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Abstract. We study secure multi-party computation (MPC) among
small number of parties, in partially synchronous and completely asyn-
chronous settings. Prior works have only considered the synchronous set-
ting. The setting considered in this paper is that of n = 4 parties with
t = 1 corruption. In this setting, we present the following results.
• A perfectly-secure protocol in the partially synchronous setting with 2

synchronous rounds. Our protocol simultaneously enjoys the proper-
ties of optimal resilience and optimal number of synchronous rounds
and it partially answers one of the open problems of Patra and Ravi
(IEEE Transactions on Information Theory, 2018).

• A cryptographically-secure protocol in the partially synchronous set-
ting with 1 initial synchronous round. Our protocol has optimal re-
silience and optimal number of synchronous rounds. The previous
such protocol (Beerliová, Hirt and Nielsen, PODC 2010) requires
expensive public-key machinery and associated zero-knowledge (ZK)
proofs and it was left as an open problem to reduce the cryptographic
setups of their protocol. Our protocol makes inroads into solving this
problem, where we deploy only standard symmetric-key gadgets and
completely shun ZK proofs. Our protocol also improves upon the
protocol of Beerliová et al, in terms of communication complexity.

• A cryptographically-secure protocol in the asynchronous setting, rely-
ing only on symmetric-key primitives. It improves upon the previ-
ous best protocols (Choudhury et al, ICDCN 2015 and Cohen, PKC
2016), which deploy expensive public-key tools and ZK protocols.
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1 Introduction

A central concept in cryptography introduced by Yao [58] is that of secure multi-
party computation (MPC), which states that any distributed computation among
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mutually-distrusting participants in the presence of a centralised trusted entity
can also be performed in the absence of any such trusted entity by running a
protocol among the participants. A MPC protocol allows a set of n mutually-
distrusting parties to perform a joint computation on their inputs while keeping
it as private as possible. The MPC problem has been widely studied in various
flavours [36,9,53] and several interesting results have been obtained regarding the
theoretical possibility and feasibility of secure MPC (see [44] and its references).

The last decade has seen a surge in developing MPC protocols with a small
number of parties for many practical tasks such as privacy-preserving machine
learning [52,24,54,16,57,23,47,49], data analysis for financial applications [12],
sugar beet auctions [13], etc. The advantages of MPC protocols for a small
population are their simplicity and practical efficiency [2,1,34,25,14]. Also, most
interesting use cases of MPC involve only a small number of parties. Several well-
known MPC frameworks such as VIFF [32] and Sharemind [11] are targeted only
for a small number of parties. MPC with a small number of parties also helps
with MPC for a large population via server-aided computation, where the large
population outsource their data and computation to a small number of servers.

The world of MPC over small population can be divided into two categories.
The first group of protocols offer high throughput and require very low commu-
nication complexity [2,1,34,25,14,24,41]. Based on secret-sharing mechanisms,
these protocols perform very simple computations over some algebraic struc-
ture (typically a ring or a field). The downside is that the number of rounds
of interaction among the parties required in the protocol is proportional to the
multiplicative depth of the circuit representing the underlying function to be
computed. Consequently, the number of rounds is not a constant and hence
these protocols are suited for low-latency networks, where small bandwidth is
the primary concern. The second class of protocols, based on garbled circuits,
require a constant number of rounds of interaction [48,22,18,17] and are suited
for high-latency networks. The downside of these protocols is that they involve a
huge amount of computation and parties need to perform a lot of symmetric-key
cryptographic operations. In this work, we focus on high-throughput protocols.

Synchronous vs Asynchronous Networks. All prior works for MPC over
small population are in the synchronous setting, where the parties are synchro-
nized by a global clock and there exists a publicly known upper bound on the
message delays over the communication channels among the parties. That is,
each party knows beforehand how long it has to wait for an expected message,
and if the message does not arrive within that time-bound, then it can conclude
that the sender is corrupt. Unfortunately, it is impossible to ensure such strict
time-outs in real-world networks like the Internet, where the communication
channels may have arbitrary delays. Such networks are more appropriately cap-
tured by the asynchronous communication setting [8,20], where there does not
exist any global clock and the messages of the parties can be arbitrarily delayed.
The only guarantee in this model is that any message sent by a party is even-
tually delivered and is not “stuck” in the network forever. Apart from a better
modelling of real-world networks, asynchronous protocols have the advantage of



running at the actual speed of the underlying network. More specifically, for a
synchronous protocol, the participants have to pessimistically set the global de-
lay ∆ to a large value to ensure that the messages sent by every honest party at
the beginning of each round reaches their destination within the ∆ time frame.
But if the actual delay δ is such that δ << ∆, then the protocol fails to take
advantage of the faster network and its running time will be proportional to ∆.

The biggest challenge in designing a completely asynchronous protocol is
that a slow sender cannot be distinguished from a corrupt sender, i.e., if a party
does not receive an expected message, then unlike the synchronous setting, it
cannot decide whether the sender is corrupt (and has not sent the message)
or slow (a sent message has been delayed). Consequently, if t is the threshold
on the number of corruptions in the system, then in an asynchronous protocol,
a party can afford to receive messages from at most n − t parties and has to
proceed to the next step, to avoid endless waiting. However, in this process, the
communication from up to t potentially honest parties may have to be ignored.
Due to this phenomena, synchronous protocols fail completely when executed in
a completely asynchronous environment, as the security of synchronous protocols
depend upon the fact that the messages of all the honest parties are considered.

The theoretical possibility and feasibility of asynchronous MPC (AMPC)
protocols have been studied in the past [8,10,5,50,28]. However, compared to
their synchronous counterparts, AMPC protocols perform poorly in terms of
resilience (namely the number of faults t which can be tolerated) and communi-
cation complexity (the total number of bits communicated by the honest parties).
A midway approach to improve resilience and communication complexity is to
design hybrid MPC (HMPC) protocols in a hybrid network setting [5,7,51] which
is a “combination” of synchronous and asynchronous networks. Hybrid networks
are assumed to be synchronous in the “beginning”, for the first few rounds, fol-
lowed by a completely asynchronous setting. Even though generic AMPC and
HMPC protocols have been designed in the past, to the best of our knowledge
the practical efficiency of AMPC and HMPC, especially over small population
has not been studied. The main aim of this work is to initiate the study of AMPC
and HMPC protocols over small population and with high throughout.

1.1 Our Results and Existing Works

Round Optimal Perfectly-secure HMPC. From [51], perfectly secure HMPC
protocol tolerating a computationally unbounded Byzantine adversary corrupting
up to t parties maliciously exists iff t < n

3 and any such protocol needs at least 2
synchronous rounds. However, there does not exist any perfectly-secure HMPC
protocol with 2 synchronous rounds and with resilience t < n

3 and it was left as
an open problem in [51] to design such a protocol. The previous best perfectly-
secure HMPC protocol with t < n

3 requires 3 synchronous rounds [51]. In this
work, we partially solve the open problem of [51], by presenting a perfectly-secure
HMPC protocol for n = 4 and t = 1 with 2 synchronous rounds. Our protocol
is both round optimal in terms of the number of synchronous rounds, as well as
has optimal resilience. Apart from having the optimal number of synchronous



rounds, our HMPC protocol significantly improves upon the communication cost
per multiplication gate of the HMPC protocol of [51]. While the pre-processing
phase of [51] needs a communication of 21804 and broadcast of 18900 field ele-
ments to generate a single shared multiplication triple, we are able to generate
the same with a communication of 2733 and broadcast of 3024 field elements
(we defer the analysis of [51] to the full version of the paper).

Cryptographic HMPC with Symmetric Key Primitives. HMPC with
cryptographic-security tolerating a computationally-bounded Byzantine adver-
sary is possible with 1 synchronous round and t < n

2 [7]. The protocol in [7]
utilizes computationally expensive asymmetric-key machinery, such as threshold
signatures, threshold homomorphic encryption and associated zero-knowledge
(ZK) proofs. It was left as an open problem in [7] to reduce the cryptographic
setup of their HMPC protocol. We make inroads in solving this open problem by
presenting an HMPC protocol with one synchronous round for t = 1 and n = 4,
where we rely only on symmetric-key primitives. More specifically, we use only
pseudo-random functions (PRF) to generate shared randomness among the par-
ties. Apart from completely shunning relatively expensive public-key machinery,
we also completely shun ZK proofs in our protocol.

In addition to using simpler primitives, our protocol outperforms [7], in terms
of communication complexity per multiplication gate. In [7], the synchronous
round is used only for privately receiving the circuit-inputs of the parties and not
for pre-computing “raw data” to aid in later evaluation of multiplication gates.
Consequently, the evaluation of multiplication gates during the asynchronous
phase involves a lot of interaction and computationally heavy ZK protocol in-
stances. More specifically, the public-key machinery of [7] operates over a ring
ZN for some κ-bit modulus N , where κ is the computational security parame-
ter. The protocol communicates approximately 723 elements from ZN plus 156
instances of ZK proofs of various types, per multiplication gate (we defer the
analysis of [7] to the full version of the paper). On the contrary, we leverage the
synchronous phase to get the circuit-inputs of the parties, as well as to initiate
the generation of shared and random multiplication triples [3], during a pre-
processing phase. Later, the evaluation of a multiplication gate just needs two
public reconstructions of secret-shared values. The pre-processing phase needs
a communication of only 64 field elements over the point-to-point channels and
a broadcast of 18 field elements, while the actual evaluation of a multiplication
gate needs an amortized communication of 16 field elements.

Cryptographic AMPC with Symmetric Key Primitives. AMPC with
cryptographic security and tolerating t Byzantine corruptions is possible iff t < n

3
[38,39,27]. Previous high-throughput AMPC protocols are based on public-key
machinery and ZK proofs. We present an AMPC protocol for n = 4 and t = 1,
based only on PRFs and shun all kinds of ZK proofs. The pre-processing phase
requires an amortized communication of 64 field elements over the point-to-
point channels and a broadcast of 18 field elements through asynchronous reli-
able broadcast, while the evaluation phase needs an amortized communication



of 16 field elements per multiplication gate. This is to be compared with the
communication-efficient AMPC protocol of [27] with n = 4 and t = 1, based
on threshold somewhat homomorphic encryption (TSHE) [35,33,26] (which is
computationally more expensive than threshold homomorphic encryption and
PRFs) and associated ZK protocols. The amortized communication of [27] per
multiplication gate is as follows: the pre-processing phase needs a broadcast of 4
elements from ZN through asynchronous reliable broadcast and 12 instances of
ZK proofs, for proving the knowledge of underlying plaintexts. The computation
phase needs a communication of 24 elements from ZN over the point-to-point
channels and 24 instances of ZK proofs, for proving correctness of partial de-
cryption of ciphertexts (the full analysis of [27] is deferred to the full version of
the paper). In [29], a constant round AMPC protocol is presented assuming the
existence of a threshold FHE (TFHE) scheme and related ZK proofs, where the
communication complexity is independent of the number of multiplication gates
in the circuit. Since the existence of TFHE is a stronger assumption than TSHE
and PRFs, we do not compare our protocol with [29].

1.2 Techniques Used

Like all the previous works on high-throughput MPC, the main tool used in our
protocols is secret-sharing (SS) where our protocols evaluate the underlying cir-
cuit (representing the function to be computed) ensuring that the value over each
wire in the circuit is secret-shared. The protocols are divided into three phases,
pre-processing/triple-generation phase, input phase and circuit-evaluation phase.
During the pre-processing phase, the parties generate secret-shared random mul-
tiplication triples (also called as Beaver’s triplets) [3], independent of the input
to multiplication gates, which are later used in the circuit-evaluation phase to
evaluate multiplication gates efficiently; at the cost of two public reconstructions
per multiplication gate. The input phase is used to get the shared inputs of the
parties for the circuit. For HMPC protocols, the pre-processing phase is executed
in a hybrid environment, utilizing the synchronous round(s) available in the be-
ginning, followed by completely asynchronous steps, while the circuit-evaluation
phase is completely asynchronous. To ensure input provision (namely to get the
inputs of all the parties for the computation, which is otherwise impossible in
a completely asynchronous setting) for the HMPC protocols, the input phase is
executed in parallel with the triple-generation phase, to utilize the synchronous
rounds available at the beginning. For the AMPC protocol, all the three phases
are completely asynchronous. While the approach of shared circuit-evaluation
is not new, the challenges are to generate the triples efficiently, specially in the
hybrid setting, deploying the optimal number of synchronous rounds.

The generic SS based MPC protocols typically employ Shamir’s SS [55].
However, we utilize replicated SS (RSS), which has been used in recent works
on high-throughput secure three-party computation (3PC) with one corruption
[2]. We extend the notion of RSS to the case of 4 parties with one corruption,
where the set of parties P = {P1, . . . , P4} is divided into groups G1, . . . ,G4, with
each Gi consisting of 3 parties P \ {Pi}. A RSS of a value s then consists of



shares s1, . . . , s4, where s = s1 + . . .+ s4 and all the (honest) parties in Gi have
the share si. There are several advantages of using RSS, compared to Shamir’s
SS. In the perfectly-secure setting, verifiably generating a RSS of a value s is
relatively simpler, compared to that of verifiably generating a Shamir’s SS of s.
This is because the latter requires generating what is called as “two-level” SS of
s, where each share of s has to be further Shamir-shared and then the parties
use the “second-level” share-shares to verify if the Shamir-shares of s lie on a
consistent polynomial. Generating the two-level SS of s calls for other primitives
and consequently the overall process is highly expensive.

The process of generating a RSS is further simplified in the cryptographic
setting if the parties have access to a trusted key set-up for PRFs. However,
no such simplification is known for Shamir SS in the cryptographic setting, even
with a key set-up for PRFs. Furthermore, reconstruction for RSS is more efficient
compared to Shamir’s SS. If Pi is a designated party to reconstruct a shared
value s, then for Shamir-sharing, all the remaining three parties need to send
their share to Pi. For RSS, two parties in Gi can send si to Pi, while the third
party can send a hash of si (note that Pi will have the remaining shares of s, as
it will be present in three groups). If there are many values to be reconstructed
by Pi (which is the case while evaluating the multiplication gates), then one of
the parties just needs to send a single hash value on behalf of all its shares and
only two parties in Gi need to send their shares to Pi. So in the amortized sense,
the communication required to let Pi reconstruct ` secret-shared values is 2`
field elements, compared to 3` field elements required for Shamir SS.

We follow the efficient framework of [28] to generate shared Beaver’s triplets
during the pre-processing phase. The framework consists of two building blocks:
a triple-sharing protocol and a triple-extraction protocol. The triple-sharing pro-
tocol allows a designated dealer to verifiably share multiplication triples, where
the triples are random and private for an honest dealer. The triple-extraction
protocol is used to “securely extract” a sharing of truly random and private mul-
tiplication triples from a collection of shared multiplication triples “contributed”
by individual parties. While the triple-extraction protocol can be executed in
a completely asynchronous environment we utilize the available synchronous
round(s) for the triple-sharing protocol in HMPC.

The HMPC protocol of [51] also utilizes the framework of [28] by presenting
a robust triple-sharing protocol with 3 synchronous rounds, which always gener-
ates a Shamir SS of multiplication triples for the dealer. On contrary, we utilize
the party-elimination framework of [37,6] to do triple-sharing in 2 synchronous
rounds. Namely, our protocol is not robust and may fail to generate any shared
triple if the adversary strikes, but in that case, the parties identify a public “con-
flict set” of at most 3 parties, always containing the corrupt party. Consequently,
the remaining party(ies) are honest and any one of them can be designated as
a trusted third party (TTP) to receive the inputs of the parties in clear and
compute the function output. We stress that this is required only if the triple-
sharing protocol fails and outputs a conflicting set; else the triple-generation
protocol outputs shared triples and parties proceed to shared circuit-evaluation.



We further stress that if the parties send their clear inputs to the TTP for circuit
evaluation, then it cannot be considered as a breach of privacy, as the TTP is
guaranteed to be an honest party, while the privacy requirement for an MPC
protocol is with respect to the corrupt parties. A similar approach of identifying
disputes among sufficiently many parties and using the left-over party(ies) as a
TTP has been explored in some of the recent works in the domain of MPC for
small population, but in the synchronous setting [18,16].

1.3 Experimental Results

We implement and benchmark our cryptographically secure AMPC protocol
and evaluate the performance of the triple-generation phase. We benchmark our
protocol by using it for secure prediction on a linear regression model and verify
that asynchronous protocols run at the actual speed of the underlying network.

1.4 Other Related Works

We provide the highest level of security, namely that of guaranteed output de-
livery (GOD) [30], where the honest parties always receive the correct output
irrespective of the behaviour of the corrupt parties. In the synchronous setting,
weaker security notions such as security with abort have been considered for the
sake of getting more efficient MPC protocols [1,34,24]. In these protocols, the
honest parties may pre-maturely abort the protocol execution, without receiv-
ing the function output, if the corrupt parties deviate from honest behaviour.
Typically this is done by comparing the protocol messages received from all the
parties and aborting in case of any inconsistencies. It is not clear how these pro-
tocols can be extended to the asynchronous setting with termination guarantees
since the messages of all the parties need not be available. Indeed, [45] pro-
poses a generic perfectly-secure AMPC protocol with a robust circuit-evaluation
phase, but with an optimistic pre-processing phase, where the parties need not
terminate, even if a single corrupt party crashes.

In [32] a perfectly-secure MPC protocol with t < n/3 is presented in a par-
tially synchronous network, where there exists a synchronization point and the
network is assumed to be asynchronous before and after this point. The pro-
tocol optimistically and asynchronously runs any perfectly-secure synchronous
pre-processing protocol with t < n/3 till the synchronization point and then the
parties verify if all the “expected” messages (including the ones from the corrupt
parties) have been delivered before the deadline set by the synchronization point.
The synchronization point is set to ensure that the expected messages of honest
parties are delivered within the deadline. However, the protocol does not achieve
GOD since a corrupt party can always delay its messages arbitrarily causing the
overall protocol to abort pre-maturely. Our hybrid model is completely differ-
ent from the model of [32], where synchronization is assumed at the beginning,
instead of the middle of a protocol. Moreover, our protocols ensure GOD.

In [31], a cryptographically-secure generic AMPC protocol is presented tol-
erating t < n/3 corruptions, completely based on symmetric-key primitives



(namely PRFs), without relying on ZK protocols. However, [31] extend the no-
tion of distributed garbling [4] to the asynchronous setting to achieve a constant
“round” protocol. The resultant protocol is expensive in terms of computation
and communication complexity. Since our goal is to achieve high throughput,
we do not compare our protocols with [4]. The work of [40] gives information-
theoretically secure MPC protocols with various security guarantees in the syn-
chronous setting, tolerating t = 1 corruption. Their protocols are statistically-
secure and not comparable with our perfectly-secure HMPC protocols.

1.5 Future Directions

Our perfectly-secure HMPC works only when t = 1. We leave it as a challeng-
ing open problem to generalize it for any t < n

3 . Our cryptographically-secure
HMPC and AMPC protocols can be generalized for any t < n

3 , but the resul-
tant protocols will require exponential (in n) communication and computation
complexity due to the cost of generalizing the notion of RSS. A similar short-
coming prevails in the existing RSS-based MPC protocols in the synchronous
setting [2,1,34,47,14] as well, which are tailor-made only to handle t = 1 corrup-
tion. Designing efficient high-throughput protocols (both in the hybrid as well
as asynchronous setting) with cryptographic-security for any t < n

3 and that too
with only symmetric-key primitives is left as a future work.

Due to space constraints, we defer the formal proofs of our protocols to the
full version of the paper.

2 Preliminaries

We assume a set of parties P = {P1, . . . , P4}, divided into groups G1, . . . ,G4,
where Gi = P \ {Pi}. Within each Gi, the parties are arranged in circular order
Pi+1, Pi+2, Pi+3, where i + 1 = 1, if i = 4 and so on. There exists a malicious
adversary Adv, who can corrupt any 1 party. We consider two flavours of Adv:
a computationally-unbounded Adv (for perfect-security) and a computationally-
bounded Adv (for cryptographic-security). For cryptographically-secure proto-
cols, we use κ and ssec to denote the computational and statistical-security
parameter respectively. The parties are connected by pair-wise private and au-
thentic channels. All the computations are performed over some finite field F
and we assume that the parties want to compute a function f over F, repre-
sented by a publicly known circuit cir over F. For simplicity and without loss of
generality, we assume that each party Pi ∈ P has a single input x(i) for f and
there is a single function output y = f(x(1), . . . , x(4)), which is supposed to be
learnt by all the parties. Apart from the input and output gates, cir consists of
2-input addition (linear) and multiplication gates, with cM denoting the number
of multiplication gates. The field size will vary, depending upon the MPC pro-
tocols. While for the perfectly-secure protocol we need |F| > 4 to hold, for the
cryptographically-secure protocols, the condition |F| ≥ 2ssec · 2cM is imposed, to
ensure that the correctness of the protocols hold except with probability at most
2−ssec. We use the notation [`] to denote the set {1, . . . , `}.



Communication Model. We follow two different communication models, the
completely asynchronous communication model of [8,20] with eventual message
delivery and the hybrid communication setting of [5,7,51], which is a mix of
synchronous and asynchronous communication models.

The asynchronous model does not put any restriction on the message delays
and the only guarantee is that the messages of the honest participants are deliv-
ered eventually. The sequence of message delivery is controlled by a scheduler,
which is under the control of the adversary. Due to the lack of any globally known
upper bound on the message delays, no party can wait to receive communication
from all its neighbours to avoid an endless wait (as a corrupt neighbour may not
send any message) and hence in each step of an asynchronous protocol, a party
can afford to receive communication from at most 3 parties (including itself),
thus ignoring communication from 1 potentially honest neighbour.

The hybrid model is a combination of both synchronous, as well as asyn-
chronous model. Namely, the system is assumed to be synchronous during the
initial phase, followed by a completely asynchronous phase. Here the parties
execute a protocol where the first r rounds are synchronous, with parties syn-
chronized by a global clock and where the protocol operates as a sequence of
rounds. In each such round, a party computes the set of messages to be sent
to its neighbours, which are communicated over the channels, followed by re-
ceiving the messages sent by its neighbours to it in this round. There will be a
publicly known upper bound on the message delays for the first r rounds and
hence each party will know how long it has to wait for the messages from its
neighbours for each of these r rounds. If an expected message does not arrive
within this time-limit, then the receiving party can substitute a default message
and proceed to the next round. Consequently, within the first r rounds, each
party receives communication from all the parties. As in [7,51], during the syn-
chronous phase, apart from the pair-wise channels, the network is augmented by
a system-wide broadcast channel, modelled by an ideal-functionality FBC, which
allows any designated sender S ∈ P to send some message identically to all the
parties. Once the synchronous phase is over, the system becomes asynchronous
and protocol execution occurs asynchronously. We assume r = 2 and r = 1 for
our perfectly-secure and cryptographically-secure HMPC respectively.

Cryptographic Tools. To minimize the communication of our cryptographically-
secure protocols, we assume a one-time symmetric-key set-up for a secure pseudo-
random function (PRF) F [42] among the parties as follows.
• A random PRF key kP among all the parties in P.
• For every Gi, a PRF key kGi among the parties in Gi.
The above set-up implicitly implies that for every D ∈ P and every Gi, there
is a common PRF key kD,Gi among D and the parties in Gi. If D 6∈ Gi, then
D ∪ Gi = P and hence kD,Gi = kP holds. If D ∈ Gi, then D ∪ Gi = Gi and hence
kD,Gi = kGi holds. Using the appropriate common key, the respective parties
can non-interactively generate common random values, whenever required, by
running some appropriate secure mode of PRF. The above set-up can be made
available, by running any standard MPC protocol. Since this is a one-time affair,



we do not go into the exact details of the instantiation of the set-up. We also
use a collision-resistant hash function H(·), with output size |H| bits.

2.1 Definition and Existing Asynchronous Primitives

Definition 1. A value s ∈ F is said to be [[·]]-shared, if there exists s1, . . . , s4 ∈
F, with s1 + . . .+s4 = s, such that for each i ∈ [4], all (honest) parties in Gi hold
si. The notation [[s]] denotes the vector of shares (s1, . . . , s4). A set of values S ∈
F` is [[·]]-shared, if each s(m) ∈ S is [[·]]-shared, where [[s(m)]] = (s

(m)
1 , . . . , s

(m)
4 ).

[[·]]-sharings are linear: given [[s(1)]], [[s(2)]] and public constants c1, c2 ∈ F, then
the parties can locally compute their shares corresponding to [[c1 ·s(1)+c2 ·s(2)]].

In the synchronous setting, the standard security definition of MPC is based
on the universal composability (UC) real-world/ideal-world based simulation
paradigm [21]. Informally a protocol Πreal for MPC is defined to be secure in
this paradigm, if it securely “emulates” what is called as an ideal-world protocol
Πideal. In Πideal, all the parties give their respective inputs for the function f to
be computed to a trusted third party (TTP), who locally computes the function
output and sends it back to all the parties. Protocol Πreal is said to securely emu-
late Πideal if for any adversary attacking Πreal, there exists an adversary attacking
Πideal that induces an indistinguishable output in Πideal, where the output is the
concatenation of the outputs of the honest parties and the view of the adversary.

Extending the above definition to the asynchronous setting brings in a lot of
additional technicalities, specially to deal with the eventual message delivery in
the system, controlled by an adversarial scheduler. Due to this, most works in
the domain of AMPC [38,39,5,50,28,51] follow a simpler “property based” secu-
rity definition as originally proposed in [8,10]. Recently, in [29,31], asynchronous
MPC has been modelled in the UC framework. Informally, in the case of the asyn-
chronous setting, the local output of the honest parties is only an approximation
of the pre-specified function f over a subset C of the local inputs of the parties,
the rest being taken to be 0, where |P \C| = 3 (this is to model the fact in a com-
pletely asynchronous setting, the inputs of all the parties can not be considered
to avoid endless wait). Protocol Πreal is said to be secure in the asynchronous
setting, if the local outputs of the honest players are correct (correctness), Πreal

terminates eventually for all honest parties (termination) and the output of Πreal

is indistinguishable from the output of Πideal (which involves a TTP that com-
putes an approximation of f). If Πreal is executed in the hybrid communication
model, then it is called an HMPC protocol. For the perfectly-secure setting, the
termination property should be achieved with probability 1 and the output of
Πreal should be perfectly-indistinguishable from that of Πideal. For the crypto-
graphic setting, the output of Πreal should be computationally-indistinguishable
from that of Πideal and a negligible error is allowed in the termination property.

As our main goal is to provide efficient AMPC and HMPC protocols, to
avoid blurring the main focus of the paper and to avoid additional technicalities,
we keep the formalism to a minimum in this extended abstract and defer the
simulation-based security proofs of our protocols to the full version of the paper.



We stress that all AMPC protocols suffer from input deprivation, where inputs
of up to t honest parties may be excluded from computation. A natural question
is whether it is possible to achieve input provision and get the inputs of all the
n parties for computation (i.e. C = P) in the hybrid setting. In [51] it is shown
that any perfectly-secure HMPC protocol with 2 synchronous rounds suffers from
input deprivation and so does our perfectly-secure HMPC protocol. On the other
hand, our cryptographically-secure HMPC protocol achieves input provision, a
property also achieved by the cryptographically-secure HMPC protocol of [7].

Asynchronous Broadcast and Agreement on a Common-subset. We
use the asynchronous reliable broadcast (Acast) protocol of [19], which needs
a communication of 57|H| + 54 + 15

2 |m| bits [46], to broadcast a message m
consisting of |m| bits. The protocol allows a sender S ∈ P to send some message
m identically to all the parties. If S is honest, then every honest party eventually
terminates with output m. If S is corrupt and some honest party terminates with
output m?, then eventually every honest party terminates with output m?. We
say “Pi acasts m” to mean that Pi ∈ P acts as a S and invokes an instance
of Acast protocol to broadcast m and the parties participate in this instance.
Similarly, “Pj receives m? from the acast of Pi” means that Pj terminates the
instance of Acast protocol invoked by Pi as S, with output m?.

In our asynchronous protocols, we come across situations, where each party
is supposed to act as a dealer and share some values. Due to asynchronous
communication, the parties cannot afford to wait for the termination of sharing
instances of all the dealers, as the corrupt dealer need not invoke its instance.
So the parties should terminate, immediately after terminating 3 out of the 4
sharing instances. However, each party may terminate a different subset of 3
sharing instances. The ACS protocol [8] allows agreement on a common subset
of 3 sharing instances, which eventually terminate for all the honest parties.

Beaver’s Circuit-Randomization [3]. Let g(x, y, z) be a multiplication gate,
such that the parties hold [[x]] and [[y]] and the goal is to compute a [[·]]-sharing
of z = x · y. Moreover, let ([[u]], [[v]], [[w]]) be a shared multiplication triple
available with the parties, such that w = u ·v. We note that z = (x−u+u) · (y−
v+v) and hence z = (x−u)·(y−v)+v·(x−u)+u·(y−v)+u·v. Based on this idea,
to compute [[z]], the parties first locally compute [[d]] = [[x − u]] = [[x]] − [[u]]
and [[e]] = [[y − v]] = [[y]] − [[v]], followed by publicly reconstructing d and e.
The parties then locally compute [[z]] = d · e+ d · [[v]] + e · [[u]] + [[w]].

It is easy to see that if u and v are random and private, then during the above
process, the view of the adversary remains independent of x and y. Namely, even
after learning d and e, the privacy of the gate inputs and output is preserved.
We denote this protocol as Beaver(([[x]], [[y]]), ([[u]], [[v]], [[w]])), which can be
executed in a completely asynchronous setting. If the underlying public recon-
struction protocol terminates for the honest parties, then the protocol Beaver
eventually terminates for all the honest parties. We also note that if the auxil-
iary triple (u, v, w) is not a multiplication triple (namely w = u · v+∆ for some
non-zero ∆), then in the above protocol, z = x · y +∆ holds.



Asynchronous Triple-transformation Protocol. We borrow the asynchronous
triple-transformation protocol TripTrans from [28], which transforms a batch
of independent secret-shared triples into another batch of secret-shared triples,
which are related by some nice properties. The input is a set of 2k + 1 secret-
shared triples {[[a(i)]], [[b(i)]], [[c(i)]]}i∈[2k+1]. The protocol outputs a set of 2k+1

shared triples {[[A(i)]], [[B(i)]], [[C(i)]]}i∈[2k+1], such that all the following hold:
• There exist polynomials fa(·), fb(·) and fc(·) of degree k, k and 2k respectively,

such that fa(i) = A(i), fb(i) = B(i) and fc(i) = C(i) hold for each i ∈ [2k+1].
• For each i ∈ [2k + 1], the ith output triple (A(i), B(i), C(i)) is a multiplication

triple, if and only if the ith input triple (a(i), b(i), c(i)) is a multiplication
triple. This further implies that fc(·) = fa(·) · fb(·) holds if and only if all
the 2k + 1 input triples are multiplication triples.

• Adv learns the ith triple (A(i), B(i), C(i)) iff it knows the ith triple (a(i), b(i), c(i)).
This implies that if Adv knows k′ input triples where k′ < (k + 1), then ad-
versary learns k′ points on the fa(·) and fb(·) polynomials, leaving (k+1)−k′
“degree-of-freedom” on these polynomials. On the other hand, if k′ ≥ (k+1),
then Adv will completely know the fa(·), fb(·) and fc(·) polynomials.

The complexity of TripTrans is that of k instances of Beaver.

3 Perfectly-secure HMPC

3.1 Verifiable Secret-Sharing (VSS) with Party Elimination

Protocol Sh either allows a designated dealer D ∈ P to verifiably generate a [[·]]-
sharing of its private input s or outputs a public dispute set D consisting of at
most three parties, including the corrupt party. The privacy of s is preserved, if
D is honest. Verifiability ensures that even if D is corrupt and the parties do not
output a non-empty D, then there exists some value, say s?, which is [[·]]-shared.

During the first round, D distributes the [[·]]-shares of s. To verify the consis-
tency of shares, during the second round, the group members within each group
Gi publicly exchange their respective versions of the received share; the public
exchange is done by using the broadcast functionality. To maintain the privacy
of the ith share, the group members in Gi actually exchange a masked version
of the received share, where the masks are pair-wise exchanged during the first
round. At the end of the second round, the parties verify if there exists any Gi,
for which there exists a pair of parties Pj , Pk with inconsistency in their reported
common share. This would imply that either D is corrupt or at least one among
Pj , Pk is corrupt; consequently, the parties output the dispute set {D, Pi, Pj}.
Else, the parties output their respective shares.

3.2 Reconstruction Protocols

Protocol RecPriv allows a designated Pi to reconstruct a [[·]]-shared value s, in a
completely asynchronous setting. Since Pi will be a part of exactly 3 groups, it
will have all the shares of s, except for the share si. So all the parties in Gi can



send si to Pi, who waits to receive two identical copies of si, which eventually
arrive, as there are at least 2 honest parties in Gi. Upon receiving, Pi reconstructs
s and terminates. Protocol RecPub allows all the parties in P to reconstruct s,
by invoking 4 instances of RecPriv, one on the behalf of each Pi ∈ P.

3.3 Triple-sharing with Party Elimination

Protocol TripSh either allows a designated D to verifiably [[·]]-share a multipli-
cation triple (d, e, f) or outputs a public dispute set D containing at most three
parties, with one of them being corrupt. The verifiability ensures that if the par-
ties output ([[d]], [[e]], [[f ]]), then f = d · e holds, even if D is corrupt. Moreover,
for an honest D, the view of adversary will be independent of (d, e, f). The pro-
tocol is divided into two phases, a synchronous phase for the first two rounds,
followed by an asynchronous phase. During the synchronous phase, D [[·]]-shares
3 random multiplication triples, by executing instances of Sh. Independently,
each Pi [[·]]-shares a random verifying multiplication triple by executing Sh. If
a non-empty D is identified during any of these Sh instances, then the parties
terminate the protocol with D. Else, they proceed to the asynchronous phase.

The goal of the asynchronous phase is to verify if D’s triples are multiplica-
tion triples. For this, D’s triples {[[a(i)]], [[b(i)]], [[c(i)]]}i∈[3] are transformed into

the triples {[[A(i)]], [[B(i)]], [[C(i)]]}i∈[3], by executing TripTrans with k = 1. Let
fa(·), fb(·) and fc(·) be the corresponding polynomials of degree 1, 1 and 2 re-
spectively, which are guaranteed to exist at the end of TripTrans. It follows that
{[[a(i)]], [[b(i)]], [[c(i)]]}i∈[3] are multiplication triples, iff fc(·) = fa(·) · fb(·) holds

and the parties proceed to verify the same. To verify if fc(·)
?
= fa(·) · fb(·), the

parties asynchronously test if (fa(i), fb(i), fc(i)) is a multiplication triple, using
the “help” of Pi, for each i ∈ [4], where only Pi learns (fa(i), fb(i), fc(i)), but
everyone learns the outcome of the test. It will be ensured that if Pi is honest
and if the test is positive, then (fa(i), fb(i), fc(i)) is a multiplication triple. But
a negative test outcome occurs, only if either D or Pi is corrupt, in which case,
the parties output D = {D, Pi}. Consequently, if no D is obtained during the
asynchronous phase, then it confirms that fc(i) = fa(i) ·fb(i) holds, correspond-
ing to all honest parties Pi, further implying fc(·) = fa(·) · fb(·), as the degree
of fa(·), fb(·) and fc(·) are 1, 1 and 2 respectively. If D is honest and no disputes
are obtained, then throughout adversary learns only (fa(i), fb(i), fc(i)) corre-
sponding to corrupt Pi, leaving “one degree of freedom” in these polynomials.
Hence in this case, the parties output a [[·]]-sharing of the multiplication triple
fa(β), fb(β) and fc(β) on the behalf of D, where β is different from 1, . . . , 4.

The verification of fc(·)
?
= fa(·) · fb(·) is done as follows. At the end of

TripTrans, the parties have [[A(i) = fa(i)]]i∈[3], [[B
(i) = fb(i)]]i∈[3] and [[C(i) =

fc(i)]]i∈[3]. The parties locally compute [[A(4) = fa(4)]], [[B(4) = fb(4)]] and[[C(4)

= fc(4)]]. Each ([[A(i)]], [[B(i)]], [[C(i)]]) is then verified for the relation C(i) ?
=

A(i) ·B(i), using the verifying triple ([[X(i)]], [[Y (i)]], [[Z(i)]]), shared by Pi during

the synchronous phase. Namely, the parties recompute [[C
(i)

= A(i) ·B(i)]] from



[[A(i)]] and [[B(i)]], by executing Beaver, treating ([[X(i)]], [[Y (i)]], [[Z(i)]]) as an

auxiliary triple. Then the parties compute the difference [[D(i)]] = [[C
(i)

]] −
[[C(i)]] and publicly reconstruct D(i), to check if it is zero. If D(i) is found to be
non-zero, then the parties output D = {D,Pi}. Clearly, if D, Pi are honest, then
D(i) = 0. Moreover, the privacy of ([[A(i)]], [[B(i)]], [[C(i)]]) is maintained, as the
auxiliary multiple triple will be random and private.

3.4 Triple Generation with Party Elimination

Protocol TripGen outputs either a dispute set D, containing the corrupt party, or
a [[·]]-sharing of a random and private multiplication triple. In the protocol, each
Pi ∈ {P1, P2, P3} invokes an instance of TripSh to share a random multiplication
triple (d(i), e(i), f (i)). The parties terminate, if a non-empty D is obtained in
any of the TripSh instance. Else the parties have 3 shared multiplication triples
{(d(i), e(i), f (i))}i∈[3], with at least two of them being shared by honest parties,
which are random and private. Since the exact identity of the honest parties are
not known, the parties securely and asynchronously “extract” out a random and
private multiplication triple (u, v, w) from {(d(i), e(i), f (i))}i∈[3] as follows.

The parties transform the shared triples {(d(i), e(i), f (i))}i∈[3] into another set

of shared triples {(U (i), V (i),W (i))}i∈[3] by executing an instance of TripTrans
with k = 1. Let fU (·), fV (·) and fW (·) be the resultant polynomials of de-
gree at most 1, 1 and 2 respectively, such that U (i) = fU (i), V (i) = fV (i) and
W (i) = fW (i). Since all the input triples {(d(i), e(i), f (i))}i∈[3] for TripTrans are
multiplication triples, it follows that the condition fW (·) = fU (·) · fV (·) holds.
Additionally, adversary will know at most one value on these polynomials, as it
will know at most one of the input triples. Consequently, from the view point of
the adversary, there exists one degree of freedom in these polynomials and hence
the parties set (u, v, w) to be the value of these polynomials at β.

3.5 Perfectly-secure Hybrid MPC Protocol

Protocol PerfMPC starts with a triple-generation and input phase, executed in
parallel, followed by a circuit-evaluation phase. The input phase consumes the
first 2 synchronous rounds and so does the triple-generation phase, which contin-
ues to the asynchronous phase after the consumption of the first 2 synchronous
rounds. The circuit-evaluation is completely asynchronous. During the triple-
generation phase, the parties execute TripGen cM number of times and try to
generate cM number of shared and random multiplication triples. On the other
hand, during the input phase, each party acts as a dealer and [[·]]-shares its
input for cir by executing an instance of Sh. The parties then wait for the ter-
mination of the instances of TripGen and Sh. There are two possible cases. If a
non-empty dispute set D is obtained during any of the instances of TripGen or
Sh, then the parties designate the first party Phon from the set P \D to perform
the circuit evaluation in clear during the circuit-evaluation phase. If there are
multiple instances where a non-empty D is obtained, then the parties focus on



the first such instance, ensuring that all the honest parties agree on a common
D. Note that Phon will be non-empty, as D will have at most 3 parties and since
it will always include the corrupt party, Phon will be honest. Hence, during the
circuit-evaluation phase, all the parties provide their input for cir to Phon. Since
the circuit-evaluation happens asynchronously, Phon waits for the input from 3
parties and substitutes 0 as the missing input and proceeds to evaluate cir with
these inputs. Hence, the protocol does not ensure input-provision in this case, as
the missing party could be a potentially slow honest party, whose actual input is
substituted with 0. The privacy of the inputs of the honest parties whose inputs
are considered for the computation is preserved, since Phon is honest.

If no D is obtained during the triple-generation phase or input phase, then the
parties proceed to perform shared circuit-evaluation, using the shared random
multiplication triples from the triple-generation phase and the shared inputs
from the input phase. During the shared circuit-evaluation, the parties evaluate
each gate of the circuit, maintaining the invariant that if the inputs of the gate are
available in a [[·]]-shared fashion, then the output of the gate is also available in a
[[·]]-shared fashion. While maintaining the invariant for the addition gate requires
only local computation, for the multiplication gates, protocol Beaver is deployed,
using an auxiliary multiplication triple from the triple-generation phase. Finally,
once the circuit output is available in a [[·]]-shared fashion, the parties publicly
reconstruct the same. Note that in this case input-provision is ensured, as the
actual input of all honest parties are considered for the computation.

4 Cryptographically-secure HMPC and AMPC

We take the leverage of the PRF key set-up and hash function, to reduce the
communication complexity of the building blocks used in our perfectly-secure
protocol. All the building blocks are robust, with no party elimination.

4.1 Cryptographically-secure Synchronous VSS

Protocol CSh allows a dealer D to verifiably [[·]]-share its input. In the protocol,
the shares for G1,G2,G3 are computed non-interactively, using the appropriate
common randomness; this ensures that none of these groups are inconsistent.
The share for G4 is computed by D and a masked version of it is broadcast by D,
where the mask is computed using the common randomness of D and G4. The
parties in G4 on receiving the masked share, unmask it, thus ensuring that G4 is
also not inconsistent. The privacy for an honest D is maintained, as there exists
at least one Gi consisting of only honest parties, such that the corresponding si
will be unknown because either it is locally generated by D and Gi or available
in a masked fashion, with the mask being known only to D and Gi.

4.2 Reconstruction Protocols with Cryptographic Security

Protocol RecPriv is modified to get CRecPriv, where only the first two parties
in Gi send the share si to the designated party Pi, while the third party in Gi



sends a hash of si. Party Pi either waits for two identical copies of si or a copy
of si and a “matching” hash value. Extending this idea for the case when there
exist ` [[·]]-shared values to be reconstructed by Pi, allows to almost avoid the
communication of the shares from one of the members of Gi. Namely, only the
first two members of Gi has to send all the si shares, while the third member
sends a single hash value for all the si shares. Executing CRecPriv once for each
Pi, we get the public reconstruction protocol CRecPub.

4.3 Cryptographically-secure Hybrid Triple-sharing Protocol

Protocol CTripSh outputs ` multiplication triples. The protocol is similar to
TripSh, with the following differences. Instead of sharing only 3 multiplication
triples, D shares 2`+1 multiplication triples by executing instances of CSh, which
ensures that these triples are robustly [[·]]-shared by D. However, no verifying-
triples need to be shared by the individual parties, as D’s triples are verified for
the multiplication relationship probabilistically. Namely, D’s triples are trans-
formed by executing an instance of TripTrans and fitting polynomials fa(·), fb(·)
and fc(·) of degree `, ` and 2` respectively through the transformed triples.

The parties next publicly check if fc(r)
?
= fa(r) · fb(r) holds, for a randomly

chosen r, to verify D’s shared triples. The idea here is that if a corrupt D has

not shared multiplication triples, then the test fc(r)
?
= fa(r) · fb(r) will fail for a

randomly chosen r not known in advance to D, except for the case when r is a root
of the polynomial fc(·)−fa(·) ·fb(·), which happens with probability at most 2`

|F| .

If D is honest, then the test is always successful and throughout the protocol the
adversary learns only one point on the polynomials, namely (fa(r), fb(r), fc(r)),
leaving ` degrees of freedom in the polynomials. Consequently, if the test is
successful, the parties output a [[·]]-sharing of ` publicly known distinct points
on the polynomials (different from r and the 2`+1 values used during TripTrans)
on behalf of D. For this, we need |F| > 3` to hold, which is the case, as ` will be
cM in our MPC protocol and 2ssec · 2cM > 3cM holds for any ssec ≥ 1.

4.4 Cryptographically-secure Hybrid Triple-Generation

Protocol CTripGen is similar to the perfectly-secure protocol TripGen, with the
following modifications. Each Pi ∈ {P1, P2, P3} now verifiably [[·]]-shares ` num-
ber of random and private multiplication triples by executing a single instance
of CTripSh. The parties then output ` random multiplication triples by grouping
the triples of P1, P2, P3 into ` batches and then securely extracting out one ran-
dom multiplication triple from each batch. For the sake of efficiency, a common
random r can be used for verifying the multiplication triples in all the 3 instances
of CTripSh. Similarly, whenever possible, all the values which are supposed to
be publicly reconstructed across all the instances of TripTrans can be “clubbed”
together and reconstructed by a single instance of CRecPub. Conditioned on the
event that the triples shared by P1, P2, P3 are multiplication triples, which occurs
except with probability 2`

|F| , the output triples are multiplication triples.



4.5 Cryptographically-secure HMPC

In the protocol, the parties generate cM shared triples by executing CTripGen;
simultaneously each party [[·]]-shares its input by invoking CSh. So the first
synchronous round is used for both generating the triples, as well as for getting
the inputs of all the parties, thus guaranteeing input-provision. This is followed
by shared circuit-evaluation and reconstruction of the shared circuit output.

4.6 Cryptographically-secure AMPC

The cryptographically-secure AMPC is similar to the HMPC protocol. The dif-
ference is that the protocol CSh is now executed asynchronously, where the
parties do not have access to FBC. Consequently, D acasts m4 and the parties
wait to terminate this acast instance. We call this modified protocol as ASh,
which terminates only if D acasts m4 (which an honest D eventually does). All
the instances of CSh in the HMPC protocol are now replaced by ASh. As dif-
ferent honest parties can terminate various ASh instances in arbitrary order, an
instance of ACS is executed during the pre-processing stage to agree on the ASh
instances to be considered during the triple-generation protocol. Similarly, an
instance of ACS is required to agree on the set of input providers for the circuit
evaluation. The details are deferred to the full version of the paper.

5 Experimental Results

Here we evaluate our implementation of the cryptographically-secure AMPC
(section 4.6) with an emphasis on the communication and computation costs.

Network and Hardware Details: We run our experiments on Microsoft
Azure Standard D1 v2 instances comprising 1 vcpu and 3.5 GB RAM. We bench-
mark over both LAN and WAN networks. For LAN, we use four instances in the
same region (Southeast Asia), where the average bandwidth is 671 Mbps while
the average round trip time (RTT) is 906.88 ± 345.38 µs as measured by the
iperf and irtt tools respectively. For WAN, the cloud instances are in different
regions (Southeast Asia, Northern Europe, Central US, Brazil South) with an
average bandwidth of 141 Mbps and an average RTT of 182.42± 0.34 ms.

Software Details: HoneyBadgerMPC [45] is a MPC-based confidentiality layer
for blockchains implemented in Python and provides many AMPC primitives
like ACast and ACS. We thus implement our protocol in Python 3 using Honey-
BadgerMPC [45] and SageMath [56] for field and matrix computations. Though
single-threaded, it makes use of asynchronous I/O operations using the asyncio
library. Data is serialized before communication using the pickle library which
was observed to have an average overhead of 1.32 times a fixed length encoding
when serializing a list of integers. In the experiments discussed below, all parties
behave honestly unless stated otherwise. Each experiment has been run 50 times
and the data reported below is the average across all runs.



5.1 Primitives

We use AES-128 and SHA256 for instantiating the PRF F and the hash func-
tion H respectively. The PRF is run in counter mode to generate a stream of
pseudorandom values. Asynchronous broadcast (ACast) is instantiated using the
Reliable Broadcast protocol described in [46] which improves the efficiency of
Bracha’s broadcast [15] using erasure codes [19]. Asynchronous Common Sub-
set (ACS) is instantiated using the protocol proposed by Ben-Or et al. [10]. We
adopt the implementation of these primitives from HoneyBadgerMPC.

The main computational bottleneck for triple-generation is polynomial in-
terpolation, since the degrees of polynomials is proportional to the number of
multiplication gates. We opt for the efficient Fast Fourier Transform (FFT) based
interpolation, which runs in O(m logm) time, where m is the number of points
over which the polynomial is interpolated, and allows interpolation only when
m + 1 is a power of 2. The requirement on m essentially means that we can
generate triplets only in batches of powers of 2. Thus any arbitrary l number of
triples can be generated in log l batches. Computation is done over the field Zp

where p = 264 − 1835007 is a 64-bit prime number.

5.2 Triple-Generation Phase

As discussed in Section 4.6, the triple-generation phase involves the generation
of l random and secret-shared multiplication triples. Since these triples are con-
sumed in the circuit-evaluation phase, during the evaluation of multiplication
gates, l is usually equal to or a multiple of cM , the number of multiplication gates
in the circuit. Table 1 summarises the triple-generation throughput (namely the
number of triples generated per second) and communication costs in the LAN
and WAN settings for different values of l, the number of triples generated.

The throughput initially increases with l since the bandwidth is not com-
pletely utilized. However in LAN, the throughput starts to decrease for large val-
ues of l since the computation costs dominate. On the other hand, the throughput
continues to increase in WAN, since network latency is the main bottleneck.

Table 1: Throughput in triples per sec-
ond and communication in bytes per
triple for the triple-generation proto-
col across different values of l in LAN
and WAN settings.

l LAN WAN Comm.
(triples/s) (triples/s) (B/triple)

31 100.08 8.92 869.26
63 125.85 17.22 695.59
127 140.15 31.23 610.48
255 138.20 51.72 564.35
511 136.67 71.69 547.47
1023 132.36 88.42 527.05
2047 126.60 100.04 515.08

Table 2: Throughput in triples per sec-
ond and communication in Bytes per
triple for generating ≈ 104 triples with
different batch sizes.

l b LAN WAN Comm.
(triples/s) (triples/s) (B/triple)

31 323 178.72 162.74 550.78
63 159 169.74 155.40 539.70
127 79 158.62 148.06 534.32
255 40 151.70 141.28 531.63
511 20 144.65 135.14 530.28
1023 10 135.93 126.62 529.62
2047 5 126.94 118.17 529.28



Trade-off between Computation and Communication: As l becomes in-
creasingly large, the interpolation is over polynomials of large degrees and the
computation costs start to dominate leading to lower throughput. Running b in-
stances of the triple-generation protocol in parallel for smaller values of l allows
us to decrease the computation time with a linear overhead in b for the com-
munication cost. Computing l′ multiplication triples requires each honest party
to secret share 2l′ + 1 local random triples. Thus, running b instances of the
protocol with l = l′

b in parallel requires each party to secret share an additional
b− 1 local triples. Similarly the communication grows linearly with b in case of
triple-transformation and verification of shared triples.

Table 2 summarizes the throughput and communication costs when generat-
ing around 104 triples using different batch sizes. In case of both LAN and WAN
settings, we achieve the highest throughput when the batch size b = 31. As ex-
pected, the communication cost is also the highest in this case though we achieve
a 41% increase in throughput at the cost of a 4% increase in communication.

5.3 Secure Prediction

We benchmark our protocol for secure prediction on a linear regression model
for the MNIST dataset [43] with d = 784 features. Given secret shares of the
weight vector [[−→w ]] = ([[w1]], [[w2]] . . . [[wd]]), the bias term [[b]] and the input
vector [[−→x ]] = ([[x1]], [[x2]], . . . [[xd]]), secure prediction on a linear regression
model requires securely computing [[−→w � −→x + b]] where � denotes vector dot
product. A decimal value ṽ is encoded as an element in Zp as v = bṽ2fc mod p
where we set f = 13. Thus, decimal numbers are encoded as fixed point numbers
with f = 13 bits for the fractional part and 63 − 13 − 1 = 49 bits for integer
part (we cannot use all 50 bits for the integer part since we work with a 64-bit
prime field). Since the linear regression function has a multiplicative depth of
1, we have 26 bits for the fractional part and 36 bits for the integer part in the
output and bias term which provides sufficient accuracy. Thus, we do not need
additional mechanisms for secure fixed point arithmetic.

Table 3 summarizes the performance of our protocol for secure prediction
on linear regression on the MNIST dataset while Figure 1 compares the circuit-
evaluation throughput against the number of features.

Robustness to network delays: As asynchronous protocols have the advan-
tage of running at the actual speed of the underlying network, we evaluate this
property by randomly delaying the messages sent by a party up to 100ms and
1s in the LAN and WAN setting respectively. We affect each party with such
random delays incrementally across experiments, the results for which are sum-
marized in Figure 2. We find that there is negligible change in latency in both the
LAN and WAN settings when a single party is affected since the asynchronous
protocol requires communication from at most 3 parties at each step. The la-
tency increases as more number of parties are affected since the RTT increases.
However, the latency is proportional to the average RTT rather than the RTT
for any single party as shown by the gradual increase in latency with the number



Table 3: Latency in seconds and
communication cost in bytes for
the triple-generation and circuit-
evaluation protocols for secure pre-
diction on a linear regression model
for the MNIST dataset.

Setting Triple
Gen.

Circuit
Eval.

LAN (s) 4.86 0.17
WAN (s) 8.48 0.27
Comm. (KiB) 437.73 32.23
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Fig. 1: Circuit-evaluation through-
put of linear regression against the
number of features in the dataset.

of affected parties. In a synchronous protocol, even a single affected party would
require setting the global round delay ∆ to the highest possible value of 100ms
in the LAN setting and 1s in the WAN setting.
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(a) LAN: The messages sent by affected
parties are delayed up to 100ms.
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(b) WAN: The messages sent by affected
parties are delayed up to 1s.

Fig. 2: Latency in LAN and WAN setting vs the number of slow affected parties.
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