Client-Server Homomorphic Secret Sharing in
the CRS Model

NTT CIS Seminar

Damiano Abram Geoffroy Couteau Lalita Devadas Aditya Hegde

Abhishek Jain Lawrence Roy Sacha Servan-
Schreiber

Homomorphic Secret Sharing (HSS)

Homomorphic Secret Sharing (HSS)

X
' (x5, Xg) < Share(x)
3

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai16]

b
'\ (X, Xg) < Share(x)
)Y

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai16]

X
'\ (x5, Xg) < Share(x)

2

outy < Eval(C, x,) Eval(C, xg) — outg

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai16]

X
'\ (x5, Xg) < Share(x)

b

outy < Eval(C, x,) Eval(C, xg) — outg

Correctness: outy + outg = C(x)

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai16]

X
'\ (x5, Xg) < Share(x)

b

outy < Eval(C, x,) Eval(C, xg) — outg

Correctness: outy + outg = C(x)

Security: X, ensures privacy of x
Xg ensures privacy of x

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai16]

X
'\ (x5, Xg) < Share(x)

b

outy < Eval(C, x,) Eval(C, xg) — outg

Correctness: outy + outg = C(x)

Security: X, ensures privacy of x
Xg ensures privacy of x

Succinctness: Size of x, and xg are
independent of C

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai16]

HSS FHE

X X
' (x5, Xg) < Share(x) ' ct, < Encrypt(x)

A A

YA -

outy < Eval(C, x,) Eval(C, xz) — outg ctew) < Eval(C, cty)

Correctness: outy + outg = C(x)

Security: X, ensures privacy of x
Xg ensures privacy of x

Succinctness: Size of x, and xg are
independent of C

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai16]

HSS FHE

X X
' (x5, Xg) < Share(x) ' ct, < Encrypt(x)
A

A

YA -

outy < Eval(C, x,) Eval(C, xz) — outg ctew) < Eval(C, cty)

Correctness: outy + outg = C(x)

Security: X, ensures privacy of x

Xg ensures privacy of x HSS is known from assumptions not

known to imply FHE
Succinctness: Size of x, and xg are

independent of C

Client-Server HSS

x,)7'

\

Client-Server HSS

‘9 - q

\

(anxB) <« Share(X) (yAv yB) <« Share(y) (ZAa ZB) <« Share(Z)

Client-Server HSS

‘o - q

A

(xa,Xg) < Share(x) (Yas Yg) < Share(y) (Za, 2g) < Share(z)

-

Client-Server HSS

‘o - q

A

(xa,Xg) < Share(x) (Yas Yg) < Share(y) (Za, 2g) < Share(z)

OUtA <« EvaI(C, xA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outa + outg = C(x,y, 2)

Client-Server HSS

Applications

y <
' ’ Two-round succinct MPC

‘o \

A

Private Information Retrieval

(Xp, Xg) < Share(x) (¥a» Yg) < Share(y) (Zp» 2g) < Share(z) Pseudorandom Correlation Generators

OUtA <« EV8|(C, XA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outa + outg = C(x,y, 2)

Client-Server HSS

Applications

y <
P ' Two-round succinct MPC

‘o \

A

Private Information Retrieval

(Xp, Xg) < Share(x) (¥a» Yg) < Share(y) (Zp» 2g) < Share(z) Pseudorandom Correlation Generators

OUtA <« EV8|(C, xA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outa + outg = C(x,y, 2)

Client-Server HSS

Applications

y <
P ' Two-round succinct MPC

‘o \

A

Private Information Retrieval

(Xp, Xg) < Share(x) (¥a» Yg) < Share(y) (Zp» 2g) < Share(z) Pseudorandom Correlation Generators

‘ Round 1: Share inputs

OUtA <« EV8|(C, xA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outs + outg = C(x, y, 2)

Client-Server HSS

Applications
X y Z
' ' ’ Two-round succinct MPC
') Private Information Retrieval
(Xp, Xg) < Share(x) (¥a> Yg) < Share(y) (Zp» 2g) < Share(z) Pseudorandom Correlation Generators

Round 1: Share inputs

OUtA <« EV8|(C, XA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outpy + outg = C(X, Y, Z) Round 2: Reconstruct output

Client-Server HSS

q o 8

\)
(Xp, Xg) < Share(x) (¥a» Yg) < Share(y) (Zp» 2g) < Share(z)
OUtA <« EvaI(C, xA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outs + outg = C(x, y, 2)

Applications

Two-round succinct MPC
Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai16] [Boyle-Kohl-Scholl19]

[Roy-Singh'21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgard-Orlandi-Scholl’22]

Client-Server HSS

q o 8

3 3
(Xa, Xg) < Share(x) (Va, Yg) < Share(y) (Za, Z5) < Share(z)
(pk, eka, ekg) < Setup(1*)
OUtA <« EV8|(C, XA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outs + outg = C(x, y, 2)

Applications

Two-round succinct MPC
Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai16] [Boyle-Kohl-Scholl19]

[Roy-Singh21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgard-Orlandi-Scholl’22]

Client-Server HSS

‘o - q

A

(xp. Xg) < Share(pk,x) (yp,yg) < Share(pk,y) (za,25) < Share(pk, z)
(pk, eka, ekg) < Setup(1%)

OUtA <« EV8|(C, XA, yA’ ZA) EV8|(C, .xB, yB’ ZB) — OUtB

outs + outg = C(x, y, 2)

Applications

Two-round succinct MPC
Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai16] [Boyle-Kohl-Scholl19]

[Roy-Singh21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgard-Orlandi-Scholl’22]

Client-Server HSS

‘o - q

A

(xp. Xg) < Share(pk,x) (yp,yg) < Share(pk,y) (za,25) < Share(pk, z)
(pk, eka, ekg) < Setup(1%)

outy < Eval(eka, C,xp, Ya,Zp) Eval(ekg, C, x5, yg, 25) — outg

outs + outg = C(x, y, 2)

Applications

Two-round succinct MPC
Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai16] [Boyle-Kohl-Scholl19]

[Roy-Singh21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgard-Orlandi-Scholl’22]

Client-Server HSS

‘o - q

A

(xp. Xg) < Share(pk,x) (yp,yg) < Share(pk,y) (za,25) < Share(pk, z)
(pk, eka, ekg) < Setup(1%)

outy < Eval(eka, C,xp, Ya,Zp) Eval(ekg, C, x5, yg, 25) — outg

outs + outg = C(x, y, 2)

Applications

Two-round succinct MPC
Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai16] [Boyle-Kohl-Scholl19]

[Roy-Singh21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgard-Orlandi-Scholl’22]

Multi-key FHE: Multi-input evaluation
in the CRS model

[Lopez-Alt-Tromer-Vaikuntanathan12]
[Wichs-Mukherjee16]

Client-Server HSS

Applications

y <
' ’ Two-round succinct MPC

‘o \

A

Private Information Retrieval

(Xp, Xg) < Share(crs,x) (ya,Yg) < Share(crs,y) (zp,2g) < Share(crs, z) Pseudorandom Correlation Generators

Existing client-server HSS

Common Reference String require correlated setup

[Boyle-Gilboa-Ishai16] [Boyle-Kohl-Scholl19]

[Roy-Singh21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgard-Orlandi-Scholl’22]

outy < Eval(crs, C, xa, YA, Z4) Eval(crs, C, x5, vg, 25) — outg [Wichs-Mukherjee"16]

Multi-key FHE: Multi-input evaluation
in the CRS model

[Lopez-Alt-Tromer-Vaikuntanathan12]

outs + outg = C(x, y, 2)

Client-Server HSS

‘o - q

A

(xa, Xg) < Share(crs,x) (ya,yg) < Share(crs,y) (za,zg) < Share(crs, z)

Common Reference String

outy < Eval(crs, C, xa, YA, Z4) Eval(crs, C, x5, vg, 25) — outg

outs + outg = C(x, y, 2)

Applications

Two-round succinct MPC
Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai16] [Boyle-Kohl-Scholl19]

[Roy-Singh21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgard-Orlandi-Scholl’22]

Multi-key FHE: Multi-input evaluation
in the CRS model

[Lopez-Alt-Tromer-Vaikuntanathan12]
[Wichs-Mukherjee16]

Goal: Client-server HSS in the CRS model
from assumptions not known to imply FHE

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Our Results

Unbounded polynomial number of clients

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Our Results

Contains NC!

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

DDH
DCR

Class groups

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

DDH
DCR

Class groups

Previously known only from LWE or i1 + DDH

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Client-Server HSS from Prior Works
(Require Correlated Setup)

DDH [Boyle-Gilboa-Ishai16]

[Orlandi-Scholl-Yakoubov’21]

DCR [Roy-Singh’21]

Class groups [Abram-Damgard-Orlandi-Scholl'22]

Previously known only from LWE or i® + DDH [Dodis-Halevi-Rothblum-Wichs"16]

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Client-Server HSS from Prior Works
(Require Correlated Setup)

Inverse polynomial

DDH [Boyle-Gilboa-Ishai16]
correctness error

[Orlandi-Scholl-Yakoubov’21]

DCR [Roy-Singh’21]

Class groups [Abram-Damgard-Orlandi-Scholl'22]

Previously known only from LWE or i® + DDH [Dodis-Halevi-Rothblum-Wichs"16]

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Client-Server HSS from Prior Works
(Require Correlated Setup)

Transparent setup DDH [Boyle-Gilboa-Ishai16]

[Orlandi-Scholl-Yakoubov’21]

DCR [Roy-Singh’21]

Transparent setup Class groups [Abram-Damgard-Orlandi-Scholl'22]

Previously known only from LWE or i® + DDH [Dodis-Halevi-Rothblum-Wichs"16]

Outline

Outline

Barriers to Removing Correlated Setup

Client-Server HSS with Correlated Setup

Client-Server HSS with Correlated Setup

(pk, sk) « KeyGen(1%)

(J

Client-Server HSS with Correlated Setup

(pk, sk) « KeyGen(1%)

u ek + ekg = sk

Client-Server HSS with Correlated Setup

(pk, sk) « KeyGen(1%)

u ek + ekg = sk

Client-Server HSS with Correlated Setup

(pk, sk) « KeyGen(1%)

u ek + ekg = sk

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai16]

ﬂ)’
@

ekB

3,"% (pk, sk) « KeyGen(1%)

u ek + ekg = sk

Client-Server HSS with Correlated Setup

g% (pk, sk) « KeyGen(1%)

u ek + ekg = sk

X

S @

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai16]

(pk, sk) « KeyGen(1%)
ek + ekg = sk

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

Client-Server HSS with Correlated Setup

;% (pk, sk) « KeyGen(1%)

u ek + ekg = sk

X

S @

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

— ekA ekB —
[C(x,)], «— Evalc Evale — [C(x,)],
— ct, ct, ct, ct, —

Any RMS program

Client-Server HSS with Correlated Setup

X

S @

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

QE (pk, sk) « KeyGen(1%)

u ek + ekg = sk

D ekA ekB —
[C(x,)], «— Evalc Evale — [C(x,)],
— ct, ct, ct, ct, —

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]
| -_—

~ (pk, sk) « KeyGen(1*)
ekp + ekg = sk

X

S @

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

D ekA ekB —
[C(xa }’)]A «— Evalc EvaIC - [C()C,)’)]B
— ct, ct, ct, ct, —

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

X

S

ct, < Encrypt(pk, x)

Approach
Modify input encoding —
to use the same
evaluation algorithm
+— ekA
[C(x,y)], «— Eval¢c
-« Ctx Cty

ﬂ)’
@

| -_—
g (pk, sk) < KeyGen(1*)
ekp + ekg = sk

Encrypt(pk, y) — ct,

ekB —

ct, ct, —

Eval.

— [C(x, ¥)]g

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber'25]

X Y

S @

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

Approach

Modify input encoding
to use the same
evaluation algorithm

— ekA ekB —
[C(xa }’)]A «— EvaIC EvaIC - [C(xa)’)]B
— ct, ct, ct, ct, —

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

X Y

S @

(pk,, sk;) < KeyGen(1%) KeyGen(1%) — (pk., sk»)

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

S @

(pk,, sk;) < KeyGen(1%) KeyGen(1%) — (pk., sk»)

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

S @

(pk,, sk;) < KeyGen(1%) KeyGen(1%) — (pk., sk»)

ct, « Encrypt(pk,, x) Encrypt(pk,,y) — ct,

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

S @

(pk,, sk;) < KeyGen(1%) KeyGen(1%) — (pk., sk»)

ct, ct,
ct, < Encrypt(pk;,, x) . < Encrypt(pk,,y) — ct,

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

S @

(pk,, sk;) < KeyGen(1%) KeyGen(1%) — (pk., sk»)

ct, ct,
ct, < Encrypt(pk,, x) . < Encrypt(pk,,y) — ct,

Inputs encrypted under

Encrypt(pk;,, x) . Evalc different keys

Encrypt(pk,, y)

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

& N

@

(pk,, sk;) < KeyGen(1%) t KeyGen(1%) — (pk., sk»)
t, C
ct, < Encrypt(pk;,, x) ¢ - < d Encrypt(pk,,y) — ct,
Cty Ctx

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

& N

@

(pk,, sk;) < KeyGen(1%) t KeyGen(1%) — (pk., sk»)
t, C
ct, < Encrypt(pk,, x) ¢ - < d Encrypt(pk,,y) — ct,
Cty Ctx

Synchronize ciphertexts under
different keys to a common key

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

& N

@

(pk,, sk;) < KeyGen(1%) t KeyGen(1%) — (pk., sk»)
s 5 t, c e
ct, < Encrypt(pk,, x) ¢ - < d Encrypt(pk,,y) — ct,

Cty Ctx

Synchronize ciphertexts under
different keys to a common key

ek ek + ekg = sk ekg
Encrypt(pk, x) Encrypt(pk, x)

Encrypt(pk, y) Encrypt(pk, y)

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

Common Reference String

X Y

& N

@

(pk,, sk;) < KeyGen(1%) t KeyGen(1%) — (pk., sk»)
e 5 t, c e
ct, < Encrypt(pk,, x) ¢ - < d Encrypt(pk,,y) — ct,

Cty Ctx

Synchronize ciphertexts under
different keys to a common key

«— ekp ek + ekg = sk ekg —
[C(xY)]) = Bvale Encrypt(pk, x) Encrypt(pk, x) Evale — [C(x,)]

Encrypt(pk, y) Encrypt(pk, y)

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’'25]

Common Reference String

X Y

& N

@

(pk,, ski) « KeyGen(1%)

... Ctx Cty
ct, < Encrypt(pk,, x) . < Encrypt(pk,,y) — ct,
Cty Ctx
Privately synchronize ciphertexts
sk under different keys to a common sk
key
«— ekp ek + ekg = sk ekg —
[C(x, }’)]A «— EvaIC o Encrypt(pk, X) Encrypt(pk, X) . EvaIC
Encrypt(pk, y) Encrypt(pk, y)

KeyGen(1*) — (pk,, sko)

— [C(x9 y)]B

Two-Key HSS

[Couteau-Devadas-H-Jain-Servan-Schreiber’25]

(pk,, ski) « KeyGen(1%)

Private synchronization is
barrier to extending to client-
server setting

[C(x,y)], «— Evalc

Sk1

— ekA

4

\4

Encrypt(pk, x)
Encrypt(pk, y)

Common Reference String

X Y

ﬂ
@

S

Privately synchronize ciphertexts
under different keys to a common
key

ek + ekg = sk

\4

ekB —>

Encrypt(pk, x) R
Encrypt(pk, y)

KeyGen(1*) — (pk,, sko)

Eval,

— [C(x9 y)]B

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

Barriers to Delegating Two-key HSS

Common Reference String

X Y

(pk,. sk;) < KeyGen(1") &

ﬂ KeyGen(1%) — (pk,, ska)

@

Barriers to Delegating Two-key HSS

Common Reference String

X Y
(pk,,sky) « KeyGen(1%) & ﬂ KeyGen(1%) — (pk,, ska)

@

Encrypt(pk;,, x) Encrypt(pk,, x)
Encrypt(pk,, y) Encrypt(pk,, y)

Barriers to Delegating Two-key HSS

Common Reference String

X Y
(pk,,sky) « KeyGen(1%) & ﬂ KeyGen(1%) — (pk,, ska)
Sk1 Skz
ekA k Et(..... k) E t(k) k ekB
~ Enhcr ,X) . Encr ,X)
Encrypt(pk,x) -« >k YPHPK, YPUPK, 2, Encrypt(pk, x)
- Encrypt(pk,,y) - Encrypt(pk,,y)
Encrypt(pk, y) Encrypt(pk, y)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

(pk,. sk;) < KeyGen(1") &

Sk1 Sk2

ﬂ KeyGen(1%) — (pk,, ska)

@

A Encrypt(pk,x) | CEnoryptok,) | sk
~ Ehcr ,X) - Encr ,X)
Encrypt(pk, x) <« - yP pkl - YP pkl AN Encrypt(pk, x)
Encrypt(pk, y) Encrypt(pk, y)

Revealing sk; compromises privacy of x Revealing sk, compromises privacy of y

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

Barriers to Delegating Two-key HSS

Common Reference String

X Y

X|+X =X & ﬂ

@

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

XI+X2:.X

(pk,, sk;) < KeyGen(1*)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

XI+X2:.X

(pk,, sk;) < KeyGen(1*)

Encrypt(pk,, x;) Encrypt(pk,, x,)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

Skl

Encrypt(pk,, x;) Encrypt(pk,, x,)

XI+X2:.X

(pk,, sk;) < KeyGen(1*)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

Skl

xl+X2:x

(pk,, sk;) < KeyGen(1*)

Encrypt(pk,, x;) Encrypt(pk,, x,)

Evaluation requires encryptions of all input

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

xl+X2:x

(pk,, sk;) < KeyGen(1*)

Encrypt(pk,, x;) Encrypt(pk,, x,)

Encrypt(pk,, x,) Encrypt(pk,, x;)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

XI+X2:.X

(pk,, sk;) < KeyGen(1*)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

XI+X2:.X

(pk,, sk;) < KeyGen(1*)
(pk,, sko) < KeyGen(1*)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

XI+X2:.X

(pk,, sk;) < KeyGen(1*)
(pk,, sko) < KeyGen(1*)

Encrypt(pk,, x;) Encrypt(pk,, x;)

Encrypt(pk,, x,) Encrypt(pk,, x,)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& N

@

XI+X2:.X

(pk,, sk;) < KeyGen(1*)
(pk,, sko) < KeyGen(1*)

Skl Sk2
Encrypt(pk,, x;) Encrypt(pk,, x;)

Encrypt(pk,, x,) Encrypt(pk,, x,)

Barriers to Delegating Two-key HSS

Common Reference String

X Y
YT o =X M w+n=y
(pk,, sky) « KeyGen(1%) “ KeyGen(1%) — (Pk,, sk3)
(pk,, sko) < KeyGen(1*) KeyGen(1%) — (pk ,sk,)

Encrypt(pk,, x;) Encrypt(pk,, x;)
Encrypt(pk,, x,) Encrypt(pk,, x,)

Barriers to Delegating Two-key HSS

Common Reference String

X Y
YT o =X M w+n=y
(pk,, sky) « KeyGen(1%) “ KeyGen(1%) — (Pk,, sk3)
(pk,, sko) < KeyGen(1*) KeyGen(1%) — (pk ,sk,)

Encrypt(pk,, x;) Encrypt(pk,, x;)
Encrypt(pk,, x,) Encrypt(pk,, x,)
Encrypt(pk., ;) Encrypt(pk,, y;)
Encrypt(pk ,y,) Encrypt(pk ,y,)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& ﬂ VitV =Y

(pk,, sky) « KeyGen(1%) “ KeyGen(1%) — (Pk,, sk3)
(pk,, sko) < KeyGen(1*) KeyGen(1%) — (pk ,sk,)

xl+X2:x

Encrypt(pk,, x;) Encrypt(pk,, x;)
Encrypt(pk,, x,) Encrypt(pk,, x,)
Encrypt(pk., ;) Encrypt(pk,, y;)
Encrypt(pk ,y,) Encrypt(pk ,y,)

Requires evaluation under
four keys!

Barriers to Delegating Two-key HSS

xl+X2:x

(pk,, sk;) < KeyGen(1*)
(pk,, sko) < KeyGen(1*)

Private synchronization —
Unclear if two-key HSS even yields
two-client two-server HSS

Encry
Encry

pt(
pt(

Common Reference String

X

S

oK, X1)

0K, X5)

Encrypt(pk., ;)

Encry

ot(

9y2)

Y

ﬂ VitV =Y

“ KeyGen(1*) — (pk,, sks)

KeyGen(1*) — (

Encrypt(pkl, X1)
Encrypt(pkz, X5)
Encrypt(pk,, y;)
Encrypt(pk,, y,)

Requires evaluation under

four keys!

b

)

Barriers to Delegating Two-key HSS

Common Reference String

X Y

& ﬂ VitV =Y

(pk,, sky) « KeyGen(1%) “ KeyGen(1%) — (Pk,, sk3)
(pk,, sko) < KeyGen(1*) KeyGen(1%) — (pk ,sk,)

xl+X2:x

Private synchronization —
Unclear if two-key HSS even yields
two-client two-server HSS

Encrypt(pkl,xl) Encrypt(okl, X1)

Encrypt(pk,, x,) Encrypt(pk,, x,)

Public synchronization seems to Encryot(pk3,) Encrypt(°k3’)
require three-party NIKE Encrypt(pk ,y,) Encrypt(pk ,y,)

Requires evaluation under
four keys!

Client-Server HSS with Correlated Setup

X

S @

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

QE (pk, sk) « KeyGen(1%)

u ek + ekg = sk

D ekA ekB —
[C(x,)], «— Evalc Evale — [C(x,)],
— ct, ct, ct, ct, —

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key

Client-Server HSS with Correlated Setup

Alternative approach to evaluation that does not require all inputs to be
encrypted under the same key

Outline

Barriers to Removing Correlated Setup

Extensions

HSS for Multiplication is All You Need

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

-y
“

o

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

-y
“

o

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

-y
“

[xy]A [xylg

HSS for Multiplication is All You Need

Two-party HSS for

multiplication in the CRS model Two-party HSS for

multiplication in the CRS model

Common Reference String

-y
4

o

[xy]a [xylg

Non-interactive multiplication

HSS for Multiplication is All You Need

Non-interactive multiplication
Two-party HSS for

multiplication in the CRS model

Common Reference String

-
Ly

o

[xy]a [xylg

Non-interactive multiplication

HSS for Multiplication is All You Need

T

Two-client two-server HSS for

Non-interactive multiplication multiplication in the CRS model

Common Reference String

\

[xy]A [xylg

HSS for Multiplication is All You Need

T

Two-client two-server HSS for

Non-interactive multiplication multiplication in the CRS model

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
4

HSS for Multiplication is All You Need

T

Two-client two-server HSS for

Non-interactive multiplication multiplication in the CRS model

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

HSS for Multiplication is All You Need

T

Two-client two-server HSS for

Non-interactive multiplication multiplication in the CRS model

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

[xy]a [xylg

HSS for Multiplication is All You Need

T

Delegatable non-interactive

Non-interactive multiplication .
multiplication

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

[xy]a [xylg

HSS for Multiplication is All You Need

. . T Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String
- 7Y & 7Y

[xy]aA [xylg a E

[xy]a [xylg

HSS for Multiplication is All You Need

. . . Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String

o é o é e o 9
[xy]a - [xy]g W W
B B B B

[xy]a [xy]g [C(x, y,2)] [C(x,y,2)]g

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

-y
F

o

[xy]A [xylg

Non-Interactive Multiplication

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

G p=|G| g h

o

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

G p=|G| g h

I Zp X
= (W', 8"- g%

=)
@

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

G p=|G| g h

I Zp X
= (W', 8"- g%

=)
@

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")

=)
@

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")

=)
@

r ensures privacy of x
u ensures privacy of y

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")

=)
@

(h-g")

YA

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")

=)
@

7A (hu'gy)

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")

=)
@

7A (hu'gy)

Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

P
X o= (0, 8" g"
8
VA = (hu ‘ 8y)
ri oy, gXy
DDLog E — h 5 5 — gxy
! YA hr - gyr
[xy],

Distributed Discrete Log (DDLog): Non-interactively
convert divisive shares into additive shares

[Boyle-Gilboa-Ishai16]

HSS for Multiplication is All You Need

T

Delegatable non-interactive

Non-interactive multiplication .
multiplication

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

[xy]a [xylg

Delegating Non-Interactive Multiplication

G p=|G| g h

r<—Zp
A — hr, F. oX A~
* g (h', g - g") % g
ra=(n"-g") ro_ () sme)
DDLog YA (hu . gy)r

[xy],

Delegating Non-Interactive Multiplication

r<— /7

P
X 8 (h', g -g")
a=(h"-g) o (1) (s58Y) oo
DDLog yA (hu . gy)r
[xy],

Observation: Decoding is “linear” in
the received messages

Delegating Non-Interactive Multiplication

Vo Zp
X 8 (h', 8" - g")
A (4 BTy
DDLog TA (B - g)
[xy],

Observation: Decoding is “linear” in
the received messages

Using shares of r, u, and y to decode
gives divisive shares of xy

Delegatable Non-Interactive Multiplication

G p=|G| g h

ﬂ)’
@

= (b, g"- g")

=)
@

Delegatable Non-Interactive Multiplication

G p=|G| g h

Delegatable Non-Interactive Multiplication

G p=|G| g h

ﬂ
@

= (b, g"- g")

=)
@

Delegatable Non-Interactive Multiplication

G p=|G| g h

Delegatable Non-Interactive Multiplication

G p=|G| g h

Delegatable Non-Interactive Multiplication

G p=|G| g h

g[xy]B

— gxy

g—[x)’]A

Delegatable Non-Interactive Multiplication

G p=|G| g h

ﬂ
@

g[xy]B

— gxy

g—[x)’]A

DDLog

» [xylg

HSS for Multiplication is All You Need

Linear Decoding

T

Delegatable non-interactive
multiplication

Non-interactive multiplication

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

[xy]a [xylg

HSS for Multiplication is All You Need

Linear Decoding

. . . Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String

o @ & @ o 2

[xy] A [xy] B ?? w

[xy]a [xy]g [C(x, y,2)] [C(x,y,2)]g

Towards Evaluating RMS Programs

Multiplying inputs with intermediate values of the computation suffices
to evaluate RMS programs

NIM can be used to multiply inputs with intermediate values

Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X X X3 Xy

Memory

Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X X X3 Xy

Load Load

Memory X X

Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X X X3 Xy
Load Load
Memory X1 X y
Add

y=XtX

Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X X X3 Xy

Load Load Mult = 2=V * X3

Memory X1 X y Z

Add

y=XtX

Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X X X3 Xy

Load Load Mult = 2=V * X3

Memory X1 X y Z

Add Output
y=Xx+Xx
{ = (Xl +.XZ) ’X3

Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X1 X9 X3 X4
Load Load — L
Mult -1 < =Y X3 Cannot multiply two
memory values
Memory X1 X y Z
Add Output
y=X+x

Z=(X1+.XZ)’.X:3

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation
Inputs X1 X X3 Xy
X Xy X3 X4 X X5
Load Load

Mult 1 < =Y " X3

Memory X1 XD y Z

Add Output
y=X+Xx
<l = (Xl +.XZ) ’X3

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation
Inputs A1 X X3 X,
X Xy, X3 Xy X X,
Load Load Mult = 2=V - X3
Load Load Load Load
Memory X1 XD Y “ [x1]a [2)A [x1lg 1X]g
Add Output
y — Xl —+ ’XZ

Z:(XI+XZ)'X3

Distributed Evaluation of RMS Programs

Inputs

Memory

RMS Programs

X X5 X3 X4
Load Load Mult = 2= - X3
X1 X2 Y <
Add Output
y =X+ X

Z:(XI+XZ)'X3

Load Load

[x1]a [ola [Y]A
Add

HSS Evaluation

Lload Load

[x1lg 1%lg [ylg
Add

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

Inputs A1 X X3 X,
Xl x2 X3 X4 Xl x2 X3 X4
Load Load Mult = 2= - X3
Load Load Mult Load Load Mult
Memory | ¥ X) y Z [xXla [l V1A [z]A xlg %l g [z]q
Add Add
Add Output
y — Xl —+ ’XZ

Z:(XI+XZ)'X3

Distributed Evaluation of RMS Programs

Inputs

Memory

RMS Programs

X X5 X3 X4
Load Load Mult = 2= - X3
X1 X2 Y <
Add Output
y =X+ X

Z:(XI+XZ)'X3

HSS Evaluation

Xl x2 X3 X4 xl x2 X3 .X4
Lload Load Mult Lload Load Mult
[x1]A [XQ]A [)’]A [Z]A [xl] B [xz] 3] 8 |Z] B

Add Add

Challenge: Evaluating Mult instructions

Additives shares = easy to evaluate Add instructions

Load instructions will follow from Mult instructions

Distributed Evaluation of RMS Programs

Input share of x

Goal: Memory share of 7 ., Memory share of zx

Delegatable Non-Interactive Multiplication

G p=|G| g h

DDLog

» [xylg

Extending Delegatable NIM

G p=|G]

r<— /7

= (b, g"- g")

=)
@

[z - 7] faﬁ

ERSIPIERTN

g h

Extending Delegatable NIM

G p=|G]
r<—Zp X
= (h', 8" g%

[z - 7] faﬁ
B,

[z -)’]A [z - M]A

=)
@

(h-)"
(h”) [z-ula (g,, . gx)[Z'Y]A

g_[Z’XY]A —_

g h

Extending Delegatable NIM

G p=|G| g h

I Zp X
= (W', 8"- g%

[z - 7] faﬁ
B,

[z -)’]A [z - M]A

=)
@

(h-)"
(h”) [z-ula (g,, . gx)[Z'Y]A

g_[Z’XY]A —_

Extending Delegatable NIM

G p=|G| g h

I Zp X
= (W', 8"- g%

[z - 7] %\BE
B,

[z -)’]A [z - M]A

=)
@

(h-)"
(h”) [z-ula (g,, . gx)[Z°Y]A

DDLog

—lzxyly — DDLog
g V1A e

[Z - xY]p <

» [z xylg

Extending Delegatable NIM

G p=|G| g h

X
x 8 r < Encode(x) &

[z - 7] %\BE
B,

[z -)’]A [z - M]A

(h-)"
(h”) [z-ula (g,, . gx)[Z°Y]A

DDLog DDLog

[2 - Xy]a - g =

» [z xylg

Extending Delegatable NIM

G p=|G]

X
x 8 r < Encode(x) &

[z - 7] %\BE
B,

[z -)’]A [z - M]A

(h-)"
(h”) [z-ula (g,, . gx)[Z°Y]A

DDLog

[2 - Xy]a - g =

g h

Extending Delegatable NIM

Common Reference String

X
x 8 r < Encode(x) &
[z - 7] X 8 ﬁ

ERSIINIERTIIN

Extending Delegatable NIM

Common Reference String

X
x 8 r < Encode(x) &
[z - 7] X 8 ﬁ

ERSIINIERTIIN

Extending Delegatable NIM

Common Reference String

1

y:
‘2 Hash(l) —» u ‘

X
x 8 r < Encode(x) &

Extending Delegatable NIM

Common Reference String

1

y:
‘2 Hash(l) —» u ‘

X
x 8 r < Encode(x) &

Extending Delegatable NIM

Common Reference String

1

y:
‘2 Hash(l) —» u ‘

X
x 8 r < Encode(x) &

Input share of x

Goal: Memory share of 7 ., Memory share of zx

Attempt at Evaluating RMS Programs

Common Reference String
x&

Attempt at Evaluating RMS Programs

Common Reference String
x&

Defined in CRS

Hash(1) —» u ‘

Attempt at Evaluating RMS Programs

Common Reference String

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: H [7 - 7]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: H [7 - 7]

] (o] eu] — 8

> |z x]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: H [7 - 7]

] (o] eu] — 8

> |z x]

u-lz] =lzu]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: H [7 - 7]

Memory share of zx: [zx]

] (o] eu] — 8

> |z x]

u-lz] =lzu]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: | 7] [7 - 7]

Memory share of zx: [zx] |zx - 7]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: | 7] [7 - 7]

Memory share of zx: [zx] |zx - 7]

fa‘

Need [zx - r]| for

S » [zx - Xx]
subsequent multiplications

[zx] [zx - r] [zx - u]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: | 7] [7 - 7]

Memory share of zx: [zx] |zx - 7]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

‘ s <« Hash(r)
. wm, (ol

Memory share of z: H [7 - 7]

Memory share of zx: [zx] |zx - 7]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

‘ s <« Hash(r)
. wm, (ol

Memory share of z: H [7 - 7]

Memory share of zx: [zx] |zx - 7]

=)
@

» |zr - x]

lzr] [zr] [z5]

Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

‘ s <« Hash(r)
. wm, (ol

Memory share of z: H [7 - 7]

Memory share of zx: [zx] |zx - 7]

» |zr - x]

lzr] [zr] [z5]

\

Attempt at Evaluating RMS Programs

Common Reference String

X
X r < Encode(x) '
8 \

Py S < Hash(r)

Memory share of z: | 7] [7 - 7]

Memory share of zx: [zx] |zx - 7]

X 7
8 ., [zr-x]

[zr] [zr] [z 5] Solution: Encryption scheme with

linear decryption

Encryption with Linear Decryption

G p=|G| g

S

Encryption with Linear Decryption

G p=|G| g

pk = g_Sk sk « Zp X&

Encryption with Linear Decryption

G p=|G| g

pk = g_Sk sk « Zp X&
r<— J/

Ct, = (gr, pkr ' gx> p

Encryption with Linear Decryption

G p=|G| g

pk =g~ sk« Z, x&
ct, = (g’”, pk’ - gx) r— 27

P

X

k
Decryption is “linear”: (g”)s pk - g¥ = gl'K.gTrsKkL oY = ¢

Encryption with Linear Decryption

G p=|G| g

pk = g_Sk sk « Zp X&
r<— J/

Ct, = (gr, pkr ' gx) p

X

k
Decryption is “linear”: (g”)s pk - g¥ = gl'K.gTrsKkL oY = ¢

(2], [z-sk], ct, ﬁ E cty [z-sklg [zlg

Encryption with Linear Decryption

G p=|G| g

pk = g_Sk sk « Zp x&
r<— J/

Ct, = (gr, pkr ' gx) p

X

k
Decryption is “linear”: (g”)s pk - g¥ = gl'K.gTrsKkL oY = ¢

(2], [z-sk], ct, E E cty [z-sklg [zlg

g[Z°X]A — <gr) [2-skla : (pk” : gx)[Z]A

Encryption with Linear Decryption

G p=|G| g

pk = g7 sk « Z, x&
r«— /4

Ct, = (gr, pkr ' gx) p

X

k
Decryption is “linear”: (g”)s pk - g¥ = gl'K.gTrsKkL oY = ¢

(2], [z-sk], ct, E E cty [z-sklg [zlg

g[Z.x]A — <gr)[Z‘Sk]A . (pkr . gx)[Z]A (gr)—[z-sk]g . (pkr gx>—[Z]B — g_[Z'X]B

Encryption with Linear Decryption

G p=|G| g

pk = g_Sk sk « Zp x&
r<— J/

Ct, = (gr, pkr ' gx) p

X

k
Decryption is “linear”: (g”)s pk - g¥ = gl'K.gTrsKkL oY = ¢

(2], [z-sk], ct, E E cty [z-sklg [zlg

(2 - X 4DDLog g[Z'X]A _ (g,,) [2-sk]a (pkr . gx)[z]A (gr)_[Z’Sk]B . (pkr . gx)_[Z]B _ g_[Z‘X]B DDLog> (2 - x]g

Encryption with Linear Decryption

G p=|G| g

(pk, sk) « KeyGen(1%4) X&
ct, < Encrypt(pk, x)

(2], [z-sk], ct, E E cty [z-sklg [zlg

Encryption with Linear Decryption

G p=|G| g

(pk, sk) « KeyGen(1%4) X&
ct, < Encrypt(pk, x)

(2], [z-sk], ct, E E cty [z-sklg [zlg

Switch from [z sk] to [z x]

A Simplification of Delegatable NIM

Common Reference String

X
x 8 r < Encode(x) &
[z - 7] X 8 ﬁ

ERSIINIERTIIN

A Simplification of Delegatable NIM

Simplification: Hash random
Common Reference String values or public constants

y
‘2 Hash(y) — u ‘

X
X 8 r «— Encode(x) &
= g el

ERSIPIERTN

A Simplification of Delegatable NIM

Simplification: Hash random
Common Reference String values or public constants

y
‘2 Hash(y) — \u\ ‘

X
X 8 r «— Encode(x) &
= g el

ERSIPIERTN

A Simplification of Delegatable NIM

Simplification: Hash random
Common Reference String values or public constants

y
‘2 Hash(y) — \u\ ‘

X
X 8 r «— Encode(x) &

A Simplification of Delegatable NIM

Simplification: Hash random
Common Reference String values or public constants

Y

Hash(y) — ‘

ﬂ
@

X
X 8 r «— Encode(x) &

A Simplification of Delegatable NIM

Simplification: Hash random
Common Reference String values or public constants

Y

Hash(y) — ‘

ﬂ
@

X
X 8 r «— Encode(x) &

Multiply [z y] and x
(using [z 7])

Evaluating RMS Programs

Common Reference String

o
=

Evaluating RMS Programs

Common Reference String

Evaluating RMS Programs

Common Reference String

N

X1 r1 <« Encode(x,)

Evaluating RMS Programs

Common Reference String

N

X1 r1 <« Encode(x,)

X
(pk,, sk;) < KeyGen(1%) &

‘ < Hash(sky)

ct,, < Encrypt(pk,,)

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

Xq ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

Xq ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,

Memory share of : | 7] [z skq] [z sk-]

Evaluating RMS Programs

Common Reference String .
X, . " < Encode(x)) Encode(x,) —» » X 8

X1 ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,

Memory share of : | 7] [z skq] [z sk-]

Memory share of 7 x;:

Evaluating RMS Programs

Common Reference String .
X, . " < Encode(x)) Encode(x,) —» » X 8

X1
(pk,, ski) « KeyGen(1%) & KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,

Memory share of : | 7] [z skq] [z sk-]

Memory share of 7 x;:

1) Switch to [z ry]: [z] [zskq] > [zr]

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

X1 ﬂx2
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,

Memory share of : | 7] [z skq] [z sk-]

Memory share of 7 x;: [zx]

1) Switch to [z r{]: [z] [zskq] cn > |zr]

%, I

> |z-x]

2) Multiply [z] with x;: [z] |z 1’1]

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

X1
(pk,, ski) « KeyGen(1%) & KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,

Memory share of : | 7] [z skq] [z sk-]

Memory share of 7 x;: [zx]

1) Switch to [z ry]: [z] [zskq] > [zr]

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

X1 ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,
Memory share of z: |Z] [7skq] [z sk-]
Memory share of 7 x;: [zx] [z, ski]
. ct,
1) Switch to [z ry]: [z] [z skq] — [zr]

3) Multiply [z sk;] with x;: [zsk{] [z 7]

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

X1 ﬂx2
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,
Memory share of z: |Z] [7skq] [z sk-]
Memory share of 7 x;: [zx] [z, ski]

1) Switch to [z r{]: [z] [zskq] cn > |zr]

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

X1 ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,
Memory share of z: |Z] [7skq] [z sk-]
Memory share of 7 x;: [zx] [zx,ski] [zx; sko]
. ct,
1) Switch to [z ry]: [z] [zskq] s [zry]

4) Multiply [z sko] with x;: [zsky] [z 7]

Evaluating RMS Programs

Common Reference String .
X, . " < Encode(x)) Encode(x,) —» » X 8

X1 ﬂx2
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,
Memory share of z: |Z] [7skq] [z sk-]
Memory share of 7 x;: [zx] [zx,ski] [zx; sko]

Invariant preserved!

Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

X1 ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,,) Encrypt(pk,, r,) = ct,,
Memory share of z: |Z] [7skq] [z sk-]
Memory share of 7 x;: [zx] [zx,ski] [zx; sko]

Invariant preserved! « Similar approach to multiply with x,

o Extends naturally to arbitrary
number of clients

HSS for Multiplication is All You Need

Encryption with

Linear Decoding Linear Decryption
. . T Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String
o 7y S 7y 2 & 9
o o Q0

[xy]A [xy]B E E E E

[Xy]A [xy]g [C(x, y,2)] [C(x,y,2)]g

HSS for Multiplication is All You Need

Implied by NIM with
linear decoding

Encryption with

Linear Decoding Linear Decryption
. . T Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String

e Z
o 9

@ S

o @ S

[xy]A [xylg

[Xy]A [xy]g [C(x, y,2)] [C(x,y,2)]g

NIM with Linear Decoding is All You Need

Linear Decoding

. . . Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String

o é o é e o 8
[xy]a - [xy]g M W
B B B B

[xy]a [xylg [C(x, y,2)] [C(x,y,2)]g

Outline

Barriers to Removing Correlated Setup

Our Approach

Succinct Client-Server HSS

Common Reference String

outp outg

OUtA + OUtB —_ C(XI’XZ’ .X3)

Succinct Client-Server HSS

Common Reference String

Succinct Client-Server HSS

Common Reference String

Succinct Client-Server HSS

Common Reference String

Succinct Client-Server HSS

Common Reference String

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)

Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS Common Reference String

model for RMS programs

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)

Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS Common Reference String

model for RMS programs

DDH, DCR, and
class groups

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)

Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS Common Reference String

model for RMS programs

Previously required
DDH, DCR, and correlated setup or

class groups supported only two parties

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)

Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS Common Reference String

model for RMS programs

Previously required
DDH, DCR, and correlated setup or

class groups supported only two parties

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

Communication:

ﬁ O(/N) - poly(4) bits

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)

Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS
model for RMS programs

Previously required
DDH, DCR, and correlated setup or

class groups supported only two parties

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

Private long inputs

C= Z RMS(xy, ..., x,,) - Y/
i

Common Reference String

Communication:

ﬁ O(/N) - poly(4) bits

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)

Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS
model for RMS programs

Previously required
DDH, DCR, and correlated setup or

class groups supported only two parties

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

Private long inputs

C= Z RMS(xy, ..., x,,) - Y/
i

Public long inputs

C —_— RMS(Xl, ...,xm) * P/pOIY(Yl, ceoo Ym)

Common Reference String

Communication:

ﬁ O(/N) - poly(4) bits

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)

Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS
model for RMS programs

Previously required

DDH, DCR, and correlated setup or
class groups supported only two parties
H

Private long inputs

C= Z RMS(xy, ..., x,,) - Y/
i

Public long inputs

C —_— RMS(xl, ...,xm) * P/pOIY(Yl, ceoo Ym)

Common Reference String

Communication:

ﬁ O(/N) - poly(4) bits

outp outp

OUtA + OUtB —_ C(XI,X2, .X3, Yl’ Yz, Y3)

Key Ingredient: Combine delegation and
input-succinctness properties of NIM

Thank You

