



Computational Indistinguishability

Two probability ensembles    and      are computationally indistinguishable if for 
every non-uniform PPT adversary , there exists a negligible function  such that for all 

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions  and , and the randomness of .Xλ Yλ A

Computational Indistinguishability



Computational Indistinguishability

Two probability ensembles    and      are computationally indistinguishable if for 
every non-uniform PPT adversary , there exists a negligible function  such that for all 

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions  and , and the randomness of .Xλ Yλ A

Computational Indistinguishability



Computational Indistinguishability

Two probability ensembles    and      are computationally indistinguishable if for 
every non-uniform PPT adversary , there exists a negligible function  such that for all 

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions  and , and the randomness of .Xλ Yλ A

Computational Indistinguishability



Computational Indistinguishability

Two probability ensembles    and      are computationally indistinguishable if for 
every non-uniform PPT adversary , there exists a negligible function  such that for all 

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions  and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Denotes string of  ones. 
Ensures  is polynomial in .

λ
A λ



Computational Indistinguishability

Two probability ensembles    and      are computationally indistinguishable if for 
every non-uniform PPT adversary , there exists a negligible function  such that for all 

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions  and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Denotes string of  ones. 
Ensures  is polynomial in .

λ
A λ



Computational Indistinguishability

Two probability ensembles    and      are computationally indistinguishable if for 
every non-uniform PPT adversary , there exists a negligible function  such that for all 

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions  and , and the randomness of .Xλ Yλ A

Computational Indistinguishability
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Computational Indistinguishability

x ← Xλ
x

Adversary Challenger

b

Challenger

y
b y ← Yλ

Adversary

No efficient test can distinguish between the ensembles  and .X Y
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