Computational Security

601.442/642 Modern Cryptography

29th January 2026



Announcement

e Homework 1 due today.

« Homework 2 will be out today and will be due next Thursday (5th Feb).



Recap: Limitations of Perfect Security

Theorem (Shannon): Any perfectly secure encryption scheme with key space & and message space . satisfies

| Z| > | A .

Perfect security is too strong. Can we weaken the definition?
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Recap: What Makes Perfect Security So Strong?

o Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

o Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability €.

Probability (¢) Event

2-10 Full house in 5-card poker

220 Royal flush in 5-card poker

228 Winning this week’s Powerball jackpot

240 Royal flush in two consecutive poker games
260 Next meteorite that hits Earth lands on this slide

An attack that succeeds with small probability ( & 2_60) IS not a practical threat.



Recap: What Makes Perfect Security So Strong?

o Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

o Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability €.

« Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.



Recap: What Makes Perfect Security So Strong?

o Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

o Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability €.

« Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

e Perfect Security: Even an attacker that brute forces the key does not learn anything about the plaintext.



Recap: What Makes Perfect Security So Strong?

o Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

o Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability €.

« Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

e Perfect Security: Even an attacker that brute forces the key does not learn anything about the plaintext.

. Brute forcing A-bit keys requires O(2%) computations.



Recap: What Makes Perfect Security So Strong?

o Perfect Security: Encryptions of any two messages are identically distributed i.e., the adversary cannot distinguish
between the ciphertexts.

o Statistical Security: The adversary can distinguish between encryptions of two different messages with a small
probability €.

« Shannon’s theorem can be extended to show that statistically secure encryption schemes still require long keys.

e Perfect Security: Even an attacker that brute forces the key does not learn anything about the plaintext.

. Brute forcing A-bit keys requires O(2%) computations.

e Are brute force attacks feasible?



Cost of Computation

One way to measure the cost of computation is through the monetary value required to carry it out.

CPU Cycles
150
55
65
75
192
199

2128

Approx. Cost
$3.50
$100

$130,000
$130 million
$20 trillion

$2 quadrillion

777

Reference

Cup of coffee

Tickets to Portland Trailblazers game

Median home price in Oshkosh, WI

Average budget of one of the Harry Potter movies
GDP of the United States

All human economic activity since 300,000 BC

A billion human civilizations’ worth of effort
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to complete 2!%® computations.



Cost of Computation

How large is 2°{128} computations?

o 7

Even if every atom in the observable universe (~ 10*’) were a computer performing 10° computations per second, it would still take billions of years

to complete 2!?® computations.

An attack that requires a large number of computations ( & 2128y is not a practical threat.
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Two distributions X and Y are (7, €)-computationally indistinguishable if for all adversaries A that run in
time at most 7,

Prox[A@ =1] —Pry [A0) = 1] | <.

where the probability is over sampling from the distributions X and Y, and the randomness of A.

| ® .
-

Adversary Challenger Adversary Challenger

<

S

Adversary cannot tell X and Y apart except with small probability.
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The Concrete Security Approach

A scheme is (7, €)-secure if any adversary running for time at most 7 succeeds in
breaking the scheme with probability at most €.

time at most 7,

(I, €)-Computational Indistinguishability

Two distributions X and Y are (7, €)-computationally indistinguishable if for all adversaries A that run in

Prox[A@ =1] —Pry [A0) = 1] | <.

where the probability is over sampling from the distributions X and Y, and the randomness of A.

(1, €)-Computational Security

(T, €)-computationally indistinguishable:

k «— KeyGen
Doz{Ct' - Y () } D1={Ct

" ct « Enc(k, m,)

An encryption scheme is (7, €)-computationally secure if for all m,, m; € 4, the following distributions are

k< KeyGen()
" ct « Enc(k, m,)
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The Concrete Security Approach

. (2128, 2_60)-computational security: Attacks using at most 128 cycles cannot break security with probability better
than 274V,

e This is the type of guarantee we want to give for crypto systems deployed in the real-world.

e Limitation:
« What type of computing power do we assume the adversary uses? (e.g., GPUs, super-computers)
e How to account for future advances in computing power?

« We need a “knob” to tune the security level

e« Analogy: We consider asymptotic growth in runtime for sorting algorithms; not their runtime on lists of 10,000
values i.e., we have a “knob” to tune the runtime for lists of different length.
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The Asymptotic Approach

e Security parameter A € N used to parametrize algorithms and adversaries.
o Knob for tuning security level of the scheme.
« Intuition: Length of the key.
« Set by honest parties when deploying the scheme in the real world. Also known to the adversary.

« We will analyze the runtime of algorithms, the adversary’s runtime, and the adversary’s success probability in terms of
the security parameter.

o lllustrative Example: Encryption requires 10° - 1 CPU cycles. Adversary running for 10° - 1* CPU cycles can succeed in
breaking the scheme with probability at most 22,

e 2GHz Computers with 4 = 80: Encryption takes 3.2 seconds. Adversary that runs for ~3 weeks can break security with
orobability at most 2.

e 8GHz Computers with A = 160: Encryption takes 3.2 seconds. Adversary that runs for ~13 weeks can break security
with probability at most 27501
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Efficient Adversaries

Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

o Efficient Algorithms: Algorithms that have polynomial runtime in the security parameter A.
e All standard (classical) models of computation are equivalent up to polynomial time.
e Closure property: Repeating a poly-time algorithm polynomially many times is still poly-time.
« We will require security against adversaries that run in polynomial-time i.e., poly-time attacks are feasible.
« The adversary can be randomized.
e« The adversary is non-uniform.
o Efficient Adversary: A non-uniform PPT Turing machine.
o Cryptographic primitives will also be PPT algorithms.

e Primitives have a fixed (small) polynomial runtime and the adversary can run for much longer (arbitrary polynomial runtime).
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Any efficient adversary should succeed in attacking the scheme with at most negligible probability.

« How to define “negligible” probability
« Eve successfully attacks an encryption scheme with probability at most 274,

« If she repeats the attack polynomially many times (say A1), the probability that at least one of them is successful is at
least 1¢- 274

. This is still low for sufficiently large A; no polynomial can “rescue” 2~* from approaching zero.

o Our definition of “negligible” probability should be robust to such amplification strategies by efficient adversaries.

Negligible Function: A function v( - ) is negligible if for every polynomial p( - ), we have Iim p(4) - v(4) = 0.

A— 0

For poly-time algorithms, events that occur with negligible probability look like they never occuir.
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Negligible Functions

o Alternatively, a negligible function decays faster than all inverse polynomial functions.

« Thatis, forallc > 0, v(1) = O(47°).

Negligible Function

A functionv : N — R, is negligible if Vc € Z.;,, 4A € Nsuch that VA € Nand 4 > A, it holds that

1
1) < —.
U < —

Examples: v(d) =274 v(1) = )log



Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:

1
. We want to show that V¢, dA, suchthat VA > A, f(1)+ g(4) < s




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:

1
. We want to show that V¢, dA, suchthat VA > A, f(1)+ g(4) < s

« Fix an arbitrary c.




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:
1
. We want to show that V¢, dA, suchthat VA > A, f(1)+ g(4) < s
« Fix an arbitrary c.
« Since fand g are negligible
. dAs suchthat VA > Ay f(4) < and A, suchthat VA > A, g(4) <

ﬂc+1

ﬂc+1°




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:
1
. We want to show that V¢, dA, suchthat VA > A, f(1)+ g(4) < s
« Fix an arbitrary c.
« Since fand g are negligible
. dAs suchthat VA > Ay f(4) < and A, suchthat VA > A, g(4) <

Actl e+l '

o Let A = max(Ay, A, 2). Forall 4 > A we have




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:
1
. We want to show that V¢, dA, suchthat VA > A, f(1)+ g(4) < s
« Fix an arbitrary c.
« Since fand g are negligible
. dAs suchthat VA > Ay f(4) < and A, suchthat VA > A, g(4) <

Actl e+l '

o Let A = max(Ay, A, 2). Forall 4 > A we have
1 1

JA)+gd) <

/10+1 i /10+1




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:
1
. We want to show that V¢, dA, suchthat VA > A, f(1)+ g(4) < s
« Fix an arbitrary c.
« Since fand g are negligible
. dAs suchthat VA > Ay f(4) < and A, suchthat VA > A, g(4) <

Actl e+l '

o Let A = max(Ay, A, 2). Forall 4 > A we have
1 1 2

JA)+gd) <

/10+1 i /10+1 /1c+1




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:
1
. We want to show that V¢, dA, suchthat VA > A, f(1)+ g(4) < s
« Fix an arbitrary c.
« Since fand g are negligible
. dAs suchthat VA > Ay f(4) < and A, suchthat VA > A, g(4) <

Actl e+l '

o Let A = max(Ay, A, 2). Forall 4 > A we have

1 1 2 A

/10+1 T /10+1 /1c+1 — /‘tc+1

JA)+gd) <




Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:
. We want to show that V¢, dA, suchthat VA > A, f(1) + g(1) < %
« Fix an arbitrary c.
 Since fand g are negligible
. dAs suchthat VA > Ay f(4) < Py and A, suchthat VA > A, g(4) < Py
o Let A = max(Ay, A, 2). Forall 4 > A we have
JH+8) < ,1c1+1 o ,1c1+1 = ,1c2+1 = ,1:1+1

A>N2>2



Negligible Functions: Properties

Lemma: If /(1) and g(4) are negligible functions, then f(1) + g(4) is also negligible.

Proof:
. We want to show that V¢, dA, suchthat VA > A, f(1) + g(1) < %
« Fix an arbitrary c.
 Since fand g are negligible
. dAs suchthat VA > Ay f(4) < Py and A, suchthat VA > A, g(4) < Py
o Let A = max(Ay, A, 2). Forall 4 > A we have
JH+8) < ,1c1+1 o ,1c1+1 = ,1c2+1 = ,1:1+1 = %




Negligible Functions: Properties

Lemma: If (1) be a negligible function and p(4) be a polynomial such that p(4) > O for all 4 > 0.
Then v(A) - p(A) is also negligible.




Negligible Functions: Properties

Lemma: If (1) be a negligible function and p(4) be a polynomial such that p(4) > O for all 4 > 0.
Then v(A) - p(A) is also negligible.

Proof:

|
. We want to show that V¢, dA, suchthat VA > A, v(4) - p(4) < —.

/10




Negligible Functions: Properties

Lemma: If (1) be a negligible function and p(4) be a polynomial such that p(4) > O for all 4 > 0.
Then v(A) - p(A) is also negligible.

Proof:

|
. We want to show that V¢, dA, suchthat VA > A, v(4) - p(4) < —.

/10

e Fix an arbitrary c.




Negligible Functions: Properties

Lemma: If (1) be a negligible function and p(4) be a polynomial such that p(4) > O for all 4 > 0.
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Ensembles

Our goal is to give an asymptotic definition of computational indistinguishability.

(1, €)-Computational Indistinguishability

Two distributions X and Y are (7, €)-computationally indistinguishable if for all adversaries A that run in
time at most 7,

Prcx[A®) = 1] = Pry [A0) = 1]| <,

where the probability is over sampling from the distributions X and Y, and the randomness of A.

e |tis not very meaningful to talk about individual distributions when we want to capture asymptotic behavior.

« For example, using longer keys leads to distributions over longer bit strings.
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Probability Ensemble

Let .7 be a countable index set. An ensemble indexed by .¥ is a sequence of random variables {Xi}iej’

e In most cases, £ will be the set of natural numbers.

« An ensemble is simply sequence of random variables X, X,, ...

o Allows us to focus on asymptotic behavior of distributions e.g., what happens when the key is a sufficiently long,
uniformly random bit string.
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every non-uniform PPT adversary A, there exists a negligible function v(A) such that forall A € N

Procy, [A(1%0) = 1] = Prycy, [A0% ) = 1] | <00,

where the probability is over sampling from the distributions X, and Y, and the randomness of A.

< 2 |ﬂ| x <« X, ) |ﬂ' y « Y,

Adversary Challenger Adversary Challenger

<

S

No efficient test can distinguish between the ensembles X and Y.
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Two probability ensembles X = {X;}..y and Y = {Y.},.n are computationally indistinguishable if
every non-uniform PPT adversary A, there exists a negligible function v(A) such that forall A € N

Procy, [A(1%0) = 1] = Prycy, [A0% ) = 1] | <00,

where the probability is over sampling from the distributions X, and Y, and the randomness of A.

C ° . ° . .
« Weuse X =~ Y as ashorthand to denote that the two ensembles are computationally indistinguishable.

« Thevalue
Precy, [A(1% %) = 1] = Pryy, [40% ) = 1]

is called the adversary’s advantage in distinguishing between X and Y.

. X ~ Yif all non-uniform PPT adversaries have negligible advantage in distinguishing between the two ensembles.



