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from assumptions not known to imply FHE
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Barriers to Delegating Two-key HSS

xl+X2:x

(pk,, sk;) < KeyGen(1*)
(pk,, sko) < KeyGen(1*)

Private synchronization —
Unclear if two-key HSS even yields
two-client two-server HSS

Encry
Encry

pt(
pt(

Common Reference String

X

S

oK, X1 )

0K, X5)

Encrypt(pk., ;)

Encry

ot(

9y2)

Y

ﬂ VitV =Y

“ KeyGen(1*) — (pk,, sks)

KeyGen(1*) — (

Encrypt(pkl, X1)
Encrypt(pkz, X5)
Encrypt(pk,, y;)
Encrypt(pk,, y,)

Requires evaluation under

four keys!

b
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Barriers to Delegating Two-key HSS

Common Reference String

X Y

& ﬂ VitV =Y

(pk,, sky) « KeyGen(1%) “ KeyGen(1%) — (Pk,, sk3)
(pk,, sko) < KeyGen(1*) KeyGen(1%) — (pk ,sk,)

xl+X2:x

Private synchronization —
Unclear if two-key HSS even yields
two-client two-server HSS

Encrypt(pkl,xl) Encrypt( okl, X1)

Encrypt(pk,, x,) Encrypt(pk,, x,)

Public synchronization seems to Encryot(pk3, ) Encrypt( °k3’ )
require three-party NIKE Encrypt(pk ,y,) Encrypt(pk ,y,)

Requires evaluation under
four keys!



Client-Server HSS with Correlated Setup

X

S @

ct, < Encrypt(pk, x) Encrypt(pk, y) — ct,

QE (pk, sk) « KeyGen(1%)

u ek + ekg = sk

D ekA ekB —
[C(x, )], «— Evalc Evale — [C(x, )],
— ct, ct, ct, ct, —

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key



Client-Server HSS with Correlated Setup

Alternative approach to evaluation that does not require all inputs to be
encrypted under the same key



Outline

Barriers to Removing Correlated Setup

Extensions
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Non-interactive multiplication
Two-party HSS for
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Non-interactive multiplication
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Two-client two-server HSS for

Non-interactive multiplication multiplication in the CRS model

Common Reference String Common Reference String
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Delegatable non-interactive

Non-interactive multiplication .
multiplication

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

[xy]a [xylg
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Non-interactive multiplication .
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Common Reference String Common Reference String
- 7Y & 7Y

[xy]aA [xylg a E

[xy]a [xylg



HSS for Multiplication is All You Need

. . . Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String

o é o é e o 9
[xy]a - [xy]g W W
B B B B

[xy]a [xy]g [C(x, y,2) ] [C(x,y,2)]g
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Non-interactive multiplication

Common Reference String
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Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")

=)
@

r ensures privacy of x
u ensures privacy of y



Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")
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Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

= (b, g"- g")
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Non-Interactive Multiplication

[Dottling-Garg-Ishai-Malavolta-Mour-Ostrovsky19] [Abram-Roy-Scholl’24]

r<— /7

P
X o= (0, 8" g"
8
VA = (hu ‘ 8y)
ri oy, gXy
DDLog E — h 5 5 — gxy
! YA hr - gyr
[xy],

Distributed Discrete Log (DDLog): Non-interactively
convert divisive shares into additive shares

[Boyle-Gilboa-Ishai16]




HSS for Multiplication is All You Need

T

Delegatable non-interactive

Non-interactive multiplication .
multiplication

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

[xy]a [xylg



Delegating Non-Interactive Multiplication

G p=|G| g h

r<—Zp
A — hr, F. oX A~
* g (h', g - g") % g
ra=(n"-g") ro_ () sme)
DDLog YA (hu . gy)r

[xy],




Delegating Non-Interactive Multiplication

r<— /7

P
X 8 (h', g -g")
a=(h"-g) o (1) (s58Y) oo
DDLog yA (hu . gy)r
[xy],

Observation: Decoding is “linear” in
the received messages




Delegating Non-Interactive Multiplication

Vo Zp
X 8 (h', 8" - g")
A (4 BTy
DDLog TA (B - g)
[xy],

Observation: Decoding is “linear” in
the received messages

Using shares of r, u, and y to decode
gives divisive shares of xy
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Delegatable Non-Interactive Multiplication

G p=|G| g h

ﬂ
@

g[xy]B

— gxy

g—[x)’]A

DDLog

» [xylg



HSS for Multiplication is All You Need

Linear Decoding

T

Delegatable non-interactive
multiplication

Non-interactive multiplication

Common Reference String Common Reference String
x& ﬂ y x&

[xy]A [xylg

-
V.

[xy]a [xylg



HSS for Multiplication is All You Need

Linear Decoding

. . . Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String

o @ & @ o 2

[xy] A [xy] B ?? w

[xy]a [xy]g [C(x, y,2) ] [C(x,y,2)]g




Towards Evaluating RMS Programs

Multiplying inputs with intermediate values of the computation suffices
to evaluate RMS programs

NIM can be used to multiply inputs with intermediate values
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Memory
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RMS Programs

Inputs X X X3 Xy
Load Load
Memory X1 X y
Add

y=XtX
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RMS Programs

Inputs X X X3 Xy

Load Load Mult = 2=V * X3

Memory X1 X y Z

Add

y=XtX



Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X X X3 Xy

Load Load Mult = 2=V * X3

Memory X1 X y Z

Add Output
y=Xx+Xx
{ = (Xl +.XZ) ’X3



Restricted Multiplication Straight-line (RMS) Programs

RMS Programs

Inputs X1 X9 X3 X4
Load Load — L
Mult -1 < =Y X3 Cannot multiply two
memory values
Memory X1 X y Z
Add Output
y=X+x

Z=(X1+.XZ)’.X:3



Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation
Inputs X1 X X3 Xy
X Xy X3 X4 X X5
Load Load

Mult 1 < =Y " X3

Memory X1 XD y Z

Add Output
y=X+Xx
<l = (Xl +.XZ) ’X3



Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation
Inputs A1 X X3 X,
X Xy, X3 Xy X X,
Load Load Mult = 2=V - X3
Load Load Load Load
Memory X1 XD Y “ [x1]a [2)A [x1lg 1X]g
Add Output
y — Xl —+ ’XZ

Z:(XI+XZ)'X3



Distributed Evaluation of RMS Programs

Inputs

Memory

RMS Programs

X X5 X3 X4
Load Load Mult = 2= - X3
X1 X2 Y <
Add Output
y =X+ X

Z:(XI+XZ)'X3

Load Load

[x1]a [ola [Y]A
Add

HSS Evaluation

Lload Load

[x1lg 1%lg [ylg
Add



Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

Inputs A1 X X3 X,
Xl x2 X3 X4 Xl x2 X3 X4
Load Load Mult = 2= - X3
Load Load Mult Load Load Mult
Memory | ¥ X) y Z [xXla [l V1A [z]A xlg %l g [z]q
Add Add
Add Output
y — Xl —+ ’XZ

Z:(XI+XZ)'X3



Distributed Evaluation of RMS Programs

Inputs

Memory

RMS Programs

X X5 X3 X4
Load Load Mult = 2= - X3
X1 X2 Y <
Add Output
y =X+ X

Z:(XI+XZ)'X3

HSS Evaluation

Xl x2 X3 X4 xl x2 X3 .X4
Lload Load Mult Lload Load Mult
[x1]A [XQ]A [)’]A [Z]A [xl] B [xz] 3 ] 8 |Z] B

Add Add

Challenge: Evaluating Mult instructions

Additives shares = easy to evaluate Add instructions

Load instructions will follow from Mult instructions



Distributed Evaluation of RMS Programs

Input share of x

Goal: Memory share of 7 ., Memory share of zx




Delegatable Non-Interactive Multiplication

G p=|G| g h

DDLog

» [xylg



Extending Delegatable NIM

G p=|G]

r<— /7
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=)
@

[z - 7] faﬁ

ERSIPIERTN

g h
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Extending Delegatable NIM

G p=|G| g h

I Zp X
= (W', 8"- g%

[z - 7] %\BE
B,

[z - )’]A [z - M]A

=)
@

(h- )"
(h”) [z-ula (g,, . gx)[Z°Y]A

DDLog

—lzxyly — DDLog
g V1A e

[Z - xY]p <

» [z xylg




Extending Delegatable NIM

G p=|G| g h

X
x 8 r < Encode(x) &

[z - 7] %\BE
B,

[z - )’]A [z - M]A

(h- )"
(h”) [z-ula (g,, . gx)[Z°Y]A

DDLog DDLog

[2 - Xy]a - g =

» [z xylg




Extending Delegatable NIM

G p=|G]

X
x 8 r < Encode(x) &

[z - 7] %\BE
B,

[z - )’]A [z - M]A

(h- )"
(h”) [z-ula (g,, . gx)[Z°Y]A

DDLog

[2 - Xy]a - g =

g h
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Extending Delegatable NIM

Common Reference String

1

y:
‘2 Hash(l) —» u ‘

X
x 8 r < Encode(x) &

Input share of x

Goal: Memory share of 7 .,  Memory share of zx
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Attempt at Evaluating RMS Programs

Common Reference String
x&

Defined in CRS

Hash(1) —» u ‘
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Memory share of z: H [7 - 7]
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Common Reference String

X
X 8 r < Encode(x) &
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Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: | 7] [7 - 7]

Memory share of zx:  [zx] |zx - 7]

fa‘

Need [zx - r]| for

S » [zx - Xx]
subsequent multiplications

[zx] [zx - r] [zx - u]



Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

u‘ﬁ

Memory share of z: | 7] [7 - 7]
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Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

‘ s <« Hash(r)
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Attempt at Evaluating RMS Programs

Common Reference String

X
X 8 r < Encode(x) &

‘ s <« Hash(r)
. wm, (ol

Memory share of z: H [7 - 7]

Memory share of zx:  [zx] |zx - 7]

» |zr - x]

lzr] [zr] [z5]
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Attempt at Evaluating RMS Programs

Common Reference String

X
X r < Encode(x) '
8 \

Py S < Hash(r)

Memory share of z: | 7] [7 - 7]

Memory share of zx:  [zx] |zx - 7]

X 7
8 ., [zr-x]

[zr] [zr] [z 5] Solution: Encryption scheme with

linear decryption
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Encryption with Linear Decryption

G p=|G| g

pk = g7 sk « Z, x&
r«— /4

Ct, = (gr, pkr ' gx) p

X

k
Decryption is “linear”: (g”)s pk - g¥ = gl'K.gTrsKkL oY = ¢

(2], [z-sk], ct, E E cty [z-sklg [zlg
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Encryption with Linear Decryption

G p=|G| g

pk = g_Sk sk « Zp x&
r<— J/

Ct, = (gr, pkr ' gx) p

X

k
Decryption is “linear”: (g”)s pk - g¥ = gl'K.gTrsKkL oY = ¢

(2], [z-sk], ct, E E cty [z-sklg [zlg

(2 - X 4DDLog g[Z'X]A _ (g,,) [2-sk]a (pkr . gx)[z]A (gr)_[Z’Sk]B . (pkr . gx)_[Z]B _ g_[Z‘X]B DDLog> (2 - x]g




Encryption with Linear Decryption

G p=|G| g
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ct, < Encrypt(pk, x)
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Encryption with Linear Decryption

G p=|G| g

(pk, sk) « KeyGen(1%4) X&
ct, < Encrypt(pk, x)

(2], [z-sk], ct, E E cty [z-sklg [zlg

Switch from [z sk] to [z x]
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A Simplification of Delegatable NIM

Simplification: Hash random
Common Reference String values or public constants

Y

Hash(y) — ‘

ﬂ
@

X
X 8 r «— Encode(x) &

Multiply [z y] and x
(using [z 7])
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X1 r1 <« Encode(x,)

X
(pk,, sk;) < KeyGen(1%) &

‘ < Hash(sky)

ct,, < Encrypt(pk,, )




Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

Xq ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,, ) Encrypt(pk,, r,) = ct,,




Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

Xq ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,, ) Encrypt(pk,, r,) = ct,,

Memory share of : | 7] [z skq] [z sk-]




Evaluating RMS Programs

Common Reference String .
X, . " < Encode(x)) Encode(x,) —» » X 8

X1 ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,, ) Encrypt(pk,, r,) = ct,,

Memory share of : | 7] [z skq] [z sk-]

Memory share of 7 x;:



Evaluating RMS Programs

Common Reference String .
X, . " < Encode(x)) Encode(x,) —» » X 8

X1
(pk,, ski) « KeyGen(1%) & KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,, ) Encrypt(pk,, r,) = ct,,
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ct,, < Encrypt(pk,, ) Encrypt(pk,, r,) = ct,,
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. ct,
1) Switch to [z ry]: [z] [zskq] s [zry]

4) Multiply [z sko] with x;: [zsky] [z 7]
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Evaluating RMS Programs

Common Reference String .
X ry <« Encode(x,) Encode(x,) - » X 8

X1 ﬂXZ
(pk,, ski) « KeyGen(1%) & “ KeyGen(1%) — (pk,, skz)
‘ < Hash(sky) Hash(sk,) — ‘

ct,, < Encrypt(pk,, ) Encrypt(pk,, r,) = ct,,
Memory share of z: |Z] [7skq] [z sk-]
Memory share of 7 x;:  [zx] [zx,ski]  [zx; sko]

Invariant preserved! « Similar approach to multiply with x,

o Extends naturally to arbitrary
number of clients
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HSS for Multiplication is All You Need

Implied by NIM with
linear decoding

Encryption with

Linear Decoding Linear Decryption
. . T Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String
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[xy]A [xylg
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NIM with Linear Decoding is All You Need

Linear Decoding

. . . Delegatable non-interactive Client-server HSS for RMS
Non-interactive multiplication .
multiplication programs
Common Reference String Common Reference String Common Reference String

o é o é e o 8
[xy]a - [xy]g M W
B B B B

[xy]a [xylg [C(x, y,2) ] [C(x,y,2)]g
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Succinct multi-client two-server HSS in the CRS
model for RMS programs

Previously required
DDH, DCR, and correlated setup or

class groups supported only two parties

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

Private long inputs

C= Z RMS(xy, ..., x,,) - Y/
i

Public long inputs

C —_— RMS(Xl, ...,xm) * P/pOIY(Yl, ceoo Ym)

Common Reference String

Communication:

ﬁ O(/N) - poly(4) bits

outp outp

outp + outg = C(xy, X,, X3, Y1, Y5, ¥3)



Succinct Client-Server HSS

Succinct multi-client two-server HSS in the CRS
model for RMS programs

Previously required

DDH, DCR, and correlated setup or
class groups supported only two parties
H

Private long inputs

C= Z RMS(xy, ..., x,,) - Y/
i

Public long inputs

C —_— RMS(xl, ...,xm) * P/pOIY(Yl, ceoo Ym)

Common Reference String

Communication:

ﬁ O(/N) - poly(4) bits

outp outp

OUtA + OUtB —_ C(XI,X2, .X3, Yl’ Yz, Y3)

Key Ingredient: Combine delegation and
input-succinctness properties of NIM
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