
Client-Server Homomorphic Secret Sharing in
the CRS Model

NTT CIS Seminar

Damiano Abram Geoffroy Couteau Lalita Devadas Aditya Hegde

Abhishek Jain Lawrence Roy Sacha Servan-
Schreiber

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

x𝖠 x𝖡

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡) → 𝗈𝗎𝗍𝖡

x𝖠 x𝖡

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡) → 𝗈𝗎𝗍𝖡

Correctness: 𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x)

x𝖠 x𝖡

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡) → 𝗈𝗎𝗍𝖡

Correctness: 𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x)

Security: ensures privacy of x𝖠 x
 ensures privacy of x𝖡 x

x𝖠 x𝖡

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡) → 𝗈𝗎𝗍𝖡

Correctness: 𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x)

Security: ensures privacy of x𝖠 x
 ensures privacy of x𝖡 x

x𝖠 x𝖡

Succinctness: Size of and are
independent of

x𝖠 x𝖡
C

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡) → 𝗈𝗎𝗍𝖡

Correctness: 𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x)

Security: ensures privacy of x𝖠 x
 ensures privacy of x𝖡 x

HSS

x𝖠 x𝖡

FHE

x
𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(x)

𝖼𝗍x

𝖼𝗍C(x) ← 𝖤𝗏𝖺𝗅(C, 𝖼𝗍x)

Succinctness: Size of and are
independent of

x𝖠 x𝖡
C

Homomorphic Secret Sharing (HSS)
[Boyle-Gilboa-Ishai’16]

x
(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡) → 𝗈𝗎𝗍𝖡

Correctness: 𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x)

Security: ensures privacy of x𝖠 x
 ensures privacy of x𝖡 x

HSS

x𝖠 x𝖡

FHE

x
𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(x)

𝖼𝗍x

𝖼𝗍C(x) ← 𝖤𝗏𝖺𝗅(C, 𝖼𝗍x)

Succinctness: Size of and are
independent of

x𝖠 x𝖡
C

HSS is known from assumptions not
known to imply FHE

Client-Server HSS

x y z

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Applications

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Applications

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Round 1: Share inputs

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Applications

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Round 1: Share inputs

Round 2: Reconstruct output

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Applications

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Applications

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai’16]
[Orlandi-Scholl-Yakoubov’21][Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl’22]

[Boyle-Kohl-Scholl’19]

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

(𝗉𝗄, 𝖾𝗄𝖠, 𝖾𝗄𝖡) ← 𝖲𝖾𝗍𝗎𝗉(1λ)

𝖾𝗄𝖠 𝖾𝗄𝖡

Applications

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai’16]
[Orlandi-Scholl-Yakoubov’21][Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl’22]

[Boyle-Kohl-Scholl’19]

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

(𝗉𝗄, 𝖾𝗄𝖠, 𝖾𝗄𝖡) ← 𝖲𝖾𝗍𝗎𝗉(1λ)

𝖾𝗄𝖠 𝖾𝗄𝖡

Applications

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai’16]
[Orlandi-Scholl-Yakoubov’21][Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl’22]

[Boyle-Kohl-Scholl’19]

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(𝖾𝗄𝖠, C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(𝖾𝗄𝖡, C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

(𝗉𝗄, 𝖾𝗄𝖠, 𝖾𝗄𝖡) ← 𝖲𝖾𝗍𝗎𝗉(1λ)

𝖾𝗄𝖠 𝖾𝗄𝖡

Applications

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai’16]
[Orlandi-Scholl-Yakoubov’21][Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl’22]

[Boyle-Kohl-Scholl’19]

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(𝖾𝗄𝖠, C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(𝖾𝗄𝖡, C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

(𝗉𝗄, 𝖾𝗄𝖠, 𝖾𝗄𝖡) ← 𝖲𝖾𝗍𝗎𝗉(1λ)

𝖾𝗄𝖠 𝖾𝗄𝖡

Applications

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai’16]
[Orlandi-Scholl-Yakoubov’21][Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl’22]

[Boyle-Kohl-Scholl’19]

Multi-key FHE: Multi-input evaluation
in the CRS model

[López-Alt–Tromer–Vaikuntanathan’12]
[Wichs-Mukherjee’16]

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝖼𝗋𝗌, x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝖼𝗋𝗌, y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝖼𝗋𝗌, z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(𝖼𝗋𝗌, C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(𝖼𝗋𝗌, C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Applications

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai’16]
[Orlandi-Scholl-Yakoubov’21][Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl’22]

[Boyle-Kohl-Scholl’19]
Common Reference String

Multi-key FHE: Multi-input evaluation
in the CRS model

[López-Alt–Tromer–Vaikuntanathan’12]
[Wichs-Mukherjee’16]

Client-Server HSS

x y z

(x𝖠, x𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝖼𝗋𝗌, x) (y𝖠, y𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝖼𝗋𝗌, y) (z𝖠, z𝖡) ← 𝖲𝗁𝖺𝗋𝖾(𝖼𝗋𝗌, z)

𝗈𝗎𝗍𝖠 ← 𝖤𝗏𝖺𝗅(𝖼𝗋𝗌, C, x𝖠, y𝖠, z𝖠) 𝖤𝗏𝖺𝗅(𝖼𝗋𝗌, C, x𝖡, y𝖡, z𝖡) → 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x, y, z)

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Applications

Existing client-server HSS
require correlated setup

[Boyle-Gilboa-Ishai’16]
[Orlandi-Scholl-Yakoubov’21][Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl’22]

[Boyle-Kohl-Scholl’19]

Goal: Client-server HSS in the CRS model
from assumptions not known to imply FHE

Common Reference String

Multi-key FHE: Multi-input evaluation
in the CRS model

[López-Alt–Tromer–Vaikuntanathan’12]
[Wichs-Mukherjee’16]

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Unbounded polynomial number of clients

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

Contains 𝖭𝖢1

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

DDH

DCR

Class groups

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

DDH

DCR

Class groups

Previously known only from LWE or + DDH [Dodis-Halevi-Rothblum-Wichs’16]i𝒪

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

DDH

DCR

Class groups

Previously known only from LWE or + DDH [Dodis-Halevi-Rothblum-Wichs’16]i𝒪

Client-Server HSS from Prior Works
(Require Correlated Setup)

[Boyle-Gilboa-Ishai’16]

[Orlandi-Scholl-Yakoubov’21]
[Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl'22]

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

DDH

DCR

Class groups

Previously known only from LWE or + DDH [Dodis-Halevi-Rothblum-Wichs’16]i𝒪

Client-Server HSS from Prior Works
(Require Correlated Setup)

[Boyle-Gilboa-Ishai’16]

[Orlandi-Scholl-Yakoubov’21]
[Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl'22]

Inverse polynomial
correctness error

Our Results

Multi-client two-server HSS in the CRS model for evaluating RMS Programs

DDH

DCR

Class groups

Previously known only from LWE or + DDH [Dodis-Halevi-Rothblum-Wichs’16]i𝒪

Client-Server HSS from Prior Works
(Require Correlated Setup)

[Boyle-Gilboa-Ishai’16]

[Orlandi-Scholl-Yakoubov’21]
[Roy-Singh’21]

[Abram-Damgård-Orlandi-Scholl'22]

Transparent setup

Transparent setup

Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions

Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

𝖾𝗄𝖠 𝖾𝗄𝖡

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

𝖾𝗄𝖠 𝖾𝗄𝖡

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

𝖾𝗄𝖠 𝖾𝗄𝖡

x y

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

𝖾𝗄𝖠 𝖾𝗄𝖡

x y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

𝖾𝗄𝖠 𝖾𝗄𝖡

x y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

𝖾𝗄𝖠 𝖾𝗄𝖡

x y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Any RMS program

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Approach

Modify input encoding
to use the same

evaluation algorithm

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Approach

Modify input encoding
to use the same

evaluation algorithm

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y
𝖼𝗍x 𝖼𝗍y

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y
𝖼𝗍x 𝖼𝗍y

𝖤𝗏𝖺𝗅C𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

Inputs encrypted under
different keys

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y

𝖼𝗍y 𝖼𝗍x

𝖼𝗍x 𝖼𝗍y

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y

𝖼𝗍y 𝖼𝗍x

Synchronize ciphertexts under
different keys to a common key

𝖼𝗍x 𝖼𝗍y

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y

𝖼𝗍y 𝖼𝗍x

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄

Synchronize ciphertexts under
different keys to a common key

𝖼𝗍x 𝖼𝗍y

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Common Reference String

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y

𝖼𝗍y 𝖼𝗍x

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Synchronize ciphertexts under
different keys to a common key

𝖼𝗍x 𝖼𝗍y

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

Common Reference String

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Privately synchronize ciphertexts
under different keys to a common

key
𝗌𝗄1 𝗌𝗄2

𝖼𝗍x 𝖼𝗍y

𝖼𝗍y 𝖼𝗍x

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

Two-Key HSS
[Couteau–Devadas–H–Jain–Servan-Schreiber’25]

x y

Common Reference String

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Privately synchronize ciphertexts
under different keys to a common

key
𝗌𝗄1 𝗌𝗄2

Private synchronization is
barrier to extending to client-

server setting

𝖼𝗍x 𝖼𝗍y

𝖼𝗍y 𝖼𝗍x

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y) → 𝖼𝗍y

Barriers to Delegating Two-key HSS

x y

Common Reference String

Barriers to Delegating Two-key HSS

x y

Common Reference String

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

Barriers to Delegating Two-key HSS

x y

Common Reference String

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

𝗌𝗄2 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡
𝗌𝗄1𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

x y

Common Reference String

𝗌𝗄2𝗌𝗄1

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

𝗌𝗄2 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡
𝗌𝗄1𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

x y

Common Reference String

𝗌𝗄2𝗌𝗄1

Revealing compromises privacy of 𝗌𝗄1 x Revealing compromises privacy of 𝗌𝗄2 y

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

x y

Common Reference String

Barriers to Delegating Two-key HSS

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2)

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2)

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝗌𝗄1

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2)

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝗌𝗄1

Evaluation requires encryptions of all input

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2)

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝗌𝗄1

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝗌𝗄1

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗌𝗄2

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

Requires evaluation under
four keys!

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

Requires evaluation under
four keys!

Private synchronization
Unclear if two-key HSS even yields

two-client two-server HSS

⟹

x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

Requires evaluation under
four keys!

Private synchronization
Unclear if two-key HSS even yields

two-client two-server HSS

⟹

Public synchronization seems to
require three-party NIKE

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key

Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key

Alternative approach to evaluation that does not require all inputs to be
encrypted under the same key

Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions

HSS for Multiplication is All You Need

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

x y

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

x y

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

x y

[xy]𝖠 [xy]𝖡

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Two-party HSS for
multiplication in the CRS model

Non-interactive multiplication

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Two-party HSS for
multiplication in the CRS model

Non-interactive multiplication

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Two-client two-server HSS for
multiplication in the CRS model

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Two-client two-server HSS for
multiplication in the CRS model

Common Reference String

x y

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Two-client two-server HSS for
multiplication in the CRS model

Common Reference String

x y

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Two-client two-server HSS for
multiplication in the CRS model

Common Reference String

x y

[xy]𝖠 [xy]𝖡

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x y

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #̂x ̂y #

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #̂x ̂y #

 ensures privacy of r x
 ensures privacy of u y

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #̂x ̂y #

γ𝖠 = (hu ⋅ gy)r

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #̂x ̂y #

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #̂x ̂y #

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

γ𝖡

γ𝖠
=

hr⋅u ⋅ gr⋅y ⋅ gx⋅y

hu⋅r ⋅ gy⋅r
= gxy

Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #̂x ̂y #

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

γ𝖡

γ𝖠
=

hr⋅u ⋅ gr⋅y ⋅ gx⋅y

hu⋅r ⋅ gy⋅r
= gxy

Distributed Discrete Log (DDLog): Non-interactively
convert divisive shares into additive shares

[Boyle-Gilboa-Ishai’16]

[xy]𝖠

𝖣𝖣𝖫𝗈𝗀

[xy]𝖡

𝖣𝖣𝖫𝗈𝗀

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Delegating Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

[xy]𝖠 [xy]𝖡

γ𝖡

γ𝖠
= (hr)u ⋅ (gr ⋅ gx)y

(hu ⋅ gy)r = gxy

𝖣𝖣𝖫𝗈𝗀 𝖣𝖣𝖫𝗈𝗀

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #̂y #

Delegating Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

Observation: Decoding is “linear” in
the received messages

[xy]𝖠 [xy]𝖡

γ𝖡

γ𝖠
= (hr)u ⋅ (gr ⋅ gx)y

(hu ⋅ gy)r = gxy

𝖣𝖣𝖫𝗈𝗀 𝖣𝖣𝖫𝗈𝗀

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #̂y #

Delegating Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

Observation: Decoding is “linear” in
the received messages

Using shares of , , and to decode
gives divisive shares of

r u y
xy

[xy]𝖠 [xy]𝖡

γ𝖡

γ𝖠
= (hr)u ⋅ (gr ⋅ gx)y

(hu ⋅ gy)r = gxy

𝖣𝖣𝖫𝗈𝗀 𝖣𝖣𝖫𝗈𝗀

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #̂y #

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

̂y #[u]𝖠[y]𝖠 ̂y # [u]𝖡 [y]𝖡

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

̂y #[u]𝖠[y]𝖠 ̂y # [u]𝖡 [y]𝖡

g−[xy]𝖠 = (hu ⋅ gy)[r]𝖠

(hr)[u]𝖠 ⋅ (gr ⋅ gx)[y]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

̂y #[u]𝖠[y]𝖠 ̂y # [u]𝖡 [y]𝖡

g−[xy]𝖠 = (hu ⋅ gy)[r]𝖠

(hr)[u]𝖠 ⋅ (gr ⋅ gx)[y]𝖠

(hr)[u]𝖡 ⋅ (gr ⋅ gx)[y]𝖡

(hu ⋅ gy)[r]𝖡
= g[xy]𝖡

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

̂y #[u]𝖠[y]𝖠 ̂y # [u]𝖡 [y]𝖡

g−[xy]𝖠 = (hu ⋅ gy)[r]𝖠

(hr)[u]𝖠 ⋅ (gr ⋅ gx)[y]𝖠

(hr)[u]𝖡 ⋅ (gr ⋅ gx)[y]𝖡

(hu ⋅ gy)[r]𝖡
= g[xy]𝖡

g[xy]𝖡

g−[xy]𝖠
= gxy

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

̂y #[u]𝖠[y]𝖠 ̂y # [u]𝖡 [y]𝖡

g−[xy]𝖠 = (hu ⋅ gy)[r]𝖠

(hr)[u]𝖠 ⋅ (gr ⋅ gx)[y]𝖠

(hr)[u]𝖡 ⋅ (gr ⋅ gx)[y]𝖡

(hu ⋅ gy)[r]𝖡
= g[xy]𝖡

g[xy]𝖡

g−[xy]𝖠
= gxy 𝖣𝖣𝖫𝗈𝗀 [xy]𝖡

𝖣𝖣𝖫𝗈𝗀[xy]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Linear Decoding

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Linear Decoding

Towards Evaluating RMS Programs

Multiplying inputs with intermediate values of the computation suffices
to evaluate RMS programs

NIM can be used to multiply inputs with intermediate values

Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

RMS Programs

Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

x1

Load

x2

Load

RMS Programs

Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load

RMS Programs

Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

RMS Programs

Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

RMS Programs

Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

RMS Programs

Cannot multiply two
memory values

[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

x1 x1

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

x2 x3 x4 x2 x3 x4

[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

[x1]𝖠

Load Load

[x2]𝖠

x1 x1

[x1]𝖡

Load Load

[x2]𝖡

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

x2 x3 x4 x2 x3 x4

[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

[x1]𝖠

Load Load

[x2]𝖠 [y]𝖠

Add

x1 x1

[x1]𝖡

Load Load

[x2]𝖡 [y]𝖡

Add

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

x2 x3 x4 x2 x3 x4

[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

[x1]𝖠

Load Load

[x2]𝖠 [y]𝖠

Add

[z]𝖠

Mult

x1 x1

[x1]𝖡

Load Load

[x2]𝖡 [y]𝖡

Add

[z]𝖡

Mult

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

x2 x3 x4 x2 x3 x4

[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

[x1]𝖠

Load Load

[x2]𝖠 [y]𝖠

Add

[z]𝖠

Mult

x1 x1

[x1]𝖡

Load Load

[x2]𝖡 [y]𝖡

Add

[z]𝖡

Mult

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

x2 x3 x4 x2 x3 x4

Challenge: Evaluating Mult instructions

Additives shares easy to evaluate Add instructions⟹
Load instructions will follow from Mult instructions

[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

[x1]𝖠

Load Load

[x2]𝖠 [y]𝖠

Add

[z]𝖠

Mult

x1 x1

[x1]𝖡

Load Load

[x2]𝖡 [y]𝖡

Add

[z]𝖡

Mult

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

x2 x3 x4 x2 x3 x4

Challenge: Evaluating Mult instructions

Additives shares easy to evaluate Add instructions⟹
Load instructions follow from Mult instructions

Goal: Memory share of z Memory share of zxInput share of x

Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

̂y #[u]𝖠[y]𝖠 ̂y # [u]𝖡 [y]𝖡

g−[xy]𝖠 = (hu ⋅ gy)[r]𝖠

(hr)[u]𝖠 ⋅ (gr ⋅ gx)[y]𝖠

(hr)[u]𝖡 ⋅ (gr ⋅ gx)[y]𝖡

(hu ⋅ gy)[r]𝖡
= g[xy]𝖡

g[xy]𝖡

g−[xy]𝖠
= gxy 𝖣𝖣𝖫𝗈𝗀 [xy]𝖡

𝖣𝖣𝖫𝗈𝗀[xy]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

(hr)[z⋅u]𝖡 ⋅ (gr ⋅ gx)[z⋅y]𝖡

(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

(hr)[z⋅u]𝖡 ⋅ (gr ⋅ gx)[z⋅y]𝖡

(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡 𝖣𝖣𝖫𝗈𝗀 [z ⋅ xy]𝖡

𝖣𝖣𝖫𝗈𝗀[z ⋅ xy]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #

Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x y u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

(hr)[z⋅u]𝖡 ⋅ (gr ⋅ gx)[z⋅y]𝖡

(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡 𝖣𝖣𝖫𝗈𝗀 [z ⋅ xy]𝖡

𝖣𝖣𝖫𝗈𝗀[z ⋅ xy]𝖠

= hu ⋅ gŷy #
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

𝖣𝖣𝖫𝗈𝗀 [z ⋅ xy]𝖡
𝖣𝖣𝖫𝗈𝗀[z ⋅ xy]𝖠

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

(hr)[z⋅u]𝖡 ⋅ (gr ⋅ gx)[z⋅y]𝖡

(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡

Extending Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Common Reference String

Extending Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Common Reference String

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Extending Delegatable NIM

x y = 1

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(1) → u ̂1 #

[z ⋅ x]
̂x ̂1 #[z r] [z u][z]

Common Reference String

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Extending Delegatable NIM

x y = 1

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(1) → u ̂1 #

[z ⋅ x]
̂x ̂1 #[z r] [z u][z]

Common Reference String

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Extending Delegatable NIM

x y = 1

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(1) → u ̂1 #

[z ⋅ x]
̂x ̂1 #[z r] [z u][z]

Common Reference String

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Goal: Memory share of z Memory share of zxInput share of x

x

Common Reference String

Attempt at Evaluating RMS Programs
[zy ⋅ x]

̂x ̂y #[z r] [z u][z y]

x

Common Reference String

Attempt at Evaluating RMS Programs
[zy ⋅ x]

̂x ̂y #[z r] [z u][z y]

𝖧𝖺𝗌𝗁(1) → u ̂1 #

Defined in CRS

x

Common Reference String

Attempt at Evaluating RMS Programs
[zy ⋅ x]

̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Attempt at Evaluating RMS Programs
[zy ⋅ x]

̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Attempt at Evaluating RMS Programs

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Attempt at Evaluating RMS Programs

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[z ⋅ x]
̂x ̂1 #[z r] [z u][z]

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Attempt at Evaluating RMS Programs

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[z ⋅ x]
̂x ̂1 #[z r] [z u][z]

u ⋅ [z] = [z u]

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Attempt at Evaluating RMS Programs

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[z ⋅ x]
̂x ̂1 #[z r] [z u][z]

Memory share of :zx [zx]

u ⋅ [z] = [z u]

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[zx ⋅ r]Memory share of :zx [zx]

Attempt at Evaluating RMS Programs

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[zx ⋅ r]Memory share of :zx [zx]

[zx ⋅ x][zx ⋅ r] [zx ⋅ u][zx]
̂x ̂1 #Need for

subsequent multiplications
[zx ⋅ r]

Attempt at Evaluating RMS Programs

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[zx ⋅ r]Memory share of :zx [zx]

Attempt at Evaluating RMS Programs

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[zx ⋅ r]Memory share of :zx [zx]

← 𝖧𝖺𝗌𝗁(r)̂r # s

Attempt at Evaluating RMS Programs

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[zx ⋅ r]Memory share of :zx [zx]

← 𝖧𝖺𝗌𝗁(r)̂r # s

[zr ⋅ x]
̂x ̂r #[z r] [z s][z r]

Attempt at Evaluating RMS Programs

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[zx ⋅ r]Memory share of :zx [zx]

← 𝖧𝖺𝗌𝗁(r)̂r # s

[zr ⋅ x]
̂x ̂r #[z r] [z s][z r]

Attempt at Evaluating RMS Programs

x
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r

Common Reference String

Memory share of :z [z] [z ⋅ r]

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

̂1 #u ̂1 # u

[zx ⋅ r]Memory share of :zx [zx]

← 𝖧𝖺𝗌𝗁(r)̂r # s

[zr ⋅ x]
̂x ̂r #[z r] [z s][z r]

Attempt at Evaluating RMS Programs

Solution: Encryption scheme with
linear decryption

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x𝗌𝗄 ← ℤp𝗉𝗄 = g−𝗌𝗄

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x𝗌𝗄 ← ℤp𝗉𝗄 = g−𝗌𝗄

r ← ℤp𝖼𝗍x = (gr, 𝗉𝗄r ⋅ gx)

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x𝗌𝗄 ← ℤp𝗉𝗄 = g−𝗌𝗄

r ← ℤp𝖼𝗍x = (gr, 𝗉𝗄r ⋅ gx)

Decryption is “linear”: (gr)𝗌𝗄 ⋅ 𝗉𝗄r ⋅ gx = gr⋅𝗌𝗄 ⋅ g−r⋅𝗌𝗄 ⋅ gx = gx

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x𝗌𝗄 ← ℤp𝗉𝗄 = g−𝗌𝗄

r ← ℤp𝖼𝗍x = (gr, 𝗉𝗄r ⋅ gx)

Decryption is “linear”: (gr)𝗌𝗄 ⋅ 𝗉𝗄r ⋅ gx = gr⋅𝗌𝗄 ⋅ g−r⋅𝗌𝗄 ⋅ gx = gx

𝖼𝗍x 𝖼𝗍x[z ⋅ 𝗌𝗄]𝖠 [z ⋅ 𝗌𝗄]𝖡[z]𝖠 [z]𝖡

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x𝗌𝗄 ← ℤp𝗉𝗄 = g−𝗌𝗄

r ← ℤp𝖼𝗍x = (gr, 𝗉𝗄r ⋅ gx)

Decryption is “linear”: (gr)𝗌𝗄 ⋅ 𝗉𝗄r ⋅ gx = gr⋅𝗌𝗄 ⋅ g−r⋅𝗌𝗄 ⋅ gx = gx

g[z⋅x]𝖠 = (gr)[z⋅𝗌𝗄]𝖠 ⋅ (𝗉𝗄r ⋅ gx)[z]𝖠

𝖼𝗍x 𝖼𝗍x[z ⋅ 𝗌𝗄]𝖠 [z ⋅ 𝗌𝗄]𝖡[z]𝖠 [z]𝖡

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x𝗌𝗄 ← ℤp𝗉𝗄 = g−𝗌𝗄

r ← ℤp𝖼𝗍x = (gr, 𝗉𝗄r ⋅ gx)

Decryption is “linear”: (gr)𝗌𝗄 ⋅ 𝗉𝗄r ⋅ gx = gr⋅𝗌𝗄 ⋅ g−r⋅𝗌𝗄 ⋅ gx = gx

g[z⋅x]𝖠 = (gr)[z⋅𝗌𝗄]𝖠 ⋅ (𝗉𝗄r ⋅ gx)[z]𝖠

𝖼𝗍x 𝖼𝗍x[z ⋅ 𝗌𝗄]𝖠 [z ⋅ 𝗌𝗄]𝖡[z]𝖠 [z]𝖡

(gr)−[z⋅𝗌𝗄]𝖡 ⋅ (𝗉𝗄r ⋅ gx)−[z]𝖡 = g−[z⋅x]𝖡

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x𝗌𝗄 ← ℤp𝗉𝗄 = g−𝗌𝗄

r ← ℤp𝖼𝗍x = (gr, 𝗉𝗄r ⋅ gx)

Decryption is “linear”: (gr)𝗌𝗄 ⋅ 𝗉𝗄r ⋅ gx = gr⋅𝗌𝗄 ⋅ g−r⋅𝗌𝗄 ⋅ gx = gx

g[z⋅x]𝖠 = (gr)[z⋅𝗌𝗄]𝖠 ⋅ (𝗉𝗄r ⋅ gx)[z]𝖠

𝖼𝗍x 𝖼𝗍x[z ⋅ 𝗌𝗄]𝖠 [z ⋅ 𝗌𝗄]𝖡[z]𝖠 [z]𝖡

(gr)−[z⋅𝗌𝗄]𝖡 ⋅ (𝗉𝗄r ⋅ gx)−[z]𝖡 = g−[z⋅x]𝖡
𝖣𝖣𝖫𝗈𝗀[z ⋅ x]𝖠 [z ⋅ x]𝖡

𝖣𝖣𝖫𝗈𝗀

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)

𝖼𝗍x 𝖼𝗍x[z ⋅ 𝗌𝗄]𝖠 [z ⋅ 𝗌𝗄]𝖡[z]𝖠 [z]𝖡

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

Encryption with Linear Decryption

𝔾 p = |𝔾 | g

x

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)

𝖼𝗍x 𝖼𝗍x[z ⋅ 𝗌𝗄]𝖠 [z ⋅ 𝗌𝗄]𝖡[z]𝖠 [z]𝖡

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

Switch from to [z 𝗌𝗄] [z x]

A Simplification of Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Common Reference String

A Simplification of Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Common Reference String

Simplification: Hash random
values or public constants

A Simplification of Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Common Reference String

Simplification: Hash random
values or public constants

A Simplification of Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]

Common Reference String

Simplification: Hash random
values or public constants

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ y]𝖠 ̂y # [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → ̂y #

[zy ⋅ x]
̂x ̂y #[z r][z y]

Common Reference String

Simplification: Hash random
values or public constants

A Simplification of Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ y]𝖠 ̂y # [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → ̂y #

[zy ⋅ x]
̂x ̂y #[z r][z y]

Common Reference String

Simplification: Hash random
values or public constants

A Simplification of Delegatable NIM

Multiply and [z y] x
(using)[z r]

x1

Common Reference String

Evaluating RMS Programs
[zy ⋅ x]

̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

x2

x1

Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

2) Multiply with :[z] x1 [z ⋅ x1]
̂x1 ̂1 #[z r1][z]

[zx1]

x2

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

x2

[zx1]

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

3) Multiply with :[z 𝗌𝗄1] x1 [z 𝗌𝗄1 ⋅ x1]
̂x1 ̂𝗌𝗄1 #[z r1][z 𝗌𝗄1]

x2

[zx1 𝗌𝗄1][zx1]

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

x2

[zx1 𝗌𝗄1][zx1]

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

4) Multiply with :[z 𝗌𝗄2] x1 [z 𝗌𝗄2 ⋅ x1]
̂x1 ̂𝗌𝗄2 #[z r1][z 𝗌𝗄2]

x2

[zx1 𝗌𝗄1][zx1] [zx1 𝗌𝗄2]

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

x2

[zx1 𝗌𝗄1][zx1] [zx1 𝗌𝗄2]

Invariant preserved!

x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

x2

[zx1 𝗌𝗄1][zx1] [zx1 𝗌𝗄2]

Invariant preserved! • Similar approach to multiply with x2

• Extends naturally to arbitrary
number of clients

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Linear Decoding
Encryption with

Linear Decryption

Client-server HSS for RMS
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Linear Decoding
Encryption with

Linear Decryption

Implied by NIM with
linear decoding

Client-server HSS for RMS
programs

NIM with Linear Decoding is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z

Linear Decoding

Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions

Succinct Client-Server HSS

Common Reference String

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

x1 x2 x3

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3)

Succinct Client-Server HSS

Common Reference String

x1 x2 x3Y1 Y2 Y3

Succinct Client-Server HSS

Common Reference String

x1 x2 x3Y1 Y2 Y3

Succinct Client-Server HSS

Common Reference String

x1 x2 x3Y1 Y2 Y3

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct multi-client two-server HSS in the CRS
model for RMS programs

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct multi-client two-server HSS in the CRS
model for RMS programs

DDH, DCR, and
class groups

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct multi-client two-server HSS in the CRS
model for RMS programs

DDH, DCR, and
class groups

Previously required
correlated setup or

supported only two parties

[Abram-Roy-Scholl’24]
[Couteau-H-Pu’24]

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct multi-client two-server HSS in the CRS
model for RMS programs

DDH, DCR, and
class groups

Previously required
correlated setup or

supported only two parties

[Abram-Roy-Scholl’24]
[Couteau-H-Pu’24]

Communication:
 bitsO(N) ⋅ 𝗉𝗈𝗅𝗒(λ)

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct multi-client two-server HSS in the CRS
model for RMS programs

DDH, DCR, and
class groups

Previously required
correlated setup or

supported only two parties

[Abram-Roy-Scholl’24]
[Couteau-H-Pu’24]

Communication:
 bitsO(N) ⋅ 𝗉𝗈𝗅𝗒(λ)

Private long inputs

C ≡ ∑
i,j

𝖱𝖬𝖲(x1, …, xm) ⋅ Y(j)
i

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct multi-client two-server HSS in the CRS
model for RMS programs

DDH, DCR, and
class groups

Previously required
correlated setup or

supported only two parties

[Abram-Roy-Scholl’24]
[Couteau-H-Pu’24]

Communication:
 bitsO(N) ⋅ 𝗉𝗈𝗅𝗒(λ)

Private long inputs

C ≡ ∑
i,j

𝖱𝖬𝖲(x1, …, xm) ⋅ Y(j)
i

Public long inputs

C ≡ 𝖱𝖬𝖲(x1, …, xm) ⋅ 𝖯/𝗉𝗈𝗅𝗒(Y1, …, Ym)

Succinct Client-Server HSS

Common Reference String

x1 x2 x3

𝗈𝗎𝗍𝖠 𝗈𝗎𝗍𝖡

𝗈𝗎𝗍𝖠 + 𝗈𝗎𝗍𝖡 = C(x1, x2, x3, Y1, Y2, Y3)

Y1 Y2 Y3

Succinct multi-client two-server HSS in the CRS
model for RMS programs

DDH, DCR, and
class groups

Previously required
correlated setup or

supported only two parties

[Abram-Roy-Scholl’24]
[Couteau-H-Pu’24]

Communication:
 bitsO(N) ⋅ 𝗉𝗈𝗅𝗒(λ)

Private long inputs

C ≡ ∑
i,j

𝖱𝖬𝖲(x1, …, xm) ⋅ Y(j)
i

Public long inputs

C ≡ 𝖱𝖬𝖲(x1, …, xm) ⋅ 𝖯/𝗉𝗈𝗅𝗒(Y1, …, Ym) Key Ingredient: Combine delegation and
input-succinctness properties of NIM

Thank You

