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𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡
𝗌𝗄1𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

x y

Common Reference String

𝗌𝗄2𝗌𝗄1

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)



𝗌𝗄2 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖡
𝗌𝗄1𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖾𝗄𝖠

x y

Common Reference String

𝗌𝗄2𝗌𝗄1

Revealing  compromises privacy of 𝗌𝗄1 x Revealing  compromises privacy of 𝗌𝗄2 y

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) 𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, y)
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𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2)

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
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Barriers to Delegating Two-key HSS

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2)

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝗌𝗄1

Evaluation requires encryptions of all input
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𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
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(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
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Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
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x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
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(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝗌𝗄1

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
𝗌𝗄2
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x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)



x y
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x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)



x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

Requires evaluation under 
four keys!
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x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

Requires evaluation under 
four keys!

Private synchronization 
Unclear if two-key HSS even yields 

two-client two-server HSS

⟹



x y

Common Reference String

x1 + x2 = x

Barriers to Delegating Two-key HSS

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, x1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, x2)

(𝗉𝗄2, 𝗌𝗄2) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

y1 + y2 = y

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄3, 𝗌𝗄3)
𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄4, 𝗌𝗄4)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄3, y1)
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄4, y2)

Requires evaluation under 
four keys!

Private synchronization 
Unclear if two-key HSS even yields 

two-client two-server HSS

⟹

Public synchronization seems to 
require three-party NIKE



Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key



Client-Server HSS with Correlated Setup
[Boyle-Gilboa-Ishai’16]

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

𝖾𝗄𝖠 + 𝖾𝗄𝖡 = 𝗌𝗄
x

𝖾𝗄𝖠 𝖾𝗄𝖡

y

𝖼𝗍x ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, x) 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y) → 𝖼𝗍y

𝖼𝗍x 𝖼𝗍y 𝖼𝗍x 𝖼𝗍y
𝖤𝗏𝖺𝗅C[C(x, y)]𝖠 𝖤𝗏𝖺𝗅C [C(x, y)]𝖡

Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key

Alternative approach to evaluation that does not require all inputs to be 
encrypted under the same key



Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions
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Non-Interactive Multiplication
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky’19] [Abram-Roy-Scholl’24]

𝔾 p = |𝔾 | g h

x yr ← ℤp

= (hr, gr ⋅ gx)̂x

u ← ℤp

= hu ⋅ gŷy #̂x ̂y #

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

γ𝖡

γ𝖠
=

hr⋅u ⋅ gr⋅y ⋅ gx⋅y

hu⋅r ⋅ gy⋅r
= gxy

Distributed Discrete Log (DDLog): Non-interactively 
convert divisive shares into additive shares

[Boyle-Gilboa-Ishai’16]

[xy]𝖠

𝖣𝖣𝖫𝗈𝗀

[xy]𝖡

𝖣𝖣𝖫𝗈𝗀



Client-server HSS for RMS 
programs

HSS for Multiplication is All You Need

Non-interactive multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Delegatable non-interactive 
multiplication

Common Reference String

x y

[xy]𝖠 [xy]𝖡

Common Reference String

x y

[C(x, y, z)]𝖠 [C(x, y, z)]𝖡

z



Delegating Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

[xy]𝖠 [xy]𝖡

γ𝖡

γ𝖠
= (hr)u ⋅ (gr ⋅ gx)y

(hu ⋅ gy)r = gxy

𝖣𝖣𝖫𝗈𝗀 𝖣𝖣𝖫𝗈𝗀

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #̂y #
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x yr ← ℤp u ← ℤp

̂x

γ𝖠 = (hu ⋅ gy)r γ𝖡 = (hr)u ⋅ (gr ⋅ gx)y

Observation: Decoding is “linear” in 
the received messages

Using shares of , , and  to decode 
gives divisive shares of 

r u y
xy

[xy]𝖠 [xy]𝖡

γ𝖡

γ𝖠
= (hr)u ⋅ (gr ⋅ gx)y

(hu ⋅ gy)r = gxy

𝖣𝖣𝖫𝗈𝗀 𝖣𝖣𝖫𝗈𝗀

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #̂y #
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x yr ← ℤp u ← ℤp
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(hu ⋅ gy)[r]𝖡
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x y
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z

Linear Decoding



Towards Evaluating RMS Programs

Multiplying inputs with intermediate values of the computation suffices 
to evaluate RMS programs

NIM can be used to multiply inputs with intermediate values



Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs
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x1 x2 x3 x4
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Restricted Multiplication Straight-line (RMS) Programs
[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

RMS Programs

Cannot multiply two 
memory values
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[Boyle-Gilboa-Ishai’16]

Inputs
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x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3
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Load Load
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Add

x1 x1

[x1]𝖡

Load Load

[x2]𝖡 [y]𝖡
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Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation
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x1 x2 x3 x4
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y

y = x1 + x2

x1
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x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3
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Load Load
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[z]𝖠

Mult

x1 x1
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Load Load
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z = y ⋅ x3
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z = (x1 + x2) ⋅ x3
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Challenge: Evaluating Mult instructions

Additives shares  easy to evaluate Add instructions⟹
Load instructions will follow from Mult instructions



[Boyle-Gilboa-Ishai’16]

Inputs

Memory

x1 x2 x3 x4

Add

y

y = x1 + x2

x1

Load

x2

Load
Mult

z

z = y ⋅ x3

Output

z = (x1 + x2) ⋅ x3

[x1]𝖠

Load Load

[x2]𝖠 [y]𝖠

Add

[z]𝖠

Mult

x1 x1

[x1]𝖡

Load Load

[x2]𝖡 [y]𝖡

Add

[z]𝖡

Mult

Distributed Evaluation of RMS Programs

RMS Programs HSS Evaluation

x2 x3 x4 x2 x3 x4

Challenge: Evaluating Mult instructions

Additives shares  easy to evaluate Add instructions⟹
Load instructions follow from Mult instructions

Goal: Memory share of z Memory share of zxInput share of x



Delegatable Non-Interactive Multiplication

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[r]𝖠 ̂x [r]𝖡

̂y #[u]𝖠[y]𝖠 ̂y # [u]𝖡 [y]𝖡

g−[xy]𝖠 = (hu ⋅ gy)[r]𝖠

(hr)[u]𝖠 ⋅ (gr ⋅ gx)[y]𝖠

(hr)[u]𝖡 ⋅ (gr ⋅ gx)[y]𝖡

(hu ⋅ gy)[r]𝖡
= g[xy]𝖡

g[xy]𝖡

g−[xy]𝖠
= gxy 𝖣𝖣𝖫𝗈𝗀 [xy]𝖡

𝖣𝖣𝖫𝗈𝗀[xy]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #



Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #
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g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #



Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp
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(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #



Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x yr ← ℤp u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

(hr)[z⋅u]𝖡 ⋅ (gr ⋅ gx)[z⋅y]𝖡

(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡 𝖣𝖣𝖫𝗈𝗀 [z ⋅ xy]𝖡

𝖣𝖣𝖫𝗈𝗀[z ⋅ xy]𝖠

= (hr, gr ⋅ gx)̂x = hu ⋅ gŷy #



Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x y u ← ℤp

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

(hr)[z⋅u]𝖡 ⋅ (gr ⋅ gx)[z⋅y]𝖡

(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡 𝖣𝖣𝖫𝗈𝗀 [z ⋅ xy]𝖡

𝖣𝖣𝖫𝗈𝗀[z ⋅ xy]𝖠

= hu ⋅ gŷy #
← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r



Extending Delegatable NIM

𝔾 p = |𝔾 | g h

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

𝖣𝖣𝖫𝗈𝗀 [z ⋅ xy]𝖡
𝖣𝖣𝖫𝗈𝗀[z ⋅ xy]𝖠

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

g−[z⋅xy]𝖠 = (hu ⋅ gy)[z⋅r]𝖠

(hr)[z⋅u]𝖠 ⋅ (gr ⋅ gx)[z⋅y]𝖠

(hr)[z⋅u]𝖡 ⋅ (gr ⋅ gx)[z⋅y]𝖡

(hu ⋅ gy)[z⋅r]𝖡
= g[z⋅xy]𝖡



Extending Delegatable NIM

x y

̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #
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̂x ̂y #[z r] [z u][z y]

Common Reference String



Extending Delegatable NIM
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̂x[z ⋅ r]𝖠 ̂x [z ⋅ r]𝖡

̂y #[z ⋅ u]𝖠[z ⋅ y]𝖠 ̂y # [z ⋅ u]𝖡 [z ⋅ y]𝖡

← 𝖤𝗇𝖼𝗈𝖽𝖾(x)̂x r 𝖧𝖺𝗌𝗁(y) → u ̂y #

[zy ⋅ x]
̂x ̂y #[z r] [z u][z y]
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̂x ̂y #[z r] [z u][z y]



Extending Delegatable NIM
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Solution: Encryption scheme with 
linear decryption
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Decryption is “linear”: (gr)𝗌𝗄 ⋅ 𝗉𝗄r ⋅ gx = gr⋅𝗌𝗄 ⋅ g−r⋅𝗌𝗄 ⋅ gx = gx
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𝖣𝖣𝖫𝗈𝗀
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𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

x2
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Common Reference String
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̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

x2
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← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
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Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

2) Multiply  with :[z] x1 [z ⋅ x1]
̂x1 ̂1 #[z r1][z]

[zx1]

x2
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𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

x2

[zx1]
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[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
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← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2
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← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

1) Switch to :[z r1] [z r1]
𝖼𝗍r1[z] [z 𝗌𝗄1]

4) Multiply  with :[z 𝗌𝗄2] x1 [z 𝗌𝗄2 ⋅ x1]
̂x1 ̂𝗌𝗄2 #[z r1][z 𝗌𝗄2]

x2

[zx1 𝗌𝗄1][zx1] [zx1 𝗌𝗄2]
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̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

x2

[zx1 𝗌𝗄1][zx1] [zx1 𝗌𝗄2]

Invariant preserved!



x1

← 𝖤𝗇𝖼𝗈𝖽𝖾(x1)̂x1 r1
Common Reference String

Evaluating RMS Programs

̂1 # ̂1 #

Memory share of :z x1

[zy ⋅ x]
̂x ̂y #[z r][z y]

[z x]
𝖼𝗍x[z] [z 𝗌𝗄]

(𝗉𝗄1, 𝗌𝗄1) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)

← 𝖧𝖺𝗌𝗁(𝗌𝗄1)̂𝗌𝗄1 #
𝖼𝗍r1 ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄1, r1)

𝖤𝗇𝖼𝗈𝖽𝖾(x2) → ̂x2r2

𝖪𝖾𝗒𝖦𝖾𝗇(1λ) → (𝗉𝗄2, 𝗌𝗄2)

𝖧𝖺𝗌𝗁(𝗌𝗄2) → ̂𝗌𝗄2 #
𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄2, r2) → 𝖼𝗍r2

Memory share of :z [z] [z 𝗌𝗄1] [z 𝗌𝗄2]

x2

[zx1 𝗌𝗄1][zx1] [zx1 𝗌𝗄2]

Invariant preserved! • Similar approach to multiply with x2

• Extends naturally to arbitrary 
number of clients
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x y
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Linear Decoding
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Linear Decryption

Implied by NIM with 
linear decoding
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NIM with Linear Decoding is All You Need

Non-interactive multiplication

Common Reference String
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Common Reference String
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Linear Decoding
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Succinct multi-client two-server HSS in the CRS 
model for RMS programs

DDH, DCR, and 
class groups

Previously required 
correlated setup or 

supported only two parties

[Abram-Roy-Scholl’24]
[Couteau-H-Pu’24]

Communication: 
 bitsO( N ) ⋅ 𝗉𝗈𝗅𝗒(λ)

Private long inputs

C ≡ ∑
i,j

𝖱𝖬𝖲(x1, …, xm) ⋅ Y( j)
i

Public long inputs

C ≡ 𝖱𝖬𝖲(x1, …, xm) ⋅ 𝖯/𝗉𝗈𝗅𝗒(Y1, …, Ym) Key Ingredient: Combine delegation and 
input-succinctness properties of NIM



Thank You


