

# Computational Security

601.442/642 Modern Cryptography

29th January 2026

# Announcement

- Homework 1 due **today**.
- Homework 2 will be out today and will be due next Thursday (5th Feb).

# Recap: Limitations of Perfect Security

**Theorem (Shannon):** Any perfectly secure encryption scheme with key space  $\mathcal{K}$  and message space  $\mathcal{M}$  satisfies

$$|\mathcal{K}| \geq |\mathcal{M}|.$$

Perfect security is too **strong**. Can we weaken the definition?

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.
- **Statistical Security:** The adversary can distinguish between encryptions of two different messages with a **small probability  $\epsilon$** .

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.
- **Statistical Security:** The adversary can distinguish between encryptions of two different messages with a **small probability  $\epsilon$** .

| Probability ( $\epsilon$ ) | Event                                              |
|----------------------------|----------------------------------------------------|
| $2^{-10}$                  | Full house in 5-card poker                         |
| $2^{-20}$                  | Royal flush in 5-card poker                        |
| $2^{-28}$                  | Winning this week's Powerball jackpot              |
| $2^{-40}$                  | Royal flush in two consecutive poker games         |
| $2^{-60}$                  | Next meteorite that hits Earth lands on this slide |

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.
- **Statistical Security:** The adversary can distinguish between encryptions of two different messages with a **small probability  $\epsilon$** .

| Probability ( $\epsilon$ ) | Event                                              |
|----------------------------|----------------------------------------------------|
| $2^{-10}$                  | Full house in 5-card poker                         |
| $2^{-20}$                  | Royal flush in 5-card poker                        |
| $2^{-28}$                  | Winning this week's Powerball jackpot              |
| $2^{-40}$                  | Royal flush in two consecutive poker games         |
| $2^{-60}$                  | Next meteorite that hits Earth lands on this slide |

An attack that succeeds with small probability ( $\approx 2^{-60}$ ) is not a practical threat.

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.
- **Statistical Security:** The adversary can distinguish between encryptions of two different messages with a **small probability  $\epsilon$** .
- Shannon's theorem can be extended to show that **statistically secure** encryption schemes still require **long keys**.

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.
- **Statistical Security:** The adversary can distinguish between encryptions of two different messages with a **small probability  $\epsilon$** .
- Shannon's theorem can be extended to show that **statistically secure** encryption schemes still require **long keys**.
- **Perfect Security:** Even an attacker that **brute forces** the key does not learn anything about the plaintext.

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.
- **Statistical Security:** The adversary can distinguish between encryptions of two different messages with a **small probability  $\epsilon$** .
- Shannon's theorem can be extended to show that **statistically secure** encryption schemes still require **long keys**.
- **Perfect Security:** Even an attacker that **brute forces** the key does not learn anything about the plaintext.
- Brute forcing  $\lambda$ -bit keys requires  **$O(2^\lambda)$**  computations.

# Recap: What Makes Perfect Security So Strong?

- **Perfect Security:** Encryptions of any two messages are **identically** distributed i.e., the adversary **cannot distinguish** between the ciphertexts.
- **Statistical Security:** The adversary can distinguish between encryptions of two different messages with a **small probability  $\epsilon$** .
- Shannon's theorem can be extended to show that **statistically secure** encryption schemes still require **long keys**.
- **Perfect Security:** Even an attacker that **brute forces** the key does not learn anything about the plaintext.
  - Brute forcing  $\lambda$ -bit keys requires  **$O(2^\lambda)$**  computations.
  - Are brute force attacks **feasible**?

# Cost of Computation

- One way to measure the cost of computation is through the monetary value required to carry it out.

| <b>CPU Cycles</b> | <b>Approx. Cost</b> | <b>Reference</b>                                 |
|-------------------|---------------------|--------------------------------------------------|
| $2^{50}$          | \$3.50              | Cup of coffee                                    |
| $2^{55}$          | \$100               | Tickets to Portland Trailblazers game            |
| $2^{65}$          | \$130,000           | Median home price in Oshkosh, WI                 |
| $2^{75}$          | \$130 million       | Average budget of one of the Harry Potter movies |
| $2^{92}$          | \$20 trillion       | GDP of the United States                         |
| $2^{99}$          | \$2 quadrillion     | All human economic activity since 300,000 BC     |
| $2^{128}$         | ???                 | A billion human civilizations' worth of effort   |

# Cost of Computation

How large is  $2^{128}$  computations?



Even if every atom in the observable universe ( $\sim 10^{80}$ ) were a computer performing  $10^9$  computations per second, it would still take billions of years to complete  $2^{128}$  computations.

# Cost of Computation

How large is  $2^{128}$  computations?



Even if every atom in the observable universe ( $\sim 10^{80}$ ) were a computer performing  $10^9$  computations per second, it would still take billions of years to complete  $2^{128}$  computations.

An attack that requires a large number of computations ( $\approx 2^{128}$ ) is not a practical threat.

# Computational Security

- Modern cryptography is based on [computational security](#)

# Computational Security

- Modern cryptography is based on computational security
  - Security is only ensured against adversaries that run for a feasible amount of time.

# Computational Security

- Modern cryptography is based on computational security
  - Security is only ensured against adversaries that run for a feasible amount of time.
  - Adversaries can potentially succeed with a very small probability.

# Computational Security

- Modern cryptography is based on **computational security**
  - Security is only ensured against adversaries that run for a **feasible amount of time**.
  - Adversaries can potentially succeed with a **very small probability**.
- **Goal:** Overcome the limitations of perfect security (and much more!).

# Computational Security

- Modern cryptography is based on **computational security**
  - Security is only ensured against adversaries that run for a **feasible amount of time**.
  - Adversaries can potentially succeed with a **very small probability**.
- **Goal:** Overcome the limitations of perfect security (and much more!).
- Both relaxations of perfect security are **necessary**!

# Computational Security

- Modern cryptography is based on **computational security**
  - Security is only ensured against adversaries that run for a **feasible amount of time**.
  - Adversaries can potentially succeed with a **very small probability**.
- **Goal:** Overcome the limitations of perfect security (and much more!).
- Both relaxations of perfect security are **necessary**!

Why?

# Computational Security

- Modern cryptography is based on **computational security**
  - Security is only ensured against adversaries that run for a **feasible amount of time**.

Don't worry about attacks that are as expensive as brute-force attacks!

- **Adversaries can potentially succeed with a **very small probability**.**
- **Goal:** Overcome the limitations of perfect security (and much more!).
- Both relaxations of perfect security are **necessary!**

Why?

# Computational Security

- Modern cryptography is based on **computational security**
  - Security is only ensured against adversaries that run for a **feasible amount of time**.

Don't worry about attacks that are as expensive as brute-force attacks!

- Adversaries can potentially succeed with a **very small probability**.

Don't worry about the adversary blindly guessing the key!
- **Goal:** Overcome the limitations of perfect security (and much more!).
- Both relaxations of perfect security are **necessary**!

Why?

# The Concrete Security Approach

A scheme is  $(T, \epsilon)$ -secure if any adversary running for time at most  $T$  succeeds in breaking the scheme with probability at most  $\epsilon$ .

# The Concrete Security Approach

A scheme is  $(T, \epsilon)$ -secure if any adversary running for time at most  $T$  succeeds in breaking the scheme with probability at most  $\epsilon$ .

## $(T, \epsilon)$ -Computational Indistinguishability

Two distributions  $X$  and  $Y$  are  $(T, \epsilon)$ -computationally indistinguishable if for all adversaries  $A$  that run in time at most  $T$ ,

$$\left| \Pr_{x \leftarrow X} [A(x) = 1] - \Pr_{y \leftarrow Y} [A(y) = 1] \right| \leq \epsilon,$$

where the probability is over sampling from the distributions  $X$  and  $Y$ , and the randomness of  $A$ .

# The Concrete Security Approach

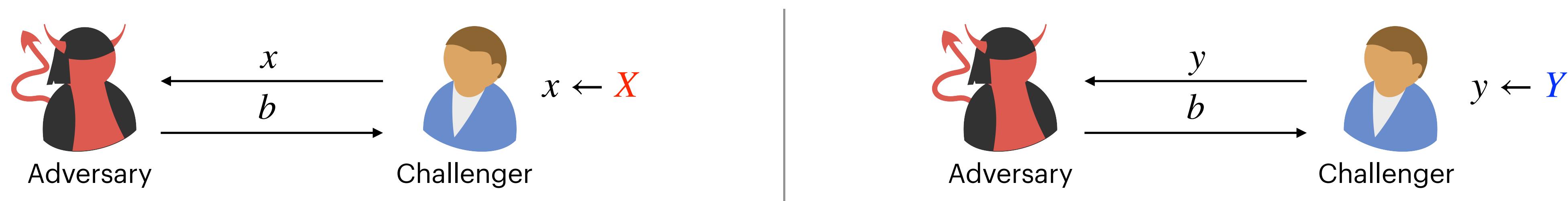
A scheme is  $(T, \epsilon)$ -secure if any adversary running for time at most  $T$  succeeds in breaking the scheme with probability at most  $\epsilon$ .

## $(T, \epsilon)$ -Computational Indistinguishability

Two distributions  $X$  and  $Y$  are  $(T, \epsilon)$ -computationally indistinguishable if for all adversaries  $A$  that run in time at most  $T$ ,

$$\left| \Pr_{x \leftarrow X} [A(x) = 1] - \Pr_{y \leftarrow Y} [A(y) = 1] \right| \leq \epsilon,$$

where the probability is over sampling from the distributions  $X$  and  $Y$ , and the randomness of  $A$ .



Adversary cannot tell  $X$  and  $Y$  apart except with small probability.

# The Concrete Security Approach

A scheme is  $(T, \epsilon)$ -secure if any adversary running for time at most  $T$  succeeds in breaking the scheme with probability at most  $\epsilon$ .

## $(T, \epsilon)$ -Computational Indistinguishability

Two distributions  $X$  and  $Y$  are  $(T, \epsilon)$ -computationally indistinguishable if for all adversaries  $A$  that run in time at most  $T$ ,

$$\left| \Pr_{x \leftarrow X} [A(x) = 1] - \Pr_{y \leftarrow Y} [A(y) = 1] \right| \leq \epsilon,$$

where the probability is over sampling from the distributions  $X$  and  $Y$ , and the randomness of  $A$ .

# The Concrete Security Approach

A scheme is  $(T, \epsilon)$ -secure if any adversary running for time at most  $T$  succeeds in breaking the scheme with probability at most  $\epsilon$ .

## $(T, \epsilon)$ -Computational Indistinguishability

Two distributions  $X$  and  $Y$  are  $(T, \epsilon)$ -computationally indistinguishable if for all adversaries  $A$  that run in time at most  $T$ ,

$$\left| \Pr_{x \leftarrow X} [A(x) = 1] - \Pr_{y \leftarrow Y} [A(y) = 1] \right| \leq \epsilon,$$

where the probability is over sampling from the distributions  $X$  and  $Y$ , and the randomness of  $A$ .

## $(T, \epsilon)$ -Computational Security

An encryption scheme is  $(T, \epsilon)$ -computationally secure if for all  $\textcolor{red}{m}_0, \textcolor{blue}{m}_1 \in \mathcal{M}$ , the following distributions are  $(T, \epsilon)$ -computationally indistinguishable:

$$D_0 = \left\{ \text{ct} : \begin{array}{l} k \leftarrow \text{KeyGen}() \\ \text{ct} \leftarrow \text{Enc}(k, \textcolor{red}{m}_0) \end{array} \right\}$$

$$D_1 = \left\{ \text{ct} : \begin{array}{l} k \leftarrow \text{KeyGen}() \\ \text{ct} \leftarrow \text{Enc}(k, \textcolor{blue}{m}_1) \end{array} \right\}$$

# The Concrete Security Approach

- **$(2^{128}, 2^{-60})$ -computational security:** Attacks using at most  $2^{128}$  cycles cannot break security with probability better than  $2^{-40}$ .

# The Concrete Security Approach

- **$(2^{128}, 2^{-60})$ -computational security:** Attacks using at most  $2^{128}$  cycles cannot break security with probability better than  $2^{-40}$ .
  - This is the type of guarantee we want to give for crypto systems [deployed in the real-world](#).

# The Concrete Security Approach

- **$(2^{128}, 2^{-60})$ -computational security:** Attacks using at most  $2^{128}$  cycles cannot break security with probability better than  $2^{-40}$ .
  - This is the type of guarantee we want to give for crypto systems [deployed in the real-world](#).
  - **Limitation:**

# The Concrete Security Approach

- **$(2^{128}, 2^{-60})$ -computational security:** Attacks using at most  $2^{128}$  cycles cannot break security with probability better than  $2^{-40}$ .
  - This is the type of guarantee we want to give for crypto systems [deployed in the real-world](#).
- **Limitation:**
  - What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)

# The Concrete Security Approach

- **$(2^{128}, 2^{-60})$ -computational security:** Attacks using at most  $2^{128}$  cycles cannot break security with probability better than  $2^{-40}$ .
  - This is the type of guarantee we want to give for crypto systems [deployed in the real-world](#).
- **Limitation:**
  - What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)
  - How to account for future advances in computing power?

# The Concrete Security Approach

- **$(2^{128}, 2^{-60})$ -computational security:** Attacks using at most  $2^{128}$  cycles cannot break security with probability better than  $2^{-40}$ .
  - This is the type of guarantee we want to give for crypto systems [deployed in the real-world](#).
- **Limitation:**
  - What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)
  - How to account for future advances in computing power?
- We need a “knob” to tune the security level

# The Concrete Security Approach

- **$(2^{128}, 2^{-60})$ -computational security:** Attacks using at most  $2^{128}$  cycles cannot break security with probability better than  $2^{-40}$ .
  - This is the type of guarantee we want to give for crypto systems [deployed in the real-world](#).
- **Limitation:**
  - What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)
  - How to account for future advances in computing power?
- We need a “knob” to tune the security level
  - **Analogy:** We consider asymptotic growth in runtime for sorting algorithms; not their runtime on lists of 10,000 values i.e., we have a “knob” to tune the runtime for lists of different length.

# The Asymptotic Approach

- Security parameter  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.

# The Asymptotic Approach

- Security parameter  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.
  - Knob for tuning security level of the scheme.

# The Asymptotic Approach

- Security parameter  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.
  - Knob for tuning security level of the scheme.
  - **Intuition:** Length of the key.

# The Asymptotic Approach

- Security parameter  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.
  - Knob for tuning security level of the scheme.
  - **Intuition:** Length of the key.
  - Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

# The Asymptotic Approach

- Security parameter  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.
  - Knob for tuning security level of the scheme.
  - **Intuition:** Length of the key.
  - Set by honest parties when deploying the scheme in the real world. Also known to the adversary.
  - We will analyze the runtime of algorithms, the adversary's runtime, and the adversary's success probability in terms of the security parameter.

# The Asymptotic Approach

- **Security parameter**  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.
  - Knob for tuning security level of the scheme.
  - **Intuition:** Length of the key.
  - Set by honest parties when deploying the scheme in the real world. Also known to the adversary.
  - We will analyze the runtime of algorithms, the adversary's runtime, and the adversary's success probability in terms of the security parameter.
- **Illustrative Example:** Encryption requires  $10^6 \cdot \lambda$  CPU cycles. Adversary running for  $10^8 \cdot \lambda^4$  CPU cycles can succeed in breaking the scheme with probability at most  $2^{-\lambda/2}$ .

# The Asymptotic Approach

- Security parameter  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.
  - Knob for tuning security level of the scheme.
  - **Intuition:** Length of the key.
  - Set by honest parties when deploying the scheme in the real world. Also known to the adversary.
  - We will analyze the runtime of algorithms, the adversary's runtime, and the adversary's success probability in terms of the security parameter.
- **Illustrative Example:** Encryption requires  $10^6 \cdot \lambda$  CPU cycles. Adversary running for  $10^8 \cdot \lambda^4$  CPU cycles can succeed in breaking the scheme with probability at most  $2^{-\lambda/2}$ .
- **2GHz Computers with  $\lambda = 80$ :** Encryption takes 3.2 seconds. Adversary that runs for ~3 weeks can break security with probability at most  $2^{-40}$ .

# The Asymptotic Approach

- Security parameter  $\lambda \in \mathbb{N}$  used to parametrize algorithms and adversaries.
  - Knob for tuning security level of the scheme.
  - Intuition: Length of the key.
  - Set by honest parties when deploying the scheme in the real world. Also known to the adversary.
  - We will analyze the runtime of algorithms, the adversary's runtime, and the adversary's success probability in terms of the security parameter.
- Illustrative Example: Encryption requires  $10^6 \cdot \lambda$  CPU cycles. Adversary running for  $10^8 \cdot \lambda^4$  CPU cycles can succeed in breaking the scheme with probability at most  $2^{-\lambda/2}$ .
  - 2GHz Computers with  $\lambda = 80$ : Encryption takes 3.2 seconds. Adversary that runs for ~3 weeks can break security with probability at most  $2^{-40}$ .
  - 8GHz Computers with  $\lambda = 160$ : Encryption takes 3.2 seconds. Adversary that runs for ~13 weeks can break security with probability at most  $2^{-80}$ !

# The Asymptotic Approach

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.
  - **Closure property:** Repeating a poly-time algorithm polynomially many times is still poly-time.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.
  - **Closure property:** Repeating a poly-time algorithm polynomially many times is still poly-time.
- We will require security against **adversaries** that run in **polynomial-time** i.e., poly-time attacks are **feasible**.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.
  - **Closure property:** Repeating a poly-time algorithm polynomially many times is still poly-time.
- We will require security against **adversaries** that run in **polynomial-time** i.e., poly-time attacks are **feasible**.
  - The adversary can be **randomized**.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.
  - **Closure property:** Repeating a poly-time algorithm polynomially many times is still poly-time.
- We will require security against **adversaries** that run in **polynomial-time** i.e., poly-time attacks are **feasible**.
  - The adversary can be **randomized**.
  - The adversary is **non-uniform**.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.
  - **Closure property:** Repeating a poly-time algorithm polynomially many times is still poly-time.
- We will require security against **adversaries** that run in **polynomial-time** i.e., poly-time attacks are **feasible**.
  - The adversary can be **randomized**.
  - The adversary is **non-uniform**.
  - **Efficient Adversary:** A non-uniform PPT Turing machine.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.
  - **Closure property:** Repeating a poly-time algorithm polynomially many times is still poly-time.
- We will require security against **adversaries** that run in **polynomial-time** i.e., poly-time attacks are **feasible**.
  - The adversary can be **randomized**.
  - The adversary is **non-uniform**.
  - **Efficient Adversary:** A non-uniform PPT Turing machine.
- Cryptographic primitives will also be PPT algorithms.

# Efficient Adversaries

Any **efficient** adversary should succeed in attacking the scheme with at most negligible probability.

- **Efficient Algorithms:** Algorithms that have **polynomial runtime** in the security parameter  $\lambda$ .
  - All standard (classical) models of computation are **equivalent** up to polynomial time.
  - **Closure property:** Repeating a poly-time algorithm polynomially many times is still poly-time.
- We will require security against **adversaries** that run in **polynomial-time** i.e., poly-time attacks are **feasible**.
  - The adversary can be **randomized**.
  - The adversary is **non-uniform**.
  - **Efficient Adversary:** A non-uniform PPT Turing machine.
- Cryptographic primitives will also be PPT algorithms.
  - Primitives have a **fixed (small) polynomial runtime** and the adversary can run for **much longer (arbitrary polynomial runtime)**.

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability
  - Eve successfully attacks an encryption scheme with probability at most  $2^{-\lambda}$ .

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability
  - Eve successfully attacks an encryption scheme with probability at most  $2^{-\lambda}$ .
  - If she repeats the attack polynomially many times (say  $\lambda^c$ ), the probability that at least one of them is successful is at least

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability
  - Eve successfully attacks an encryption scheme with probability at most  $2^{-\lambda}$ .
  - If she repeats the attack polynomially many times (say  $\lambda^c$ ), the probability that at least one of them is successful is at least  $\lambda^c \cdot 2^{-\lambda}$ .

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability
  - Eve successfully attacks an encryption scheme with probability at most  $2^{-\lambda}$ .
  - If she repeats the attack polynomially many times (say  $\lambda^c$ ), the probability that at least one of them is successful is at least  $\lambda^c \cdot 2^{-\lambda}$ .
  - This is still **low for sufficiently large  $\lambda$** ; no polynomial can “rescue”  $2^{-\lambda}$  from approaching zero.

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability
  - Eve successfully attacks an encryption scheme with probability at most  $2^{-\lambda}$ .
  - If she repeats the attack polynomially many times (say  $\lambda^c$ ), the probability that at least one of them is successful is at least  $\lambda^c \cdot 2^{-\lambda}$ .
  - This is still **low for sufficiently large  $\lambda$** ; no polynomial can “rescue”  $2^{-\lambda}$  from approaching zero.
  - Our definition of “negligible” probability should be **robust to such amplification strategies** by efficient adversaries.

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability
  - Eve successfully attacks an encryption scheme with probability at most  $2^{-\lambda}$ .
  - If she repeats the attack polynomially many times (say  $\lambda^c$ ), the probability that at least one of them is successful is at least  $\lambda^c \cdot 2^{-\lambda}$ .
  - This is still **low for sufficiently large  $\lambda$** ; no polynomial can “rescue”  $2^{-\lambda}$  from approaching zero.
  - Our definition of “negligible” probability should be **robust to such amplification strategies** by efficient adversaries.
- **Negligible Function:** A function  $\nu(\cdot)$  is **negligible** if for every polynomial  $p(\cdot)$ , we have  $\lim_{\lambda \rightarrow \infty} p(\lambda) \cdot \nu(\lambda) = 0$ .

# Negligible Functions

Any efficient adversary should succeed in attacking the scheme with at most **negligible** probability.

- How to define “negligible” probability
  - Eve successfully attacks an encryption scheme with probability at most  $2^{-\lambda}$ .
  - If she repeats the attack polynomially many times (say  $\lambda^c$ ), the probability that at least one of them is successful is at least  $\lambda^c \cdot 2^{-\lambda}$ .
  - This is still **low for sufficiently large  $\lambda$** ; no polynomial can “rescue”  $2^{-\lambda}$  from approaching zero.
  - Our definition of “negligible” probability should be **robust to such amplification strategies** by efficient adversaries.
- **Negligible Function:** A function  $\nu(\cdot)$  is **negligible** if for every polynomial  $p(\cdot)$ , we have  $\lim_{\lambda \rightarrow \infty} p(\lambda) \cdot \nu(\lambda) = 0$ .

For poly-time algorithms, events that occur with negligible probability look like they never occur.

# Negligible Functions

- Alternatively, a negligible function decays faster than all inverse polynomial functions.

# Negligible Functions

- Alternatively, a negligible function decays faster than all inverse polynomial functions.
- That is, for all  $c > 0$ ,  $\nu(\lambda) = O(\lambda^{-c})$ .

# Negligible Functions

- Alternatively, a negligible function decays faster than all inverse polynomial functions.
- That is, for all  $c > 0$ ,  $\nu(\lambda) = O(\lambda^{-c})$ .

## Negligible Function

A function  $\nu : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$  is negligible if  $\forall c \in \mathbb{Z}_{\geq 0}, \exists \Lambda \in \mathbb{N}$  such that  $\forall \lambda \in \mathbb{N}$  and  $\lambda > \Lambda$ , it holds that

$$\nu(\lambda) \leq \frac{1}{\lambda^c}.$$

# Negligible Functions

- Alternatively, a negligible function decays faster than all inverse polynomial functions.
- That is, for all  $c > 0$ ,  $\nu(\lambda) = O(\lambda^{-c})$ .

## Negligible Function

A function  $\nu : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$  is negligible if  $\forall c \in \mathbb{Z}_{\geq 0}, \exists \Lambda \in \mathbb{N}$  such that  $\forall \lambda \in \mathbb{N}$  and  $\lambda > \Lambda$ , it holds that

$$\nu(\lambda) \leq \frac{1}{\lambda^c}.$$

**Examples:**  $\nu(\lambda) = 2^{-\lambda}$

# Negligible Functions

- Alternatively, a negligible function decays faster than all inverse polynomial functions.
- That is, for all  $c > 0$ ,  $\nu(\lambda) = O(\lambda^{-c})$ .

## Negligible Function

A function  $\nu : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0}$  is negligible if  $\forall c \in \mathbb{Z}_{\geq 0}, \exists \Lambda \in \mathbb{N}$  such that  $\forall \lambda \in \mathbb{N}$  and  $\lambda > \Lambda$ , it holds that

$$\nu(\lambda) \leq \frac{1}{\lambda^c}.$$

**Examples:**  $\nu(\lambda) = 2^{-\lambda}$        $\nu(\lambda) = \lambda^{-\log \lambda}$

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $f$  and  $g$  are negligible
  - $\exists \Lambda_f$  such that  $\forall \lambda > \Lambda_f, f(\lambda) \leq \frac{1}{\lambda^{c+1}}$  and  $\exists \Lambda_g$  such that  $\forall \lambda > \Lambda_g, g(\lambda) \leq \frac{1}{\lambda^{c+1}}$ .

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $f$  and  $g$  are negligible
  - $\exists \Lambda_f$  such that  $\forall \lambda > \Lambda_f, f(\lambda) \leq \frac{1}{\lambda^{c+1}}$  and  $\exists \Lambda_g$  such that  $\forall \lambda > \Lambda_g, g(\lambda) \leq \frac{1}{\lambda^{c+1}}$ .
  - Let  $\Lambda = \max(\Lambda_f, \Lambda_g, 2)$ . For all  $\lambda > \Lambda$  we have

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $f$  and  $g$  are negligible
  - $\exists \Lambda_f$  such that  $\forall \lambda > \Lambda_f, f(\lambda) \leq \frac{1}{\lambda^{c+1}}$  and  $\exists \Lambda_g$  such that  $\forall \lambda > \Lambda_g, g(\lambda) \leq \frac{1}{\lambda^{c+1}}$ .
  - Let  $\Lambda = \max(\Lambda_f, \Lambda_g, 2)$ . For all  $\lambda > \Lambda$  we have

$$f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^{c+1}} + \frac{1}{\lambda^{c+1}}$$

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $f$  and  $g$  are negligible
  - $\exists \Lambda_f$  such that  $\forall \lambda > \Lambda_f, f(\lambda) \leq \frac{1}{\lambda^{c+1}}$  and  $\exists \Lambda_g$  such that  $\forall \lambda > \Lambda_g, g(\lambda) \leq \frac{1}{\lambda^{c+1}}$ .
  - Let  $\Lambda = \max(\Lambda_f, \Lambda_g, 2)$ . For all  $\lambda > \Lambda$  we have

$$f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^{c+1}} + \frac{1}{\lambda^{c+1}} \leq \frac{2}{\lambda^{c+1}}$$

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $f$  and  $g$  are negligible
  - $\exists \Lambda_f$  such that  $\forall \lambda > \Lambda_f, f(\lambda) \leq \frac{1}{\lambda^{c+1}}$  and  $\exists \Lambda_g$  such that  $\forall \lambda > \Lambda_g, g(\lambda) \leq \frac{1}{\lambda^{c+1}}$ .
  - Let  $\Lambda = \max(\Lambda_f, \Lambda_g, 2)$ . For all  $\lambda > \Lambda$  we have

$$f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^{c+1}} + \frac{1}{\lambda^{c+1}} \leq \frac{2}{\lambda^{c+1}} \leq \frac{\lambda}{\lambda^{c+1}}$$

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $f$  and  $g$  are negligible
  - $\exists \Lambda_f$  such that  $\forall \lambda > \Lambda_f, f(\lambda) \leq \frac{1}{\lambda^{c+1}}$  and  $\exists \Lambda_g$  such that  $\forall \lambda > \Lambda_g, g(\lambda) \leq \frac{1}{\lambda^{c+1}}$ .
  - Let  $\Lambda = \max(\Lambda_f, \Lambda_g, 2)$ . For all  $\lambda > \Lambda$  we have

$$f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^{c+1}} + \frac{1}{\lambda^{c+1}} \leq \frac{2}{\lambda^{c+1}} \leq \frac{\lambda}{\lambda^{c+1}}$$

$\lambda \geq \Lambda \geq 2$

# Negligible Functions: Properties

**Lemma:** If  $f(\lambda)$  and  $g(\lambda)$  are negligible functions, then  $f(\lambda) + g(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $f$  and  $g$  are negligible
  - $\exists \Lambda_f$  such that  $\forall \lambda > \Lambda_f, f(\lambda) \leq \frac{1}{\lambda^{c+1}}$  and  $\exists \Lambda_g$  such that  $\forall \lambda > \Lambda_g, g(\lambda) \leq \frac{1}{\lambda^{c+1}}$ .
  - Let  $\Lambda = \max(\Lambda_f, \Lambda_g, 2)$ . For all  $\lambda > \Lambda$  we have

$$f(\lambda) + g(\lambda) \leq \frac{1}{\lambda^{c+1}} + \frac{1}{\lambda^{c+1}} \leq \frac{2}{\lambda^{c+1}} \leq \frac{\lambda}{\lambda^{c+1}} \leq \frac{1}{\lambda^c}.$$

$\lambda \geq \Lambda \geq 2$

# Negligible Functions: Properties

**Lemma:** If  $\nu(\lambda)$  be a negligible function and  $p(\lambda)$  be a polynomial such that  $p(\lambda) \geq 0$  for all  $\lambda \geq 0$ . Then  $\nu(\lambda) \cdot p(\lambda)$  is also negligible.

# Negligible Functions: Properties

**Lemma:** If  $\nu(\lambda)$  be a negligible function and  $p(\lambda)$  be a polynomial such that  $p(\lambda) \geq 0$  for all  $\lambda \geq 0$ . Then  $\nu(\lambda) \cdot p(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, \nu(\lambda) \cdot p(\lambda) \leq \frac{1}{\lambda^c}$ .

# Negligible Functions: Properties

**Lemma:** If  $\nu(\lambda)$  be a negligible function and  $p(\lambda)$  be a polynomial such that  $p(\lambda) \geq 0$  for all  $\lambda \geq 0$ . Then  $\nu(\lambda) \cdot p(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, \nu(\lambda) \cdot p(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .

# Negligible Functions: Properties

**Lemma:** If  $\nu(\lambda)$  be a negligible function and  $p(\lambda)$  be a polynomial such that  $p(\lambda) \geq 0$  for all  $\lambda \geq 0$ .

Then  $\nu(\lambda) \cdot p(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, \nu(\lambda) \cdot p(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $p$  is a polynomial,  $\exists \Lambda_p, c_p$  such that  $\forall \lambda > \Lambda_p, p(\lambda) \leq \lambda^{c_p}$ .

# Negligible Functions: Properties

**Lemma:** If  $\nu(\lambda)$  be a negligible function and  $p(\lambda)$  be a polynomial such that  $p(\lambda) \geq 0$  for all  $\lambda \geq 0$ . Then  $\nu(\lambda) \cdot p(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, \nu(\lambda) \cdot p(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $p$  is a polynomial,  $\exists \Lambda_p, c_p$  such that  $\forall \lambda > \Lambda_p, p(\lambda) \leq \lambda^{c_p}$ .
- Since  $\nu(\lambda)$  is negligible,  $\exists \Lambda_\nu$  such that  $\forall \lambda > \Lambda_\nu, \nu(\lambda) \leq \frac{1}{\lambda^{c+c_p}}$ .

# Negligible Functions: Properties

**Lemma:** If  $\nu(\lambda)$  be a negligible function and  $p(\lambda)$  be a polynomial such that  $p(\lambda) \geq 0$  for all  $\lambda \geq 0$ .

Then  $\nu(\lambda) \cdot p(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, \nu(\lambda) \cdot p(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $p$  is a polynomial,  $\exists \Lambda_p, c_p$  such that  $\forall \lambda > \Lambda_p, p(\lambda) \leq \lambda^{c_p}$ .
- Since  $\nu(\lambda)$  is negligible,  $\exists \Lambda_\nu$  such that  $\forall \lambda > \Lambda_\nu, \nu(\lambda) \leq \frac{1}{\lambda^{c+c_p}}$ .
- Let  $\Lambda = \max(\Lambda_p, \Lambda_\nu)$ . For all  $\lambda > \Lambda$  we have

# Negligible Functions: Properties

**Lemma:** If  $\nu(\lambda)$  be a negligible function and  $p(\lambda)$  be a polynomial such that  $p(\lambda) \geq 0$  for all  $\lambda \geq 0$ .

Then  $\nu(\lambda) \cdot p(\lambda)$  is also negligible.

**Proof:**

- We want to show that  $\forall c, \exists \Lambda$ , such that  $\forall \lambda > \Lambda, \nu(\lambda) \cdot p(\lambda) \leq \frac{1}{\lambda^c}$ .
- Fix an arbitrary  $c$ .
- Since  $p$  is a polynomial,  $\exists \Lambda_p, c_p$  such that  $\forall \lambda > \Lambda_p, p(\lambda) \leq \lambda^{c_p}$ .
- Since  $\nu(\lambda)$  is negligible,  $\exists \Lambda_\nu$  such that  $\forall \lambda > \Lambda_\nu, \nu(\lambda) \leq \frac{1}{\lambda^{c+c_p}}$ .
- Let  $\Lambda = \max(\Lambda_p, \Lambda_\nu)$ . For all  $\lambda > \Lambda$  we have

$$\nu(\lambda) \cdot p(\lambda) \leq \frac{1}{\lambda^{c+c_p}} \cdot \lambda^{c_p} \leq \frac{1}{\lambda^c}.$$

# Ensembles

Our goal is to give an asymptotic definition of computational indistinguishability.

## $(T, \epsilon)$ -Computational Indistinguishability

Two distributions  $X$  and  $Y$  are  $(T, \epsilon)$ -computationally indistinguishable if for all adversaries  $A$  that run in time at most  $T$ ,

$$\left| \Pr_{x \leftarrow X} [A(x) = 1] - \Pr_{y \leftarrow Y} [A(y) = 1] \right| \leq \epsilon,$$

where the probability is over sampling from the distributions  $X$  and  $Y$ , and the randomness of  $A$ .

- It is not very meaningful to talk about individual distributions when we want to capture asymptotic behavior.
- For example, using longer keys leads to distributions over longer bit strings.

# Ensembles

## Probability Ensemble

Let  $\mathcal{I}$  be a countable index set. An ensemble indexed by  $\mathcal{I}$  is a sequence of random variables  $\{X_i\}_{i \in \mathcal{I}}$ .

- In most cases,  $\mathcal{I}$  will be the set of natural numbers.

# Ensembles

## Probability Ensemble

Let  $\mathcal{I}$  be a countable index set. An ensemble indexed by  $\mathcal{I}$  is a sequence of random variables  $\{X_i\}_{i \in \mathcal{I}}$ .

- In most cases,  $\mathcal{I}$  will be the set of natural numbers.
- An ensemble is simply sequence of random variables  $X_1, X_2, \dots$

# Ensembles

## Probability Ensemble

Let  $\mathcal{I}$  be a countable index set. An ensemble indexed by  $\mathcal{I}$  is a sequence of random variables  $\{X_i\}_{i \in \mathcal{I}}$ .

- In most cases,  $\mathcal{I}$  will be the set of natural numbers.
- An ensemble is simply sequence of random variables  $X_1, X_2, \dots$ 
  - Allows us to focus on **asymptotic behavior** of distributions e.g., what happens when the key is a **sufficiently long**, uniformly random bit string.

# Computational Indistinguishability

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if  
for all  $\lambda \in \mathbb{N}$

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if  
for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right|$$

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right|$$

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right|$$

Denotes string of  $\lambda$  ones.  
Ensures  $A$  is polynomial in  $\lambda$ .

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , there exists a **negligible function**  $\nu(\lambda)$  such that for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right| \leq \nu(\lambda),$$

Denotes string of  $\lambda$  ones.  
Ensures  $A$  is polynomial in  $\lambda$ .

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , there exists a **negligible function**  $\nu(\lambda)$  such that for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right| \leq \nu(\lambda),$$

where the probability is over sampling from the distributions  $X_\lambda$  and  $Y_\lambda$ , and the randomness of  $A$ .

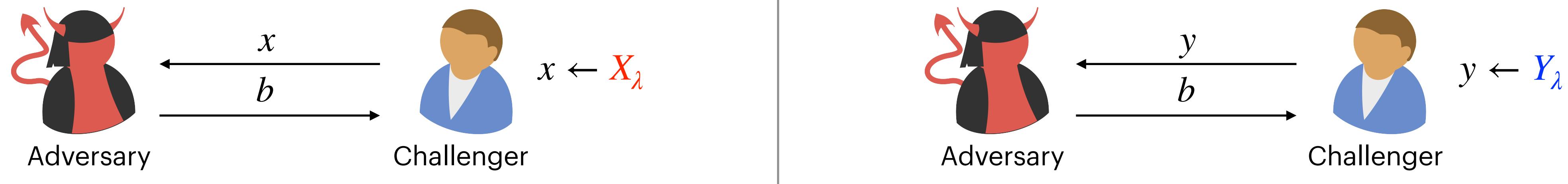
# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , there exists a **negligible function**  $\nu(\lambda)$  such that for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right| \leq \nu(\lambda),$$

where the probability is over sampling from the distributions  $X_\lambda$  and  $Y_\lambda$ , and the randomness of  $A$ .



No efficient test can distinguish between the ensembles  $X$  and  $Y$ .

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , there exists a **negligible function**  $\nu(\lambda)$  such that for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right| \leq \nu(\lambda),$$

where the probability is over sampling from the distributions  $X_\lambda$  and  $Y_\lambda$ , and the randomness of  $A$ .

- We use  $X \stackrel{c}{\approx} Y$  as a shorthand to denote that the two ensembles are computationally indistinguishable.

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , there exists a **negligible function**  $\nu(\lambda)$  such that for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right| \leq \nu(\lambda),$$

where the probability is over sampling from the distributions  $X_\lambda$  and  $Y_\lambda$ , and the randomness of  $A$ .

- We use  $X \stackrel{c}{\approx} Y$  as a shorthand to denote that the two ensembles are computationally indistinguishable.
- The value

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right|$$

is called the adversary's **advantage** in distinguishing between  $X$  and  $Y$ .

# Computational Indistinguishability

## Computational Indistinguishability

Two probability ensembles  $X = \{X_i\}_{i \in \mathbb{N}}$  and  $Y = \{Y_i\}_{i \in \mathbb{N}}$  are computationally indistinguishable if every **non-uniform PPT adversary**  $A$ , there exists a **negligible function**  $\nu(\lambda)$  such that for all  $\lambda \in \mathbb{N}$

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right| \leq \nu(\lambda),$$

where the probability is over sampling from the distributions  $X_\lambda$  and  $Y_\lambda$ , and the randomness of  $A$ .

- We use  $X \stackrel{c}{\approx} Y$  as a shorthand to denote that the two ensembles are computationally indistinguishable.
- The value

$$\left| \Pr_{x \leftarrow X_\lambda} [A(1^\lambda, x) = 1] - \Pr_{y \leftarrow Y_\lambda} [A(1^\lambda, y) = 1] \right|$$

is called the adversary's **advantage** in distinguishing between  $X$  and  $Y$ .

- $X \stackrel{c}{\approx} Y$  if all non-uniform PPT adversaries have negligible advantage in distinguishing between the two ensembles.