
29th January 2026

Computational Security
601.442/642 Modern Cryptography

Announcement

• Homework 1 due today.

• Homework 2 will be out today and will be due next Thursday (5th Feb).

Recap: Limitations of Perfect Security

Theorem (Shannon): Any perfectly secure encryption scheme with key space and message space satisfies𝒦 ℳ

|𝒦 | ≥ |ℳ | .

Perfect security is too strong. Can we weaken the definition?

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability .ϵ

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability .ϵ

Probability ()ϵ

2−10

2−20

2−28

2−40

2−60

Event

Full house in 5-card poker
Royal flush in 5-card poker
Winning this week’s Powerball jackpot
Royal flush in two consecutive poker games
Next meteorite that hits Earth lands on this slide

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability .ϵ

Probability ()ϵ

2−10

2−20

2−28

2−40

2−60

Event

Full house in 5-card poker
Royal flush in 5-card poker
Winning this week’s Powerball jackpot
Royal flush in two consecutive poker games
Next meteorite that hits Earth lands on this slide

An attack that succeeds with small probability () is not a practical threat.≈ 2−60

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability .ϵ

• Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability .ϵ

• Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

• Perfect Security: Even an attacker that brute forces the key does not learn anything about the plaintext.

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability .ϵ

• Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

• Perfect Security: Even an attacker that brute forces the key does not learn anything about the plaintext.

• Brute forcing -bit keys requires computations.λ O(2λ)

Recap: What Makes Perfect Security So Strong?

• Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

• Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability .ϵ

• Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

• Perfect Security: Even an attacker that brute forces the key does not learn anything about the plaintext.

• Brute forcing -bit keys requires computations.λ O(2λ)

• Are brute force attacks feasible?

Cost of Computation

• One way to measure the cost of computation is through the monetary value required to carry it out.

CPU Cycles Approx. Cost Reference

250

255

265

275

292

299

2128

$3.50

$100

$130,000

$130 million

$20 trillion

$2 quadrillion

???

Cup of coffee

Tickets to Portland Trailblazers game

Median home price in Oshkosh, WI

Average budget of one of the Harry Potter movies

GDP of the United States

All human economic activity since 300,000 BC

A billion human civilizations’ worth of effort

Cost of Computation

Cost of Computation

An attack that requires a large number of computations () is not a practical threat.≈ 2128

Computational Security

• Modern cryptography is based on computational security

Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time.

Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time.

• Adversaries can potentially succeed with a very small probability.

Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time.

• Adversaries can potentially succeed with a very small probability.

• Goal: Overcome the limitations of perfect security (and much more!).

Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time.

• Adversaries can potentially succeed with a very small probability.

• Goal: Overcome the limitations of perfect security (and much more!).

• Both relaxations of perfect security are necessary!

Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time.

• Adversaries can potentially succeed with a very small probability.

• Goal: Overcome the limitations of perfect security (and much more!).

• Both relaxations of perfect security are necessary!

Why?

Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time.

• Adversaries can potentially succeed with a very small probability.

• Goal: Overcome the limitations of perfect security (and much more!).

• Both relaxations of perfect security are necessary!

Don’t worry about attacks that are as expensive as brute-force attacks!

Why?

Computational Security

• Modern cryptography is based on computational security

• Security is only ensured against adversaries that run for a feasible amount of time.

• Adversaries can potentially succeed with a very small probability.

• Goal: Overcome the limitations of perfect security (and much more!).

• Both relaxations of perfect security are necessary!

Don’t worry about attacks that are as expensive as brute-force attacks!

Don’t worry about the adversary blindly guessing the key!

Why?

The Concrete Security Approach

A scheme is -secure if any adversary running for time at most succeeds in
breaking the scheme with probability at most .

(T, ϵ) T
ϵ

The Concrete Security Approach

A scheme is -secure if any adversary running for time at most succeeds in
breaking the scheme with probability at most .

(T, ϵ) T
ϵ

-Computational Indistinguishability(T, ϵ)

Two distributions and are -computationally indistinguishable if for all adversaries that run in
time at most ,

X Y (T, ϵ) A
T

𝖯𝗋x←X [A(x) = 1] − 𝖯𝗋y←Y [A(y) = 1] ≤ ϵ,

where the probability is over sampling from the distributions and , and the randomness of .X Y A

The Concrete Security Approach

A scheme is -secure if any adversary running for time at most succeeds in
breaking the scheme with probability at most .

(T, ϵ) T
ϵ

-Computational Indistinguishability(T, ϵ)

Two distributions and are -computationally indistinguishable if for all adversaries that run in
time at most ,

X Y (T, ϵ) A
T

𝖯𝗋x←X [A(x) = 1] − 𝖯𝗋y←Y [A(y) = 1] ≤ ϵ,

where the probability is over sampling from the distributions and , and the randomness of .X Y A

x ← X
x

Adversary Challenger

b

Challenger

y
b y ← Y

Adversary

Adversary cannot tell and apart except with small probability.X Y

The Concrete Security Approach

A scheme is -secure if any adversary running for time at most succeeds in
breaking the scheme with probability at most .

(T, ϵ) T
ϵ

-Computational Indistinguishability(T, ϵ)

Two distributions and are -computationally indistinguishable if for all adversaries that run in
time at most ,

X Y (T, ϵ) A
T

𝖯𝗋x←X [A(x) = 1] − 𝖯𝗋y←Y [A(y) = 1] ≤ ϵ,

where the probability is over sampling from the distributions and , and the randomness of .X Y A

The Concrete Security Approach

A scheme is -secure if any adversary running for time at most succeeds in
breaking the scheme with probability at most .

(T, ϵ) T
ϵ

-Computational Security(T, ϵ)
An encryption scheme is -computationally secure if for all , the following distributions are

-computationally indistinguishable:
(T, ϵ) m0, m1 ∈ ℳ

(T, ϵ)

D0 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m0)} D1 = {𝖼𝗍 :
k ← 𝖪𝖾𝗒𝖦𝖾𝗇()

𝖼𝗍 ← 𝖤𝗇𝖼(k, m1)}

-Computational Indistinguishability(T, ϵ)

Two distributions and are -computationally indistinguishable if for all adversaries that run in
time at most ,

X Y (T, ϵ) A
T

𝖯𝗋x←X [A(x) = 1] − 𝖯𝗋y←Y [A(y) = 1] ≤ ϵ,

where the probability is over sampling from the distributions and , and the randomness of .X Y A

The Concrete Security Approach

• -computational security: Attacks using at most cycles cannot break security with probability better
than .
(2128, 2−60) 2128

2−40

The Concrete Security Approach

• -computational security: Attacks using at most cycles cannot break security with probability better
than .
(2128, 2−60) 2128

2−40

• This is the type of guarantee we want to give for crypto systems deployed in the real-world.

The Concrete Security Approach

• -computational security: Attacks using at most cycles cannot break security with probability better
than .
(2128, 2−60) 2128

2−40

• This is the type of guarantee we want to give for crypto systems deployed in the real-world.

• Limitation:

The Concrete Security Approach

• -computational security: Attacks using at most cycles cannot break security with probability better
than .
(2128, 2−60) 2128

2−40

• This is the type of guarantee we want to give for crypto systems deployed in the real-world.

• Limitation:

• What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)

The Concrete Security Approach

• -computational security: Attacks using at most cycles cannot break security with probability better
than .
(2128, 2−60) 2128

2−40

• This is the type of guarantee we want to give for crypto systems deployed in the real-world.

• Limitation:

• What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)

• How to account for future advances in computing power?

The Concrete Security Approach

• -computational security: Attacks using at most cycles cannot break security with probability better
than .
(2128, 2−60) 2128

2−40

• This is the type of guarantee we want to give for crypto systems deployed in the real-world.

• Limitation:

• What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)

• How to account for future advances in computing power?

• We need a “knob” to tune the security level

The Concrete Security Approach

• -computational security: Attacks using at most cycles cannot break security with probability better
than .
(2128, 2−60) 2128

2−40

• This is the type of guarantee we want to give for crypto systems deployed in the real-world.

• Limitation:

• What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)

• How to account for future advances in computing power?

• We need a “knob” to tune the security level

• Analogy: We consider asymptotic growth in runtime for sorting algorithms; not their runtime on lists of 10,000
values i.e., we have a “knob” to tune the runtime for lists of different length.

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

• Intuition: Length of the key.

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

• Intuition: Length of the key.

• Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

• Intuition: Length of the key.

• Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

• We will analyze the runtime of algorithms, the adversary’s runtime, and the adversary’s success probability in terms of
the security parameter.

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

• Intuition: Length of the key.

• Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

• We will analyze the runtime of algorithms, the adversary’s runtime, and the adversary’s success probability in terms of
the security parameter.

• Illustrative Example: Encryption requires CPU cycles. Adversary running for CPU cycles can succeed in
breaking the scheme with probability at most .

106 ⋅ λ 108 ⋅ λ4

2−λ/2

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

• Intuition: Length of the key.

• Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

• We will analyze the runtime of algorithms, the adversary’s runtime, and the adversary’s success probability in terms of
the security parameter.

• Illustrative Example: Encryption requires CPU cycles. Adversary running for CPU cycles can succeed in
breaking the scheme with probability at most .

106 ⋅ λ 108 ⋅ λ4

2−λ/2

• 2GHz Computers with : Encryption takes 3.2 seconds. Adversary that runs for ~3 weeks can break security with
probability at most .

λ = 80
2−40

The Asymptotic Approach

• Security parameter used to parametrize algorithms and adversaries.λ ∈ ℕ

• Knob for tuning security level of the scheme.

• Intuition: Length of the key.

• Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

• We will analyze the runtime of algorithms, the adversary’s runtime, and the adversary’s success probability in terms of
the security parameter.

• Illustrative Example: Encryption requires CPU cycles. Adversary running for CPU cycles can succeed in
breaking the scheme with probability at most .

106 ⋅ λ 108 ⋅ λ4

2−λ/2

• 2GHz Computers with : Encryption takes 3.2 seconds. Adversary that runs for ~3 weeks can break security with
probability at most .

λ = 80
2−40

• 8GHz Computers with : Encryption takes 3.2 seconds. Adversary that runs for ~13 weeks can break security
with probability at most !

λ = 160
2−80

The Asymptotic Approach

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

• We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

• We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.

• The adversary can be randomized.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

• We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.

• The adversary can be randomized.

• The adversary is non-uniform.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

• We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.

• The adversary can be randomized.

• The adversary is non-uniform.

• Efficient Adversary: A non-uniform PPT Turing machine.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

• We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.

• The adversary can be randomized.

• The adversary is non-uniform.

• Efficient Adversary: A non-uniform PPT Turing machine.

• Cryptographic primitives will also be PPT algorithms.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Efficient Adversaries

• Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter .λ

• All standard (classical) models of computation are equivalent up to polynomial time.

• Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.

• We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.

• The adversary can be randomized.

• The adversary is non-uniform.

• Efficient Adversary: A non-uniform PPT Turing machine.

• Cryptographic primitives will also be PPT algorithms.

• Primitives have a fixed (small) polynomial runtime and the adversary can run for much longer (arbitrary polynomial runtime).

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Negligible Functions

• How to define “negligible” probability

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

• If she repeats the attack polynomially many times (say), the probability that at least one of them is successful is at
least

λc

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

• If she repeats the attack polynomially many times (say), the probability that at least one of them is successful is at
least

λc

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

λc ⋅ 2−λ .

Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

• If she repeats the attack polynomially many times (say), the probability that at least one of them is successful is at
least

λc

• This is still low for sufficiently large ; no polynomial can “rescue” from approaching zero.λ 2−λ

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

λc ⋅ 2−λ .

Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

• If she repeats the attack polynomially many times (say), the probability that at least one of them is successful is at
least

λc

• This is still low for sufficiently large ; no polynomial can “rescue” from approaching zero.λ 2−λ

• Our definition of “negligible” probability should be robust to such amplification strategies by efficient adversaries.

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

λc ⋅ 2−λ .

Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

• If she repeats the attack polynomially many times (say), the probability that at least one of them is successful is at
least

λc

• This is still low for sufficiently large ; no polynomial can “rescue” from approaching zero.λ 2−λ

• Our definition of “negligible” probability should be robust to such amplification strategies by efficient adversaries.

• Negligible Function: A function is negligible if for every polynomial , we have .ν(⋅) p(⋅) lim
λ→∞

p(λ) ⋅ ν(λ) = 0

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

λc ⋅ 2−λ .

Negligible Functions

• How to define “negligible” probability

• Eve successfully attacks an encryption scheme with probability at most .2−λ

• If she repeats the attack polynomially many times (say), the probability that at least one of them is successful is at
least

λc

• This is still low for sufficiently large ; no polynomial can “rescue” from approaching zero.λ 2−λ

• Our definition of “negligible” probability should be robust to such amplification strategies by efficient adversaries.

• Negligible Function: A function is negligible if for every polynomial , we have .ν(⋅) p(⋅) lim
λ→∞

p(λ) ⋅ ν(λ) = 0

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

λc ⋅ 2−λ .

For poly-time algorithms, events that occur with negligible probability look like they never occur.

Negligible Functions

• Alternatively, a negligible function decays faster than all inverse polynomial functions.

Negligible Functions

• Alternatively, a negligible function decays faster than all inverse polynomial functions.

• That is, for all , .c > 0 ν(λ) = O(λ−c)

Negligible Functions

• Alternatively, a negligible function decays faster than all inverse polynomial functions.

• That is, for all , .c > 0 ν(λ) = O(λ−c)

Negligible Function

A function is negligible if , such that and , it holds that

.

ν : ℕ → ℝ≥0 ∀c ∈ ℤ≥0 ∃Λ ∈ ℕ ∀λ ∈ ℕ λ > Λ
ν(λ) ≤

1
λc

Negligible Functions

• Alternatively, a negligible function decays faster than all inverse polynomial functions.

• That is, for all , .c > 0 ν(λ) = O(λ−c)

Negligible Function

A function is negligible if , such that and , it holds that

.

ν : ℕ → ℝ≥0 ∀c ∈ ℤ≥0 ∃Λ ∈ ℕ ∀λ ∈ ℕ λ > Λ
ν(λ) ≤

1
λc

Examples: ν(λ) = 2−λ

Negligible Functions

• Alternatively, a negligible function decays faster than all inverse polynomial functions.

• That is, for all , .c > 0 ν(λ) = O(λ−c)

Negligible Function

A function is negligible if , such that and , it holds that

.

ν : ℕ → ℝ≥0 ∀c ∈ ℤ≥0 ∃Λ ∈ ℕ ∀λ ∈ ℕ λ > Λ
ν(λ) ≤

1
λc

Examples: ν(λ) = 2−λ ν(λ) = λ−log λ

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

• Since and are negligiblef g

• such that , and such that , .∃Λf ∀λ > Λf f(λ) ≤
1

λc+1
∃Λg ∀λ > Λg g(λ) ≤

1
λc+1

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

• Since and are negligiblef g

• such that , and such that , .∃Λf ∀λ > Λf f(λ) ≤
1

λc+1
∃Λg ∀λ > Λg g(λ) ≤

1
λc+1

• Let . For all we haveΛ = max(Λf , Λg, 2) λ > Λ

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

• Since and are negligiblef g

• such that , and such that , .∃Λf ∀λ > Λf f(λ) ≤
1

λc+1
∃Λg ∀λ > Λg g(λ) ≤

1
λc+1

• Let . For all we haveΛ = max(Λf , Λg, 2) λ > Λ

f(λ) + g(λ) ≤
1

λc+1
+

1
λc+1

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

• Since and are negligiblef g

• such that , and such that , .∃Λf ∀λ > Λf f(λ) ≤
1

λc+1
∃Λg ∀λ > Λg g(λ) ≤

1
λc+1

• Let . For all we haveΛ = max(Λf , Λg, 2) λ > Λ

f(λ) + g(λ) ≤
1

λc+1
+

1
λc+1

≤
2

λc+1

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

• Since and are negligiblef g

• such that , and such that , .∃Λf ∀λ > Λf f(λ) ≤
1

λc+1
∃Λg ∀λ > Λg g(λ) ≤

1
λc+1

• Let . For all we haveΛ = max(Λf , Λg, 2) λ > Λ

f(λ) + g(λ) ≤
1

λc+1
+

1
λc+1

≤
2

λc+1
≤

λ
λc+1

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

• Since and are negligiblef g

• such that , and such that , .∃Λf ∀λ > Λf f(λ) ≤
1

λc+1
∃Λg ∀λ > Λg g(λ) ≤

1
λc+1

• Let . For all we haveΛ = max(Λf , Λg, 2) λ > Λ

f(λ) + g(λ) ≤
1

λc+1
+

1
λc+1

≤
2

λc+1
≤

λ
λc+1

λ ≥ Λ ≥ 2

Negligible Functions: Properties

Lemma: If and are negligible functions, then is also negligible.f(λ) g(λ) f(λ) + g(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ f(λ) + g(λ) ≤
1
λc

• Fix an arbitrary .c

• Since and are negligiblef g

• such that , and such that , .∃Λf ∀λ > Λf f(λ) ≤
1

λc+1
∃Λg ∀λ > Λg g(λ) ≤

1
λc+1

• Let . For all we haveΛ = max(Λf , Λg, 2) λ > Λ

f(λ) + g(λ) ≤
1

λc+1
+

1
λc+1

≤
2

λc+1
≤

λ
λc+1

≤
1
λc

.

λ ≥ Λ ≥ 2

Negligible Functions: Properties

Lemma: If be a negligible function and be a polynomial such that for all .
Then is also negligible.

ν(λ) p(λ) p(λ) ≥ 0 λ ≥ 0
ν(λ) ⋅ p(λ)

Negligible Functions: Properties

Lemma: If be a negligible function and be a polynomial such that for all .
Then is also negligible.

ν(λ) p(λ) p(λ) ≥ 0 λ ≥ 0
ν(λ) ⋅ p(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ ν(λ) ⋅ p(λ) ≤
1
λc

Negligible Functions: Properties

Lemma: If be a negligible function and be a polynomial such that for all .
Then is also negligible.

ν(λ) p(λ) p(λ) ≥ 0 λ ≥ 0
ν(λ) ⋅ p(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ ν(λ) ⋅ p(λ) ≤
1
λc

• Fix an arbitrary c.

Negligible Functions: Properties

Lemma: If be a negligible function and be a polynomial such that for all .
Then is also negligible.

ν(λ) p(λ) p(λ) ≥ 0 λ ≥ 0
ν(λ) ⋅ p(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ ν(λ) ⋅ p(λ) ≤
1
λc

• Fix an arbitrary c.

• Since is a polynomial, such that , . p ∃Λp, cp ∀λ > Λp p(λ) ≤ λcp

Negligible Functions: Properties

Lemma: If be a negligible function and be a polynomial such that for all .
Then is also negligible.

ν(λ) p(λ) p(λ) ≥ 0 λ ≥ 0
ν(λ) ⋅ p(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ ν(λ) ⋅ p(λ) ≤
1
λc

• Fix an arbitrary c.

• Since is a polynomial, such that , . p ∃Λp, cp ∀λ > Λp p(λ) ≤ λcp

• Since is negligible, such that , .ν(λ) ∃Λν ∀λ > Λν ν(λ) ≤
1

λc+cp

Negligible Functions: Properties

Lemma: If be a negligible function and be a polynomial such that for all .
Then is also negligible.

ν(λ) p(λ) p(λ) ≥ 0 λ ≥ 0
ν(λ) ⋅ p(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ ν(λ) ⋅ p(λ) ≤
1
λc

• Fix an arbitrary c.

• Since is a polynomial, such that , . p ∃Λp, cp ∀λ > Λp p(λ) ≤ λcp

• Since is negligible, such that , .ν(λ) ∃Λν ∀λ > Λν ν(λ) ≤
1

λc+cp

• Let . For all we haveΛ = max(Λp, Λν) λ > Λ

Negligible Functions: Properties

Lemma: If be a negligible function and be a polynomial such that for all .
Then is also negligible.

ν(λ) p(λ) p(λ) ≥ 0 λ ≥ 0
ν(λ) ⋅ p(λ)

Proof:

• We want to show that , , such that , .∀c ∃Λ ∀λ > Λ ν(λ) ⋅ p(λ) ≤
1
λc

• Fix an arbitrary c.

• Since is a polynomial, such that , . p ∃Λp, cp ∀λ > Λp p(λ) ≤ λcp

• Since is negligible, such that , .ν(λ) ∃Λν ∀λ > Λν ν(λ) ≤
1

λc+cp

• Let . For all we haveΛ = max(Λp, Λν) λ > Λ

ν(λ) ⋅ p(λ) ≤
1

λc+cp
⋅ λcp ≤

1
λc

.

Ensembles

• It is not very meaningful to talk about individual distributions when we want to capture asymptotic behavior.

• For example, using longer keys leads to distributions over longer bit strings.

Our goal is to give an asymptotic definition of computational indistinguishability.

-Computational Indistinguishability(T, ϵ)

Two distributions and are -computationally indistinguishable if for all adversaries that run in
time at most ,

X Y (T, ϵ) A
T

𝖯𝗋x←X [A(x) = 1] − 𝖯𝗋y←Y [A(y) = 1] ≤ ϵ,

where the probability is over sampling from the distributions and , and the randomness of .X Y A

Ensembles

• In most cases, will be the set of natural numbers.ℐ

Probability Ensemble

Let be a countable index set. An ensemble indexed by is a sequence of random variables .ℐ ℐ {Xi}i∈ℐ

Ensembles

• In most cases, will be the set of natural numbers.ℐ

• An ensemble is simply sequence of random variables , , X1 X2 …

Probability Ensemble

Let be a countable index set. An ensemble indexed by is a sequence of random variables .ℐ ℐ {Xi}i∈ℐ

Ensembles

• In most cases, will be the set of natural numbers.ℐ

• An ensemble is simply sequence of random variables , , X1 X2 …

• Allows us to focus on asymptotic behavior of distributions e.g., what happens when the key is a sufficiently long,
uniformly random bit string.

Probability Ensemble

Let be a countable index set. An ensemble indexed by is a sequence of random variables .ℐ ℐ {Xi}i∈ℐ

Computational Indistinguishability

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Denotes string of ones.
Ensures is polynomial in .

λ
A λ

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Denotes string of ones.
Ensures is polynomial in .

λ
A λ

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

x ← Xλ
x

Adversary Challenger

b

Challenger

y
b y ← Yλ

Adversary

No efficient test can distinguish between the ensembles and .X Y

Computational Indistinguishability

• We use as a shorthand to denote that the two ensembles are computationally indistinguishable.X c≈ Y

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

• We use as a shorthand to denote that the two ensembles are computationally indistinguishable.X c≈ Y

• The value

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1]

 is called the adversary’s advantage in distinguishing between and .X Y

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

Computational Indistinguishability

• We use as a shorthand to denote that the two ensembles are computationally indistinguishable.X c≈ Y

• The value

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1]

 is called the adversary’s advantage in distinguishing between and .X Y

• if all non-uniform PPT adversaries have negligible advantage in distinguishing between the two ensembles.X c≈ Y

Computational Indistinguishability

Two probability ensembles and are computationally indistinguishable if for
every non-uniform PPT adversary , there exists a negligible function such that for all

X = {Xi}i∈ℕ Y = {Yi}i∈ℕ
A ν(λ) λ ∈ ℕ

𝖯𝗋x←Xλ [A(1λ, x) = 1] − 𝖯𝗋y←Yλ [A(1λ, y) = 1] ≤ ν(λ),

where the probability is over sampling from the distributions and , and the randomness of .Xλ Yλ A

