

Client-Server Homomorphic Secret Sharing in the CRS Model

NTT CIS Seminar

Damiano Abram

Geoffroy Couteau

Lalita Devadas

Aditya Hegde

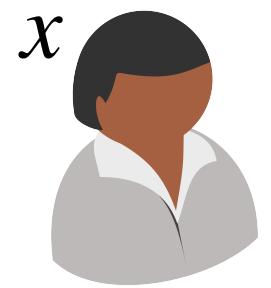
Abhishek Jain

Lawrence Roy

Sacha Servan-Schreiber

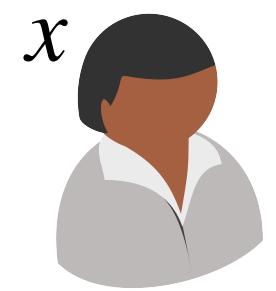
Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]



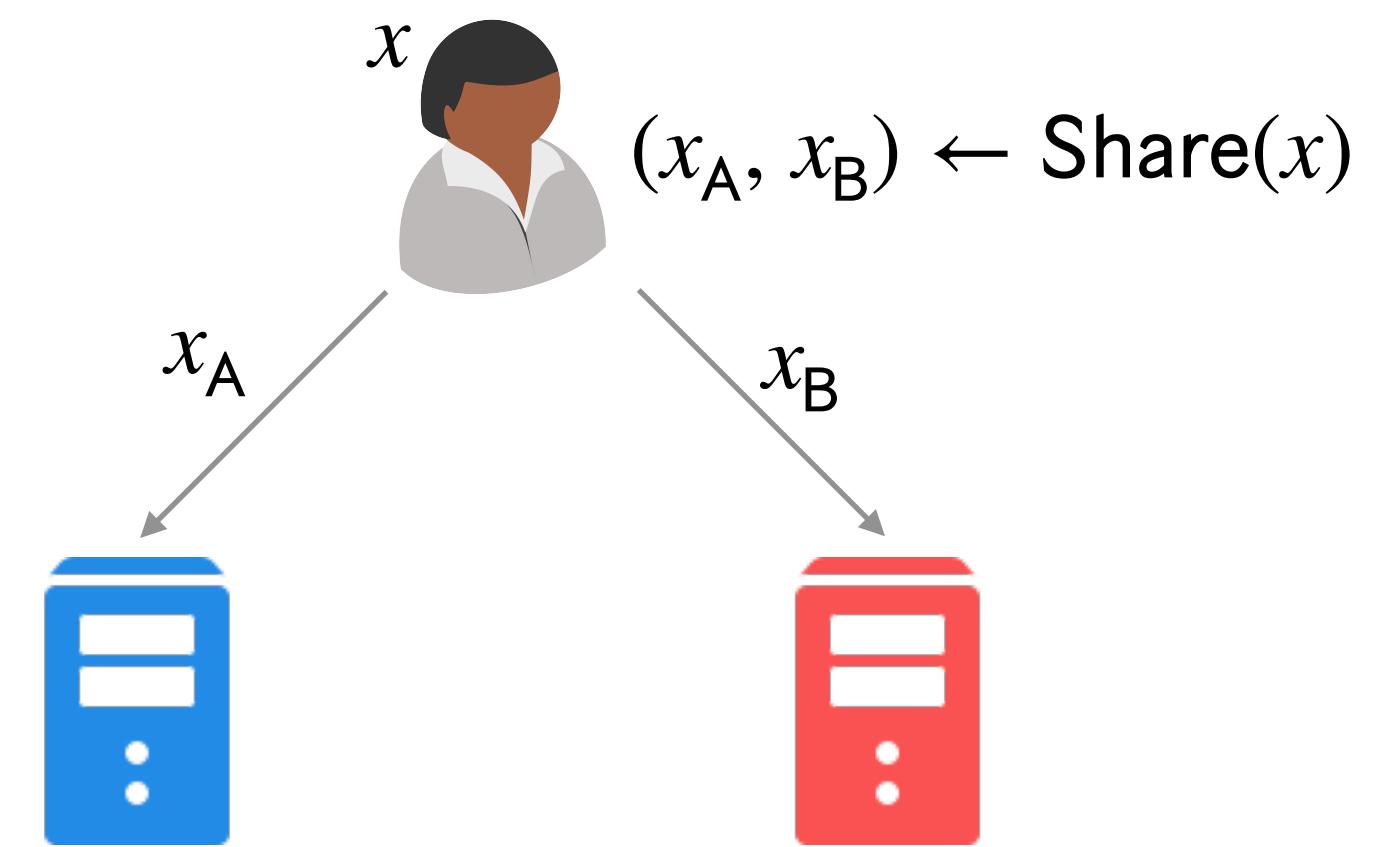
Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]


$$x \quad (x_A, x_B) \leftarrow \text{Share}(x)$$

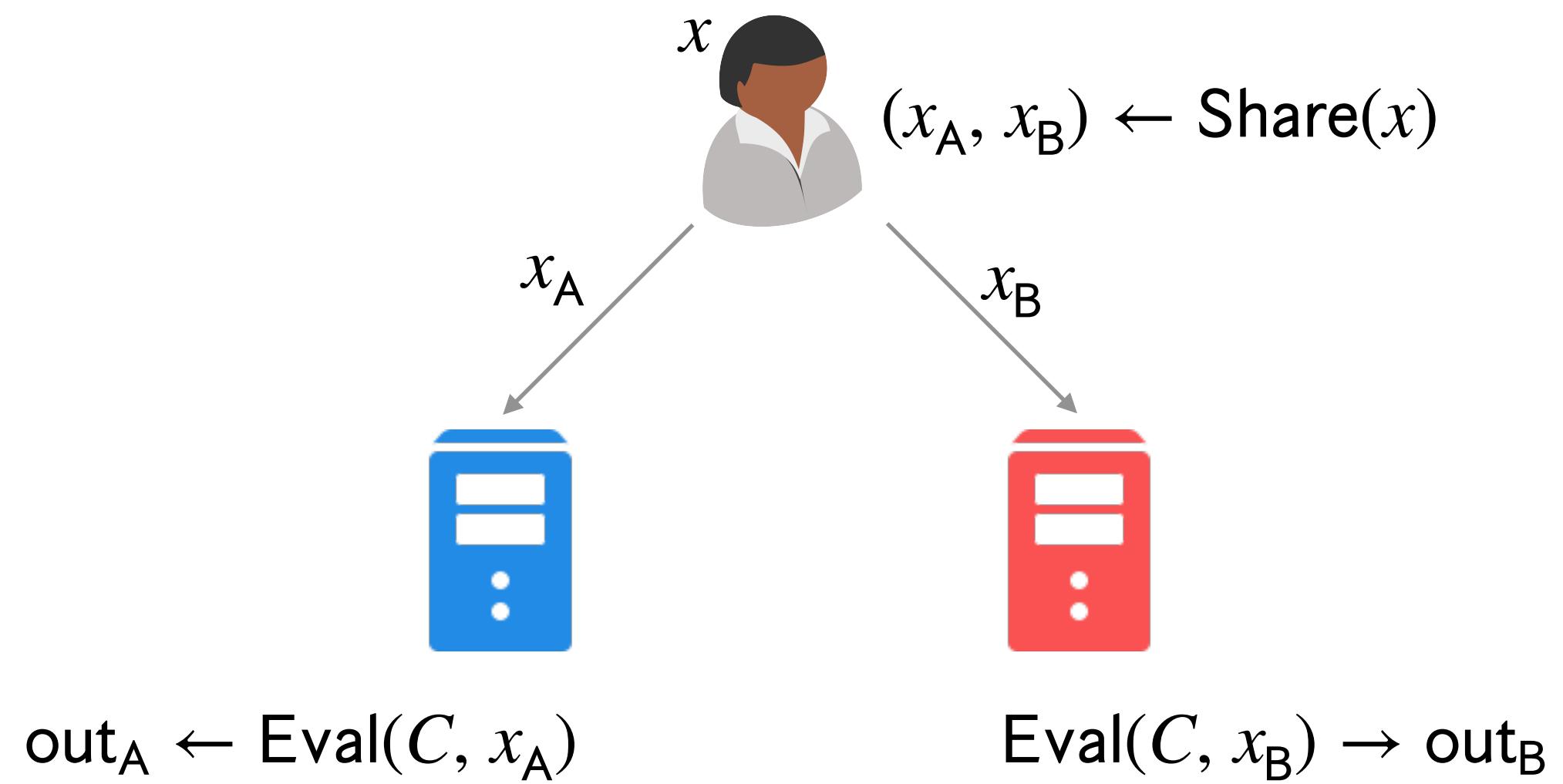
Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]



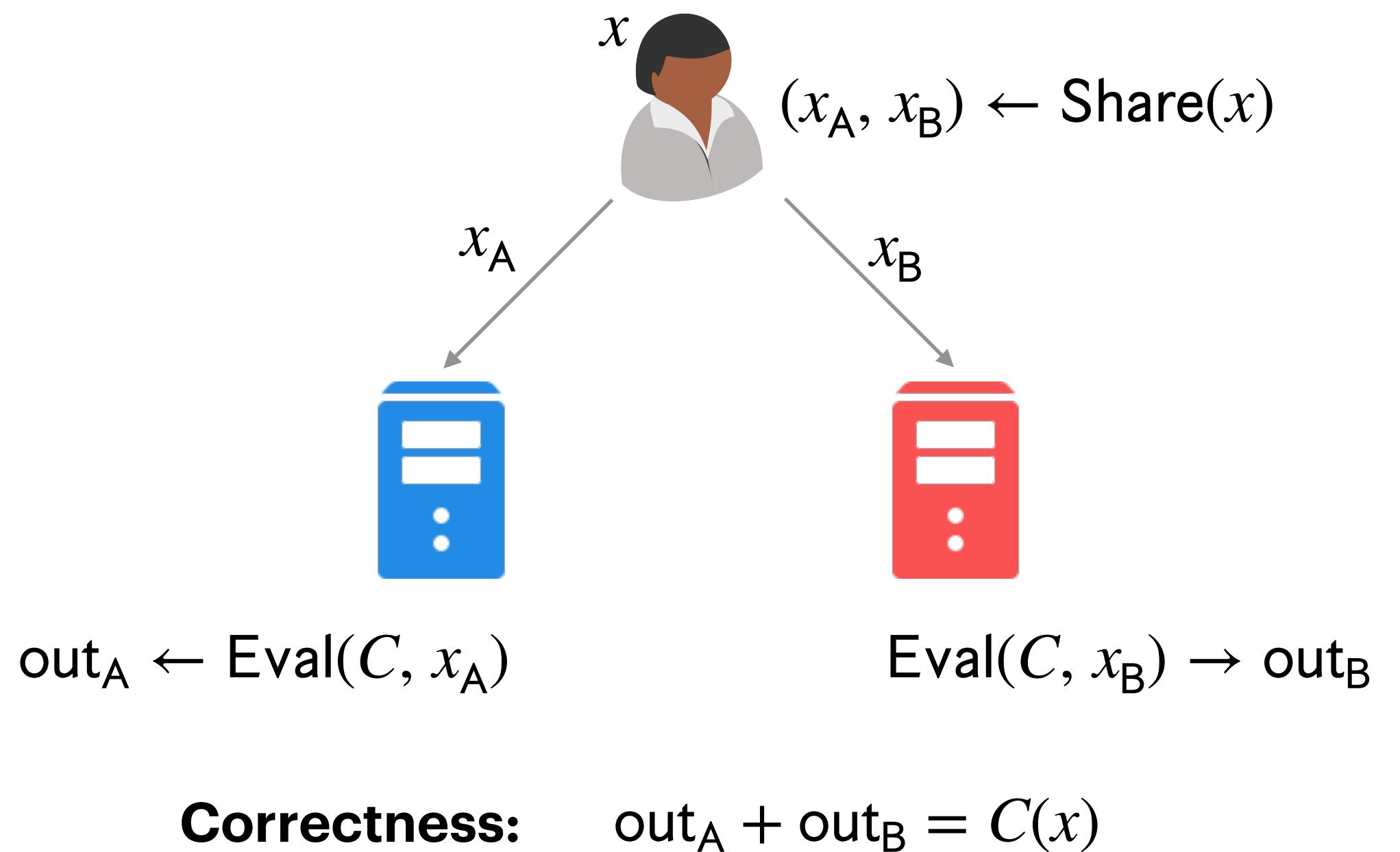
Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]



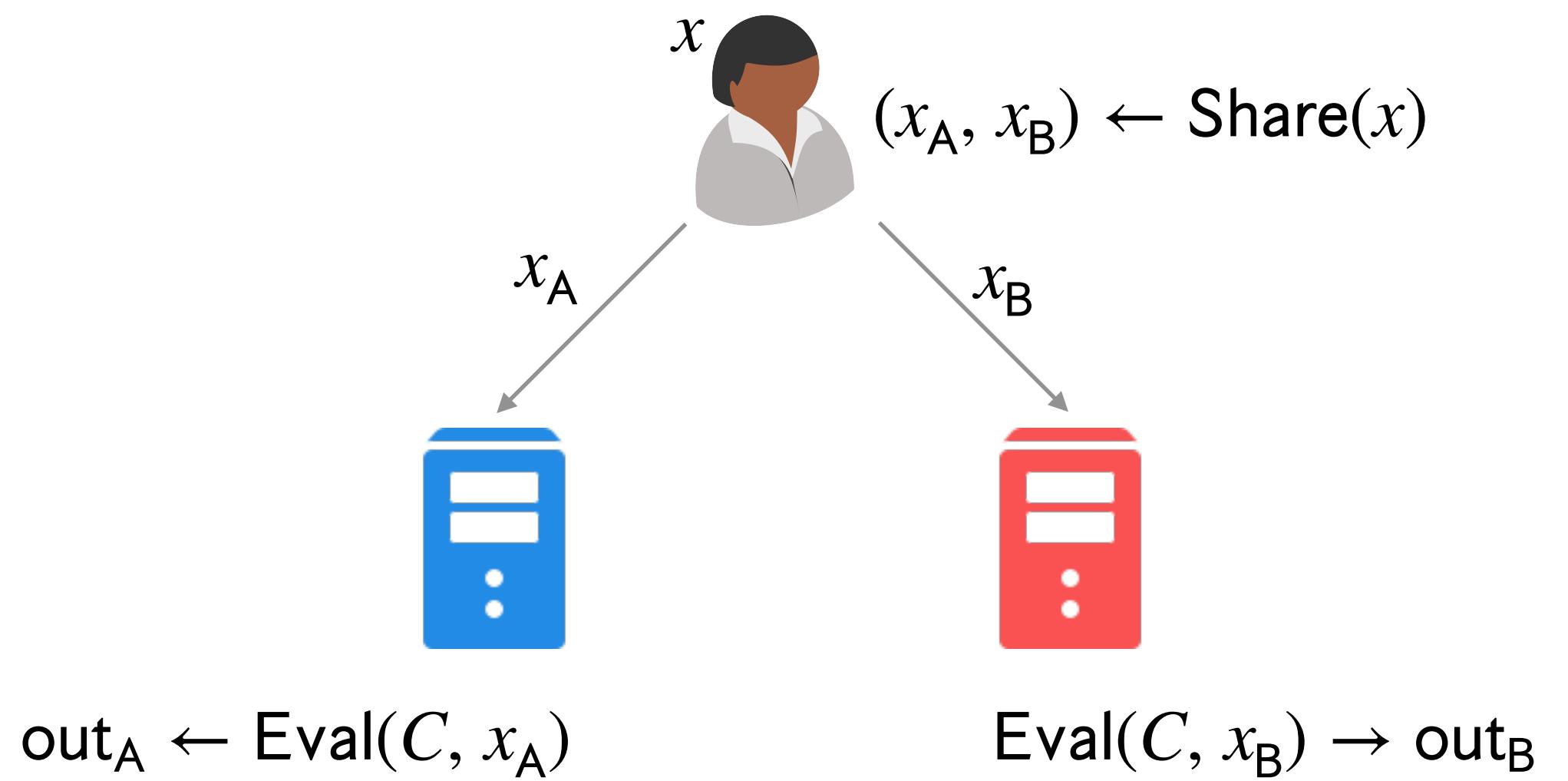
Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]



Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]

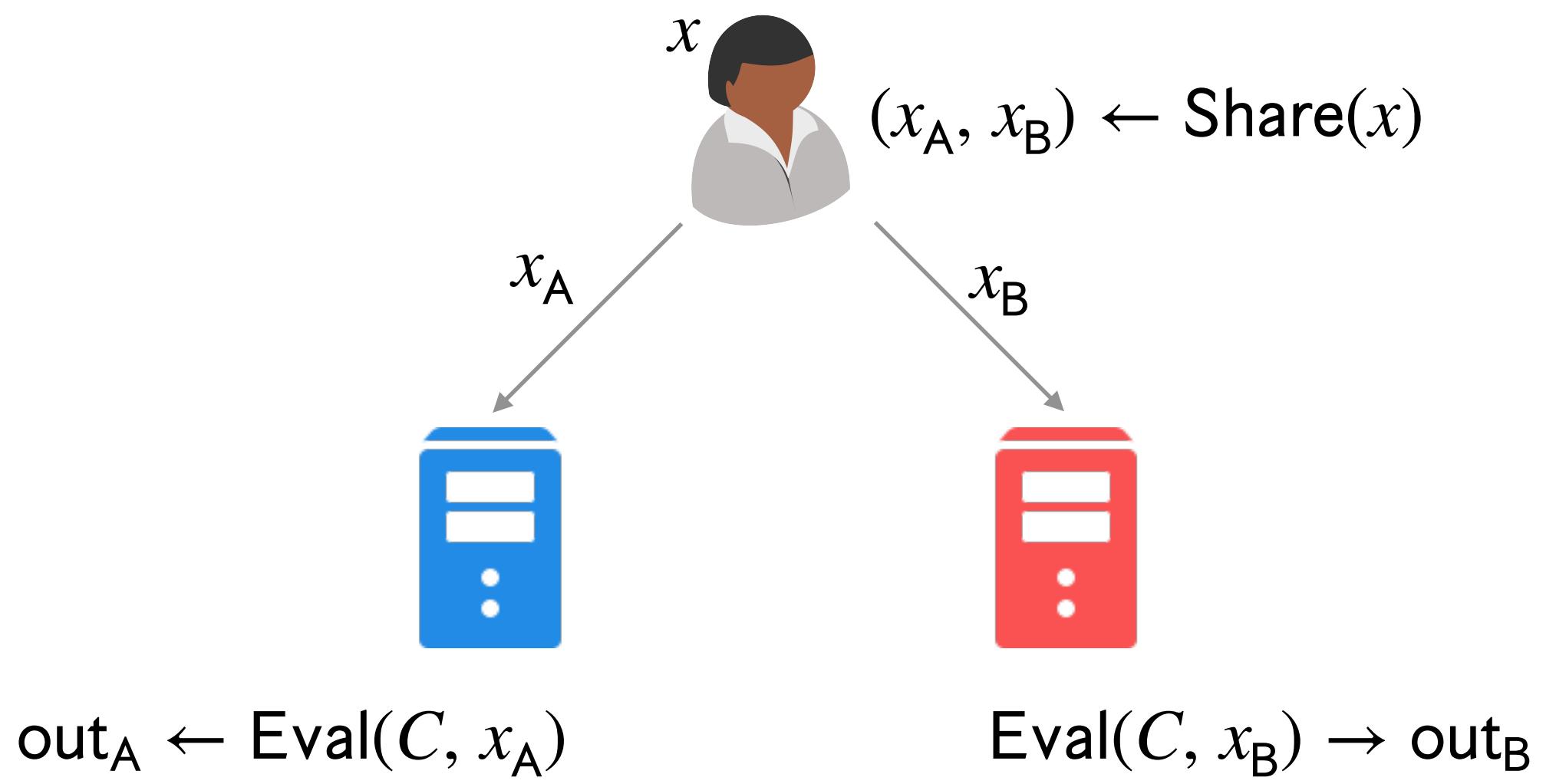


Correctness: $\text{out}_A + \text{out}_B = C(x)$

Security: x_A ensures privacy of x
 x_B ensures privacy of x

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]



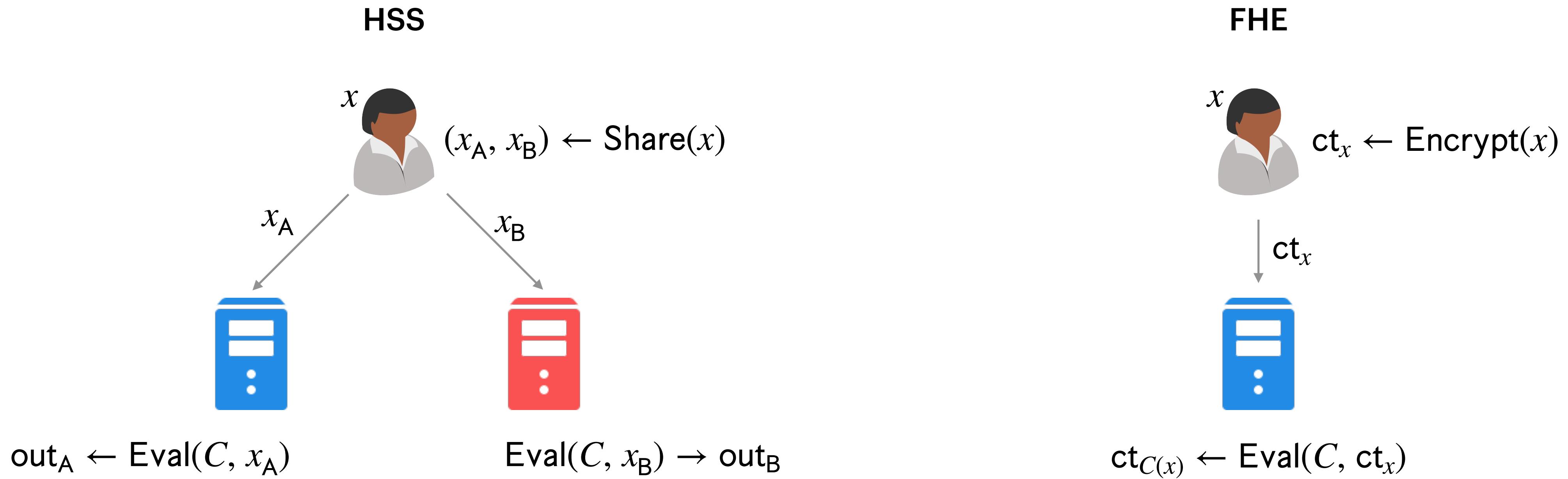
Correctness: $\text{out}_A + \text{out}_B = C(x)$

Security: x_A ensures privacy of x
 x_B ensures privacy of x

Succinctness: Size of x_A and x_B are
independent of C

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]



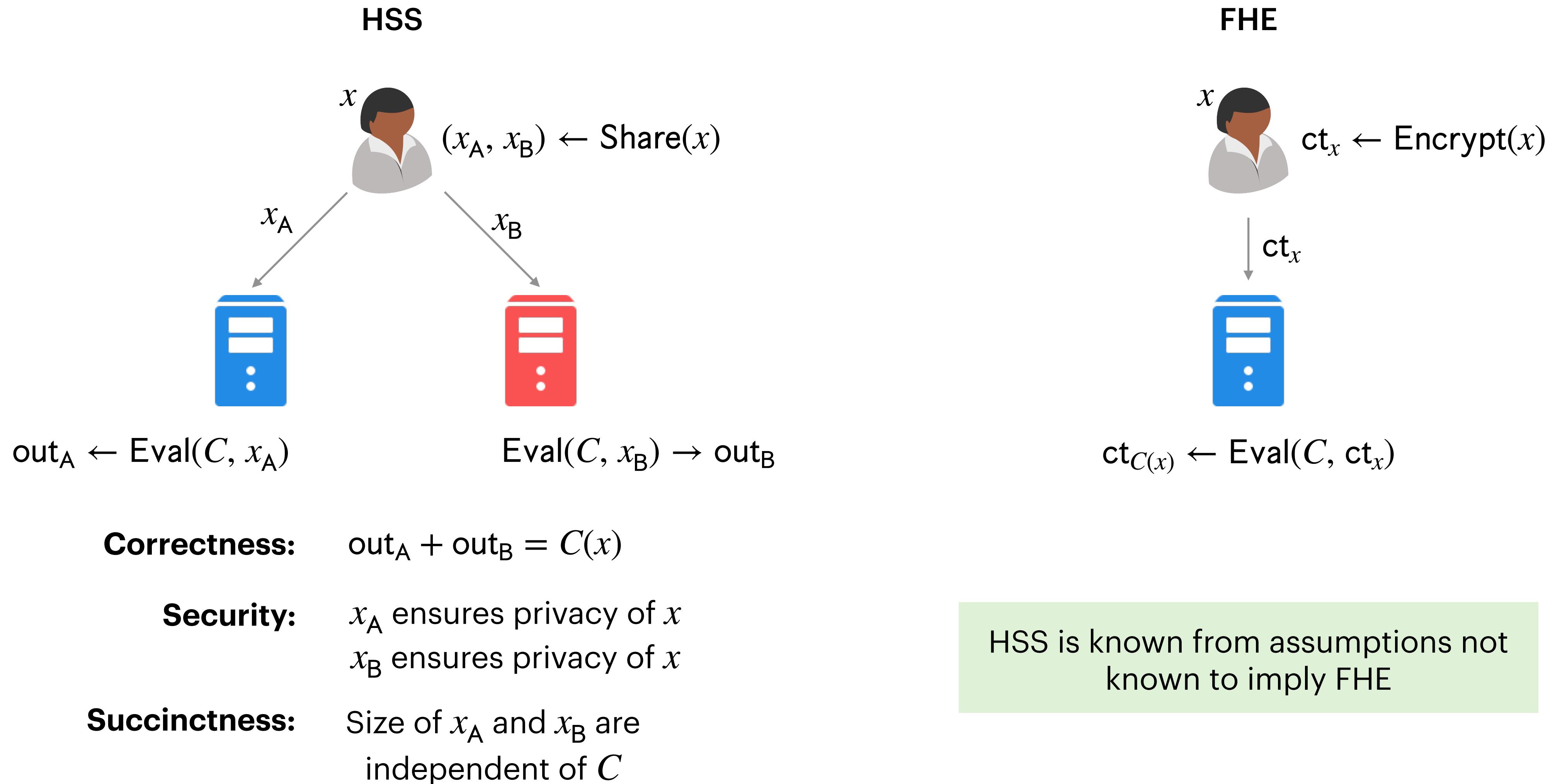
Correctness: $\text{out}_A + \text{out}_B = C(x)$

Security: x_A ensures privacy of x
 x_B ensures privacy of x

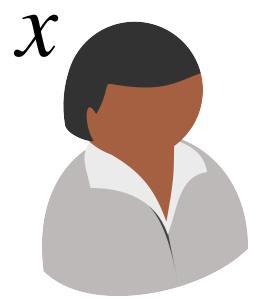
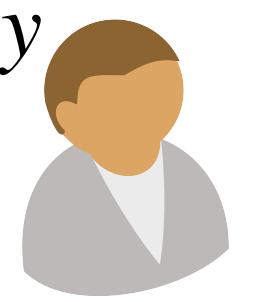
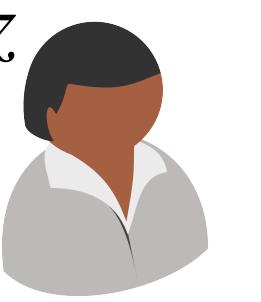
Succinctness: Size of x_A and x_B are independent of C

Homomorphic Secret Sharing (HSS)

[Boyle-Gilboa-Ishai'16]



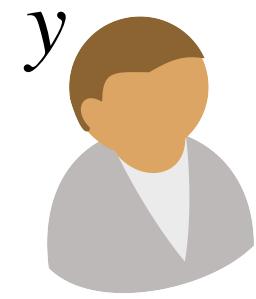
Client-Server HSS



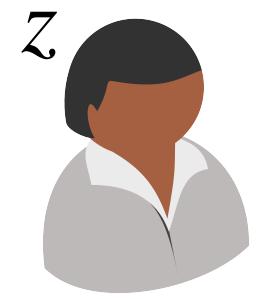
Client-Server HSS



$(x_A, x_B) \leftarrow \text{Share}(x)$

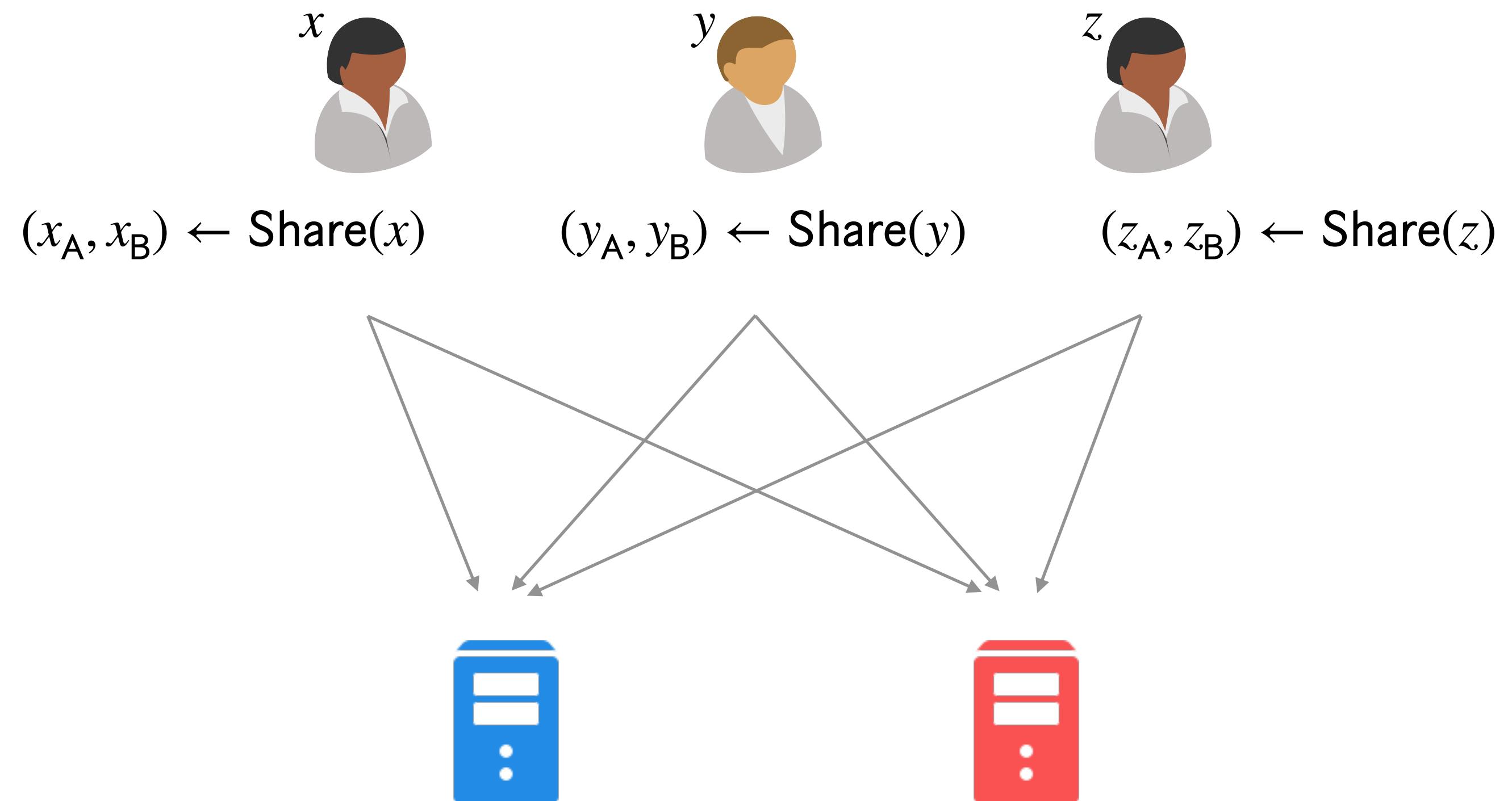


$(y_A, y_B) \leftarrow \text{Share}(y)$

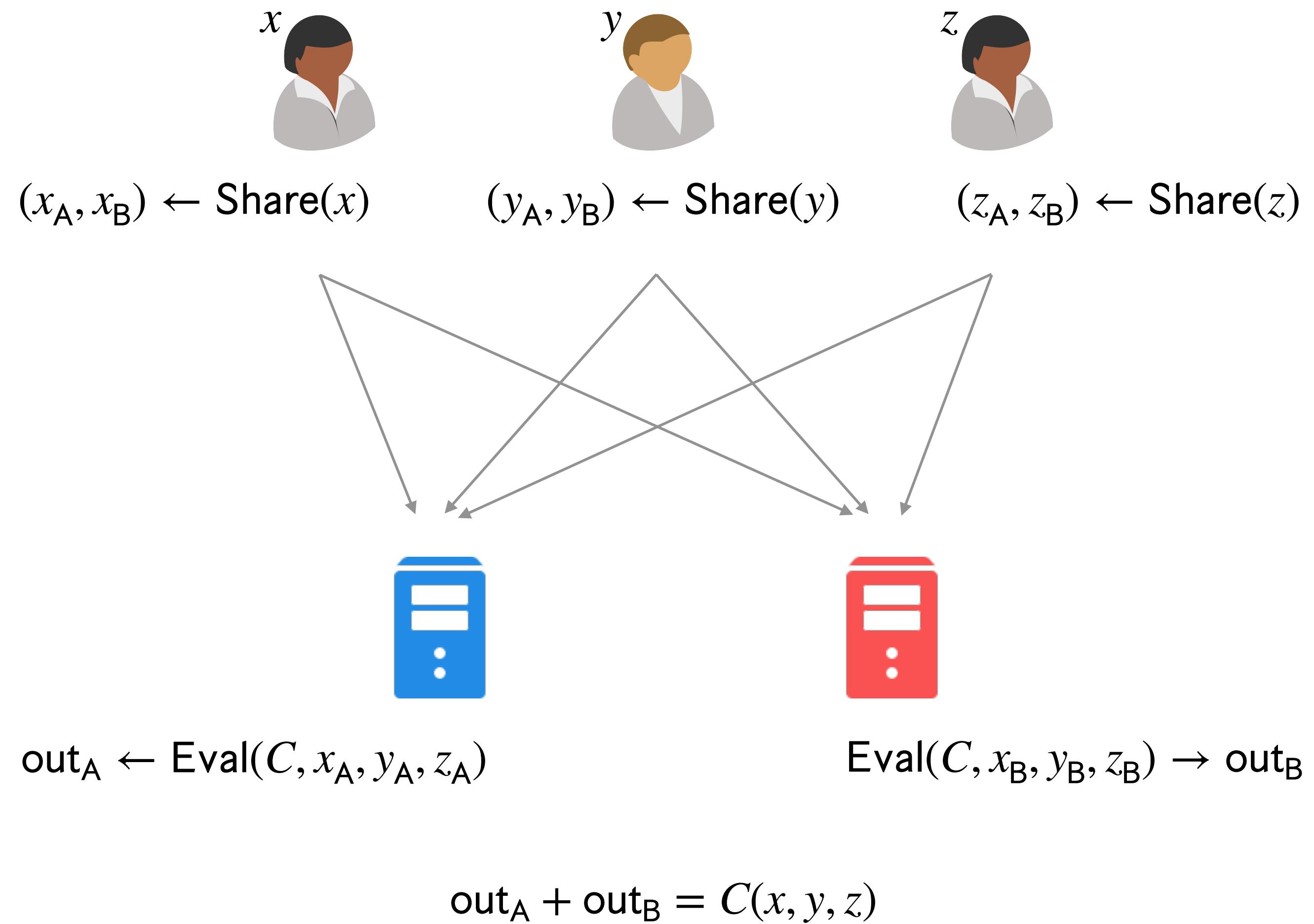


$(z_A, z_B) \leftarrow \text{Share}(z)$

Client-Server HSS



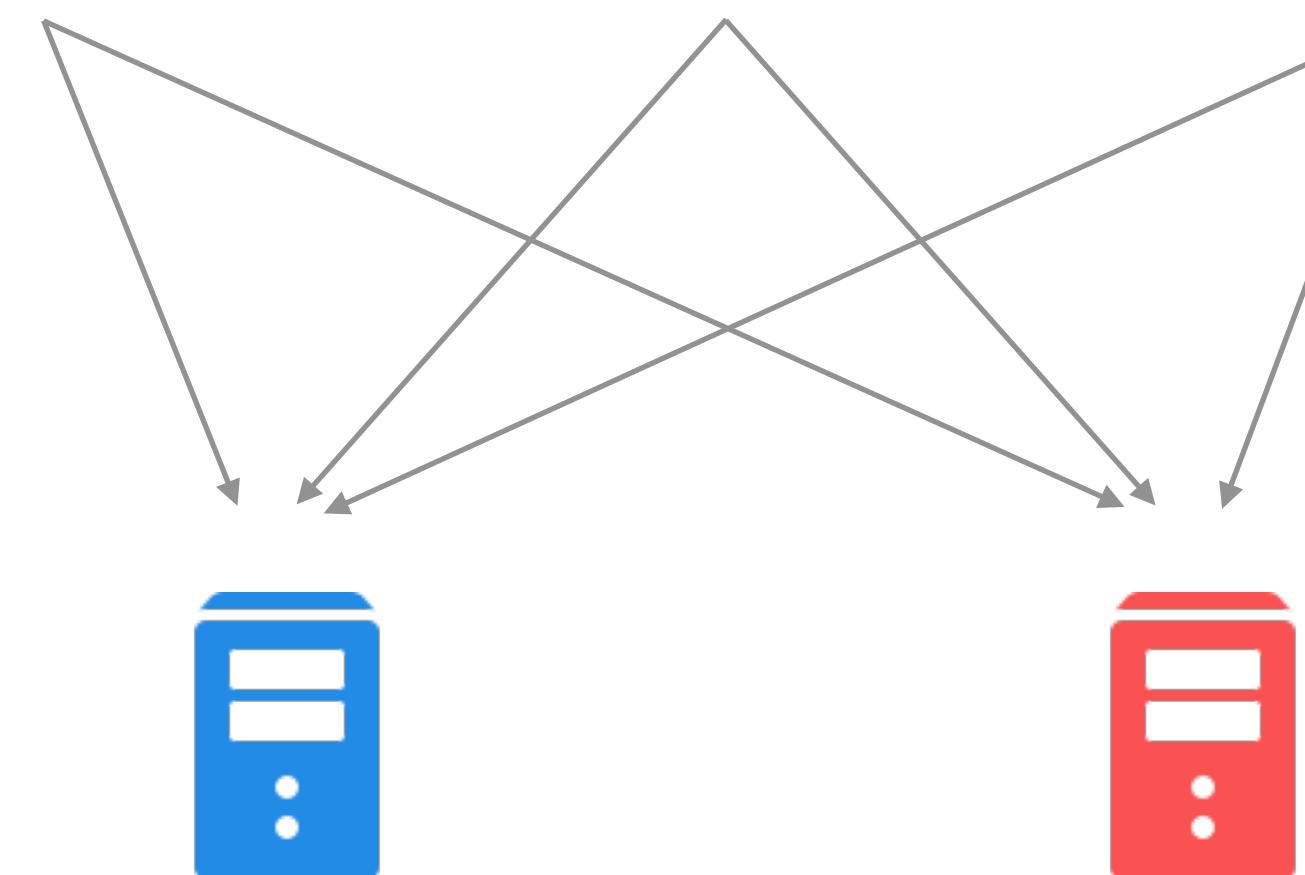
Client-Server HSS



Client-Server HSS

x y z

$(x_A, x_B) \leftarrow \text{Share}(x)$ $(y_A, y_B) \leftarrow \text{Share}(y)$ $(z_A, z_B) \leftarrow \text{Share}(z)$



$\text{out}_A \leftarrow \text{Eval}(C, x_A, y_A, z_A)$

$\text{Eval}(C, x_B, y_B, z_B) \rightarrow \text{out}_B$

$$\text{out}_A + \text{out}_B = C(x, y, z)$$

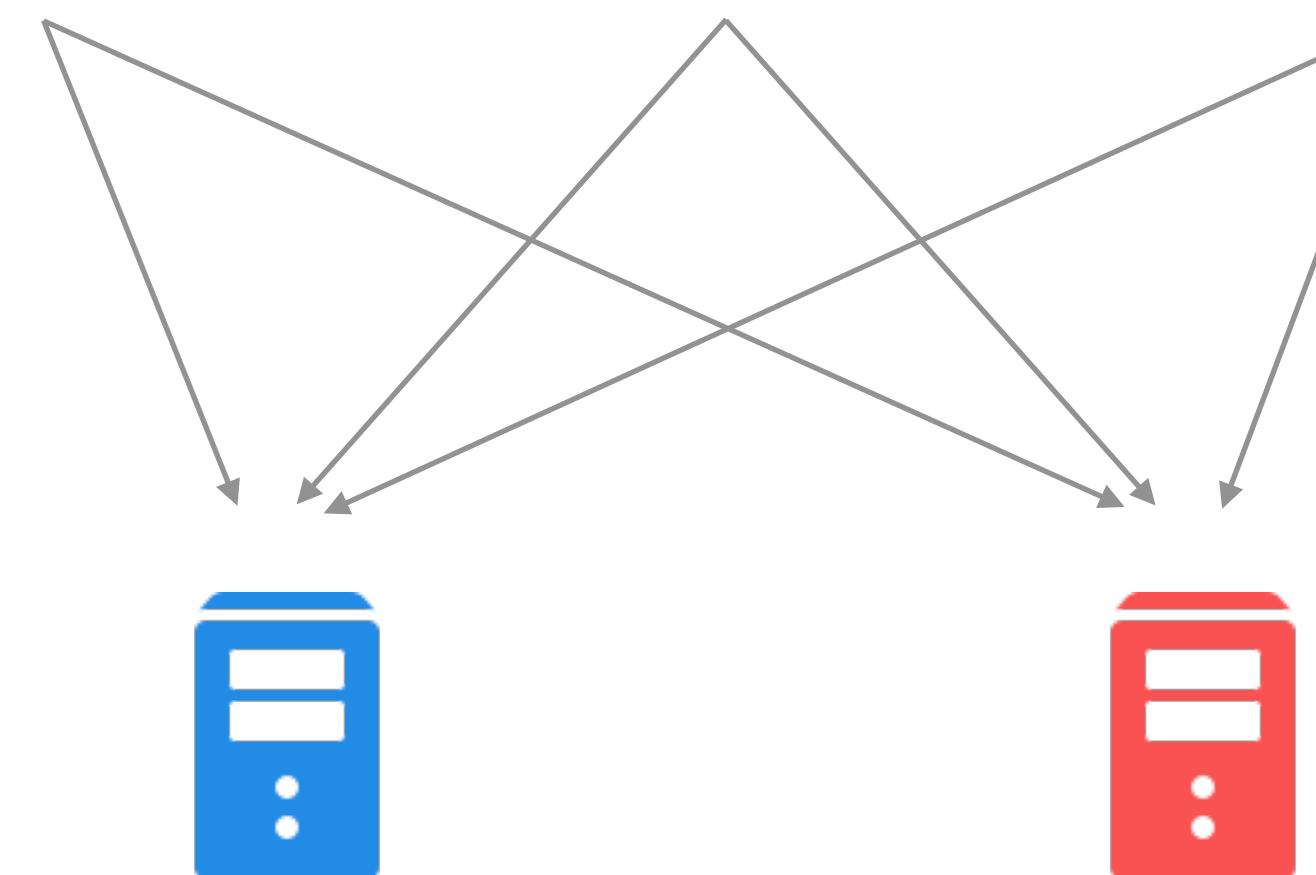
Applications

Two-round succinct MPC
Private Information Retrieval
Pseudorandom Correlation Generators

Client-Server HSS

x y z

$(x_A, x_B) \leftarrow \text{Share}(x)$ $(y_A, y_B) \leftarrow \text{Share}(y)$ $(z_A, z_B) \leftarrow \text{Share}(z)$



$\text{out}_A \leftarrow \text{Eval}(C, x_A, y_A, z_A)$

$\text{Eval}(C, x_B, y_B, z_B) \rightarrow \text{out}_B$

$$\text{out}_A + \text{out}_B = C(x, y, z)$$

Applications

Two-round succinct MPC

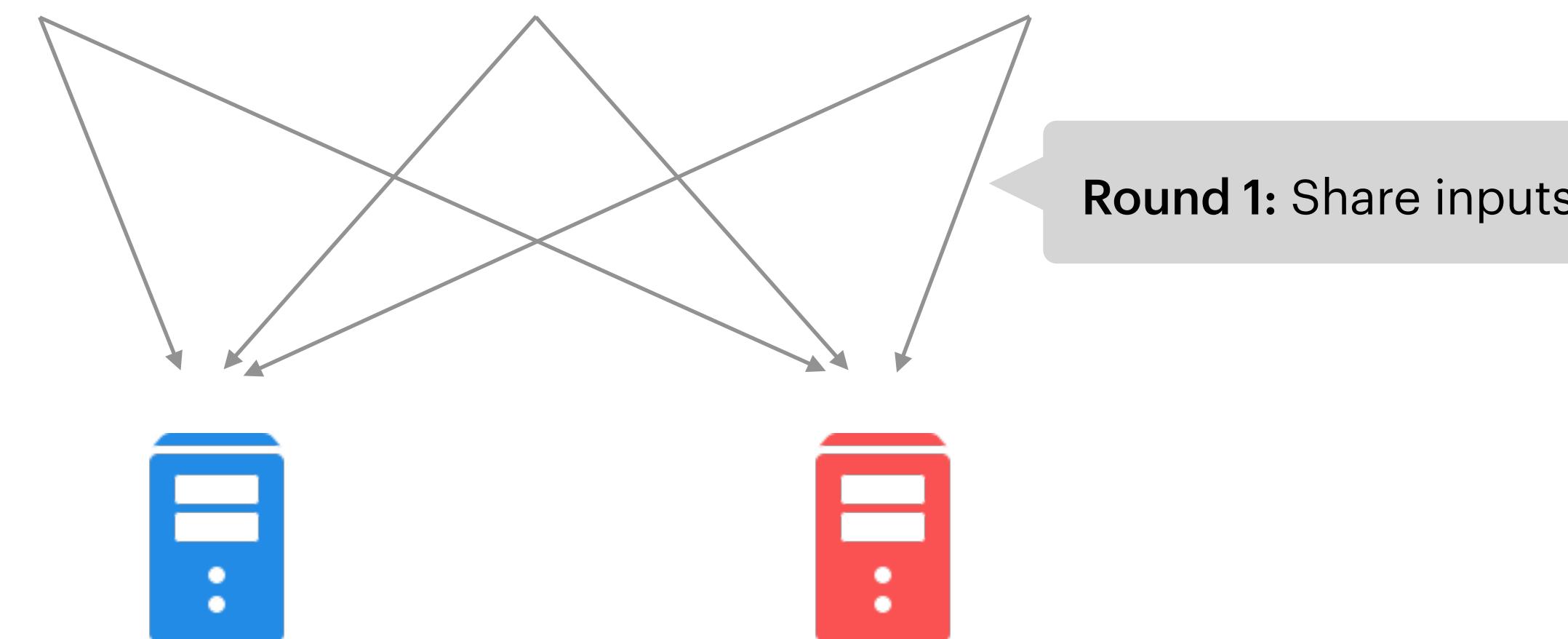
Private Information Retrieval

Pseudorandom Correlation Generators

Client-Server HSS

x y z

$(x_A, x_B) \leftarrow \text{Share}(x)$ $(y_A, y_B) \leftarrow \text{Share}(y)$ $(z_A, z_B) \leftarrow \text{Share}(z)$



$\text{out}_A \leftarrow \text{Eval}(C, x_A, y_A, z_A)$

$\text{Eval}(C, x_B, y_B, z_B) \rightarrow \text{out}_B$

$$\text{out}_A + \text{out}_B = C(x, y, z)$$

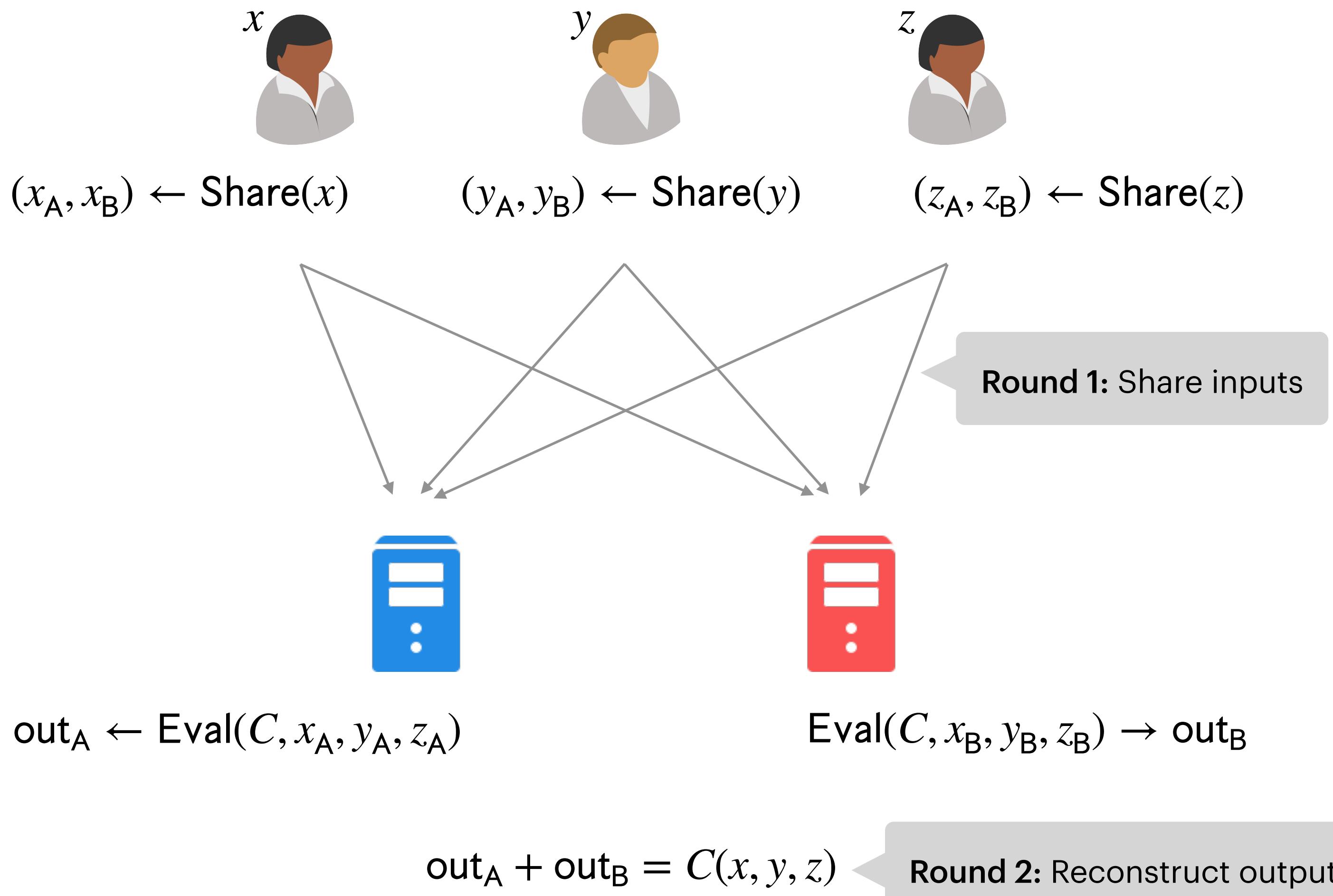
Applications

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Client-Server HSS



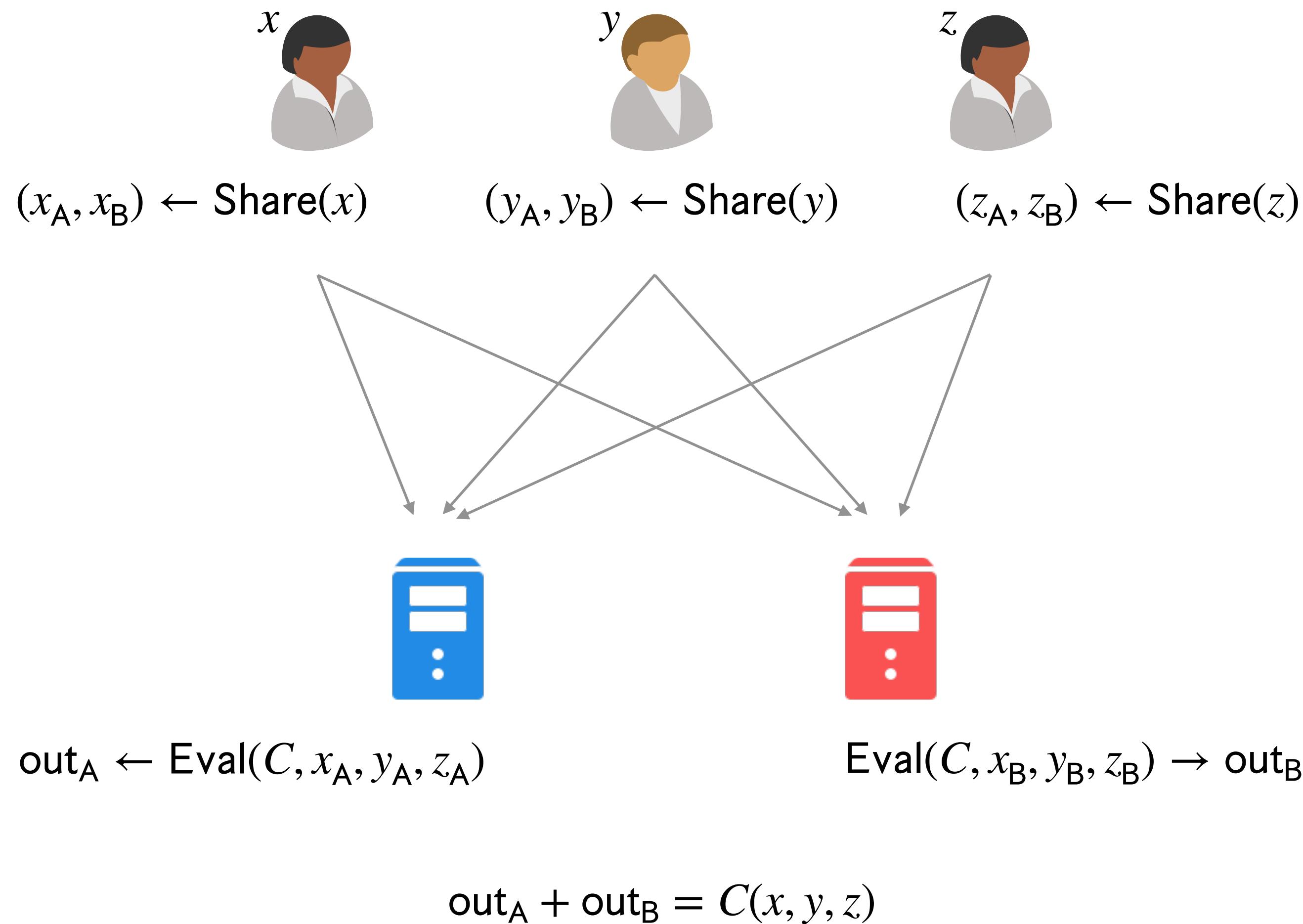
Applications

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Client-Server HSS



Applications

Two-round succinct MPC

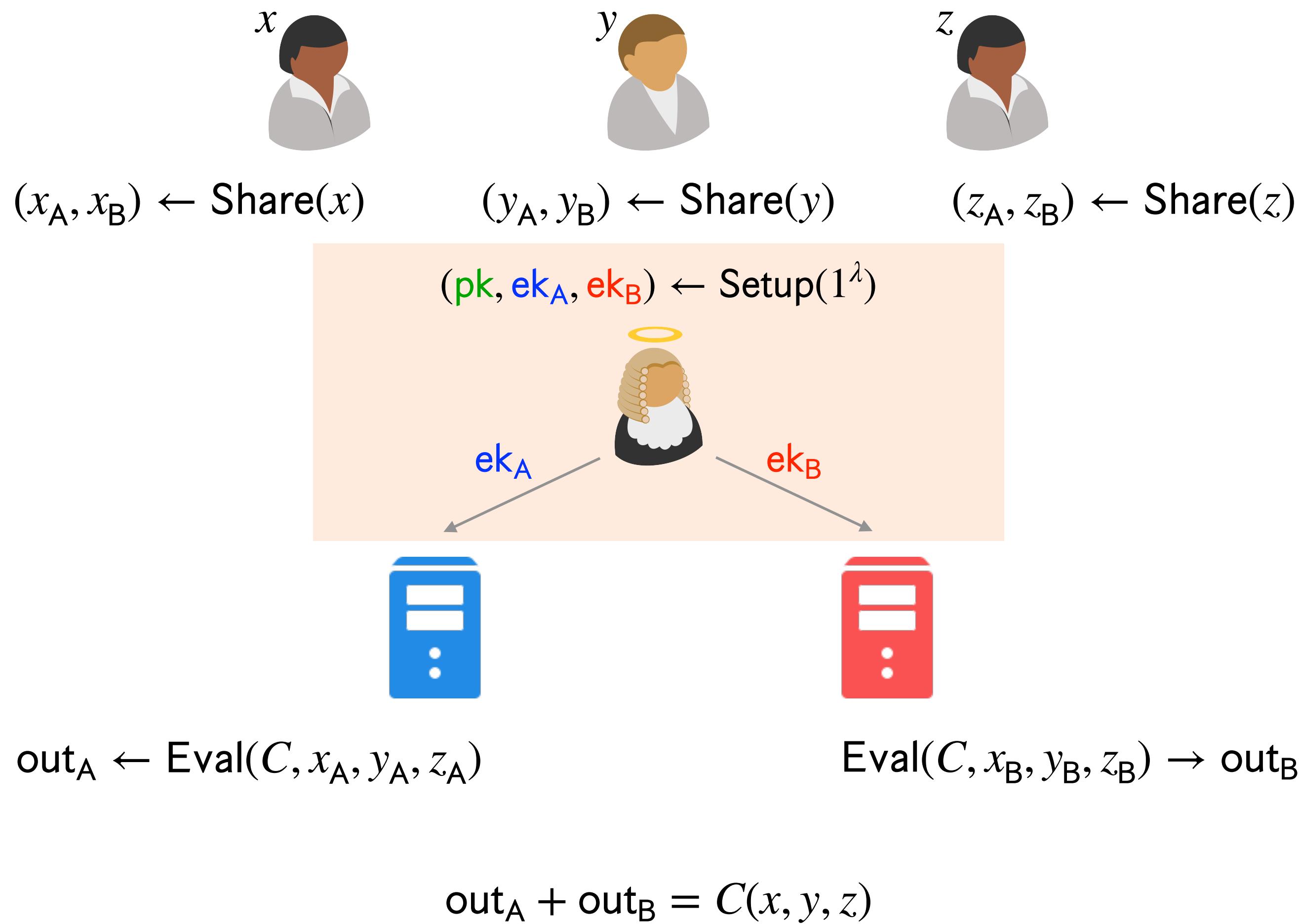
Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require **correlated setup**

[Boyle-Gilboa-Ishai'16] [Boyle-Kohl-Scholl'19]
[Roy-Singh'21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgård-Orlandi-Scholl'22]

Client-Server HSS



Applications

Two-round succinct MPC

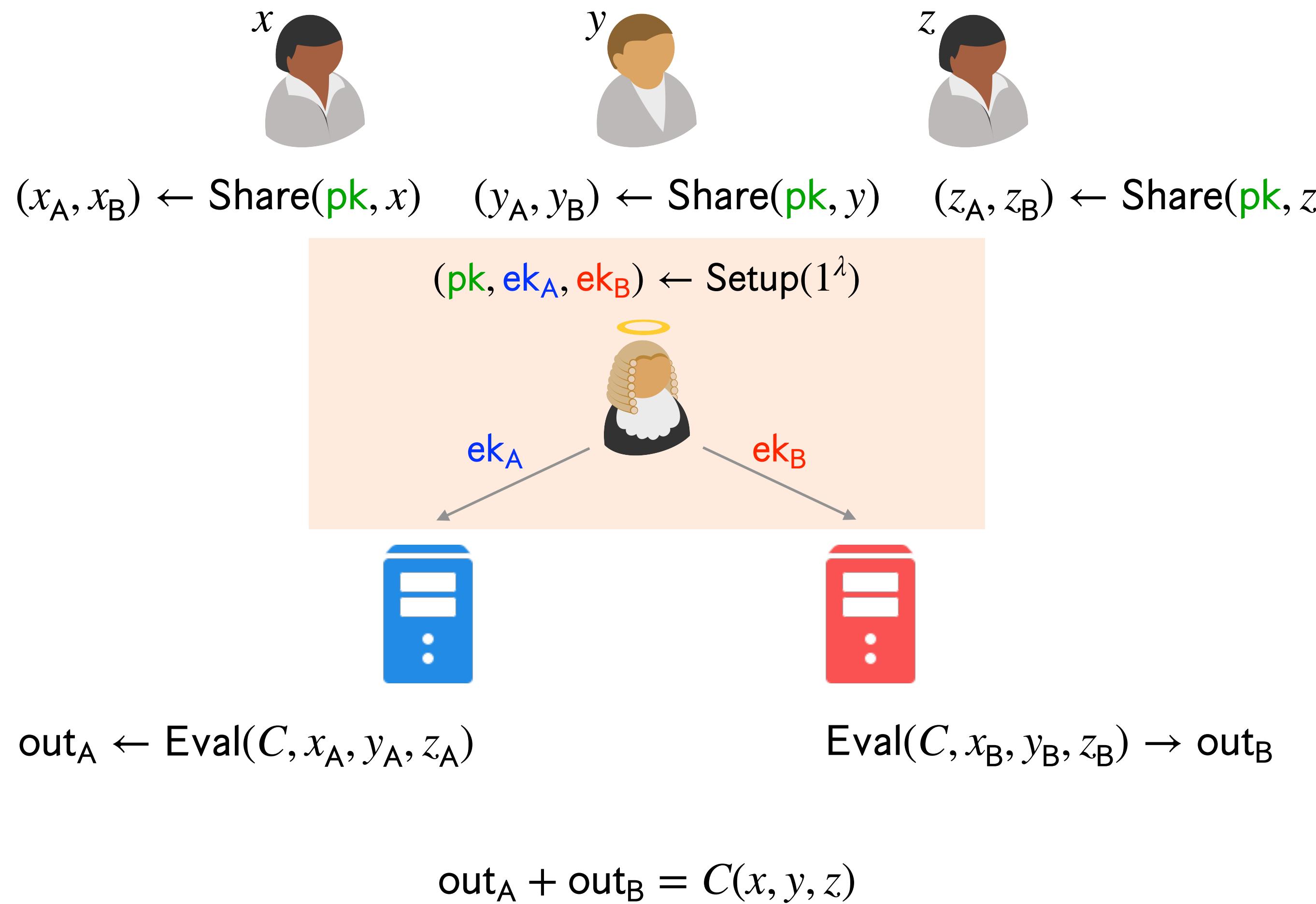
Private Information Retrieval

Pseudorandom Correlation Generators

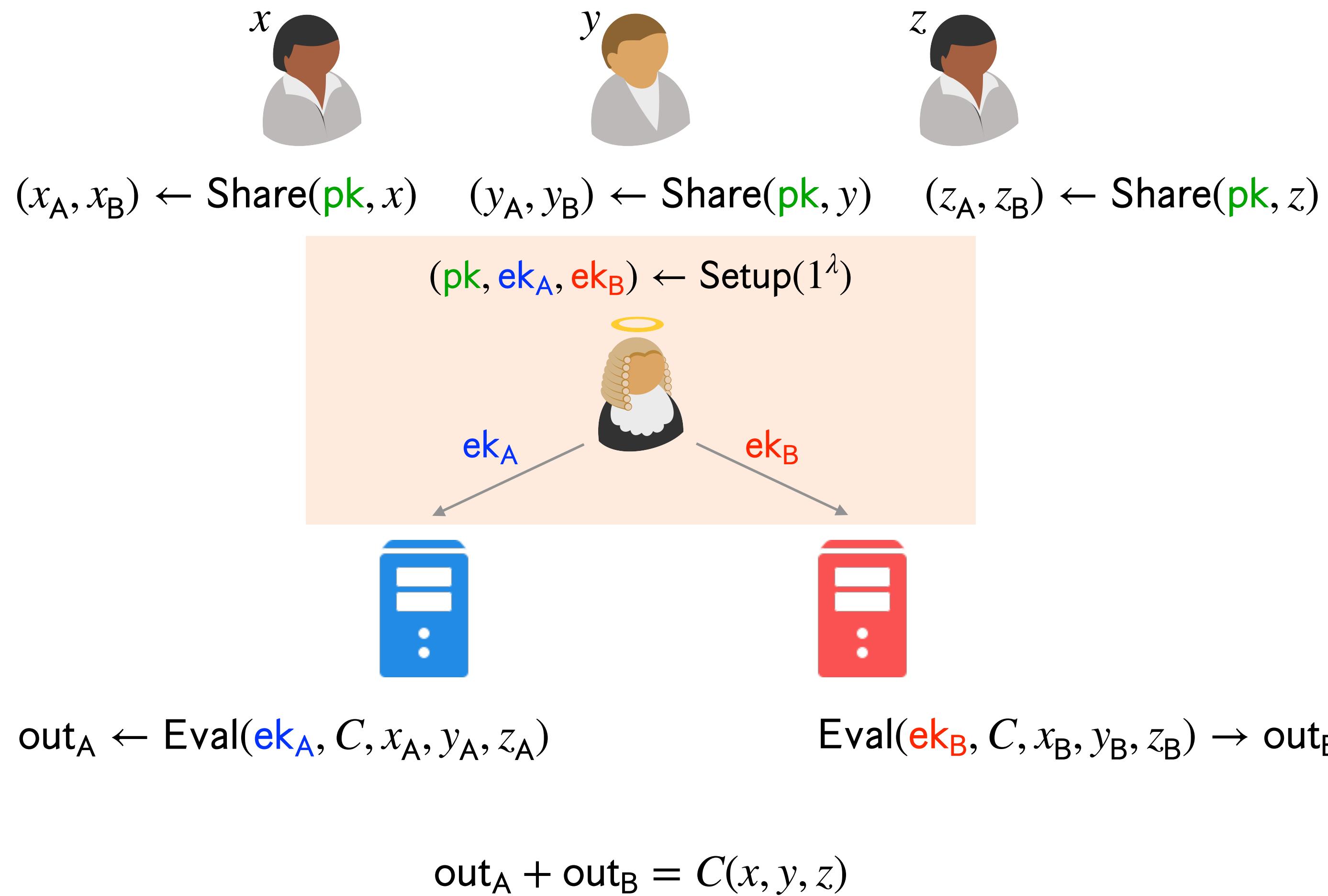
Existing client-server HSS
require **correlated setup**

[Boyle-Gilboa-Ishai'16] [Boyle-Kohl-Scholl'19]
[Roy-Singh'21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgård-Orlandi-Scholl'22]

Client-Server HSS



Client-Server HSS



Applications

Two-round succinct MPC

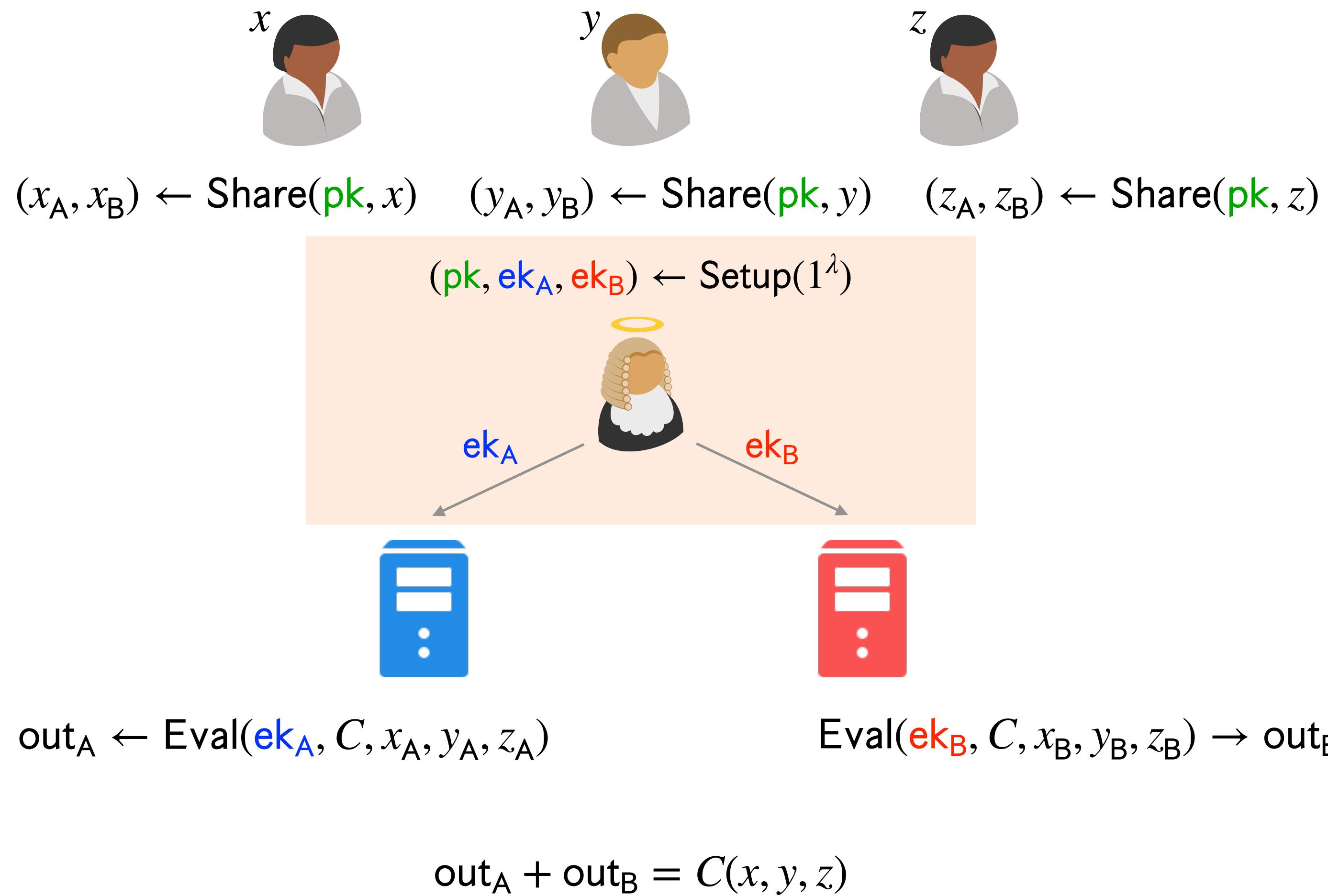
Private Information Retrieval

Pseudorandom Correlation Generators

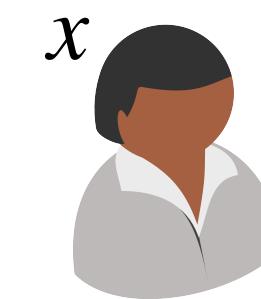
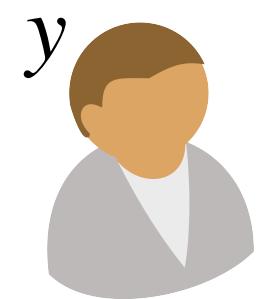
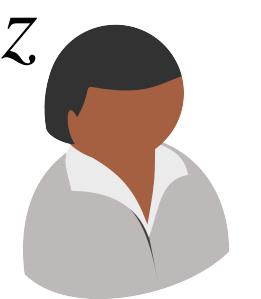
Existing client-server HSS require **correlated setup**

[Boyle-Gilboa-Ishai'16] [Boyle-Kohl-Scholl'19]
[Roy-Singh'21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgård-Orlandi-Scholl'22]

Client-Server HSS



Client-Server HSS



$(x_A, x_B) \leftarrow \text{Share}(\text{crs}, x)$ $(y_A, y_B) \leftarrow \text{Share}(\text{crs}, y)$ $(z_A, z_B) \leftarrow \text{Share}(\text{crs}, z)$

Common Reference String

$\text{out}_A \leftarrow \text{Eval}(\text{crs}, C, x_A, y_A, z_A)$

$\text{Eval}(\text{crs}, C, x_B, y_B, z_B) \rightarrow \text{out}_B$

$\text{out}_A + \text{out}_B = C(x, y, z)$

Applications

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

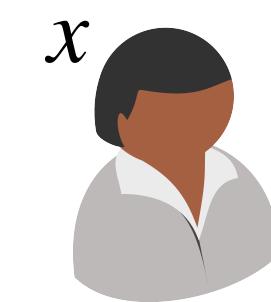
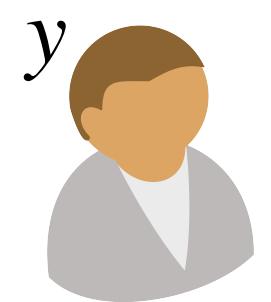
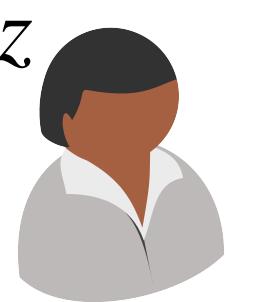
Existing client-server HSS
require **correlated setup**

[Boyle-Gilboa-Ishai'16] [Boyle-Kohl-Scholl'19]
[Roy-Singh'21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgård-Orlandi-Scholl'22]

Multi-key FHE: Multi-input evaluation
in the **CRS model**

[López-Alt-Tromer-Vaikuntanathan'12]
[Wichs-Mukherjee'16]

Client-Server HSS



$(x_A, x_B) \leftarrow \text{Share}(\text{crs}, x)$ $(y_A, y_B) \leftarrow \text{Share}(\text{crs}, y)$ $(z_A, z_B) \leftarrow \text{Share}(\text{crs}, z)$

Common Reference String

$\text{out}_A \leftarrow \text{Eval}(\text{crs}, C, x_A, y_A, z_A)$

$\text{Eval}(\text{crs}, C, x_B, y_B, z_B) \rightarrow \text{out}_B$

$\text{out}_A + \text{out}_B = C(x, y, z)$

Applications

Two-round succinct MPC

Private Information Retrieval

Pseudorandom Correlation Generators

Existing client-server HSS
require **correlated setup**

[Boyle-Gilboa-Ishai'16] [Boyle-Kohl-Scholl'19]
[Roy-Singh'21] [Orlandi-Scholl-Yakoubov'21]
[Abram-Damgård-Orlandi-Scholl'22]

Multi-key FHE: Multi-input evaluation
in the **CRS model**

[López-Alt-Tromer-Vaikuntanathan'12]
[Wichs-Mukherjee'16]

Goal: Client-server HSS in the **CRS model**
from assumptions not known to imply FHE

Our Results

Multi-client **two**-server HSS in the **CRS model** for evaluating **RMS Programs**

Our Results

Unbounded polynomial number of clients

Multi-client **two**-server HSS in the [CRS model](#) for evaluating [RMS Programs](#)

Our Results

Contains NC^1

Multi-client **two**-server HSS in the **CRS model** for evaluating **RMS Programs**

Our Results

Multi-client **two**-server HSS in the **CRS model** for evaluating **RMS Programs**

DDH

DCR

Class groups

Our Results

Multi-client **two**-server HSS in the **CRS model** for evaluating **RMS Programs**

DDH

DCR

Class groups

Previously known only from **LWE** or **$i\mathcal{O}$ + DDH** [Dodis-Halevi-Rothblum-Wichs'16]

Our Results

Multi-client **two**-server HSS in the **CRS model** for evaluating **RMS Programs**

Client-Server HSS from Prior Works

(Require Correlated Setup)

DDH

[Boyle-Gilboa-Ishai'16]

DCR

[Orlandi-Scholl-Yakoubov'21]
[Roy-Singh'21]

Class groups

[Abram-Damgård-Orlandi-Scholl'22]

Previously known only from **LWE** or ***iO* + DDH** [Dodis-Halevi-Rothblum-Wichs'16]

Our Results

Multi-client **two**-server HSS in the **CRS model** for evaluating **RMS Programs**

Client-Server HSS from Prior Works

(Require Correlated Setup)

Inverse polynomial
correctness error

DDH

[Boyle-Gilboa-Ishai'16]

DCR

[Orlandi-Scholl-Yakoubov'21]
[Roy-Singh'21]

Class groups

[Abram-Damgård-Orlandi-Scholl'22]

Previously known only from **LWE** or ***iO* + DDH** [Dodis-Halevi-Rothblum-Wichs'16]

Our Results

Multi-client **two**-server HSS in the **CRS model** for evaluating **RMS Programs**

Client-Server HSS from Prior Works

(Require Correlated Setup)

Transparent setup

DDH

[Boyle-Gilboa-Ishai'16]

DCR

[Orlandi-Scholl-Yakoubov'21]
[Roy-Singh'21]

Transparent setup

Class groups

[Abram-Damgård-Orlandi-Scholl'22]

Previously known only from **LWE** or ***iO* + DDH** [Dodis-Halevi-Rothblum-Wichs'16]

Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions

Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]

$(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^\lambda)$

Client-Server HSS with Correlated Setup

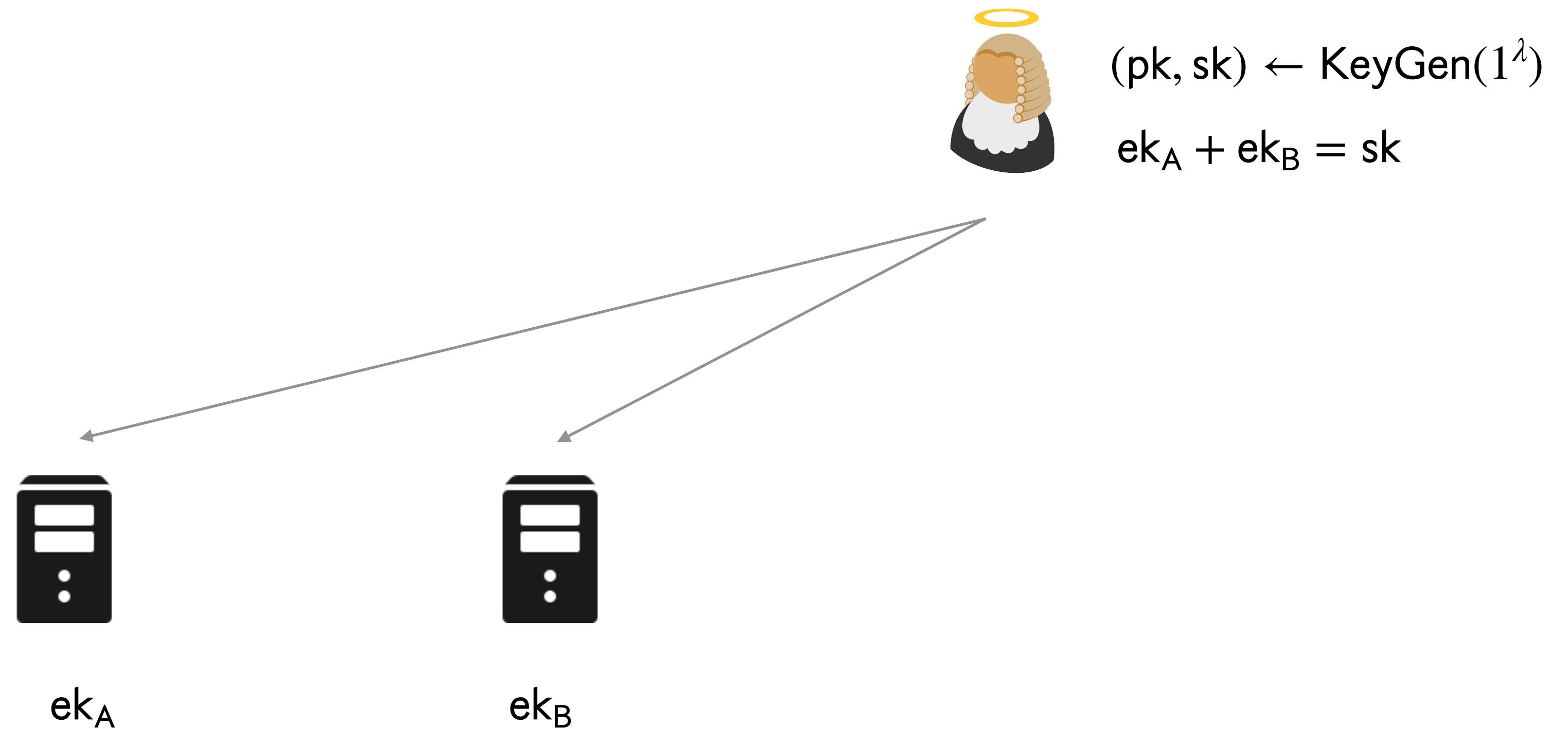
[Boyle-Gilboa-Ishai'16]

$(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^\lambda)$

$\text{ek}_A + \text{ek}_B = \text{sk}$

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]



Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]

$(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^\lambda)$
 $\text{ek}_A + \text{ek}_B = \text{sk}$

ek_A

ek_B

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]

$$(\mathbf{pk}, \mathbf{sk}) \leftarrow \mathbf{KeyGen}(1^\lambda)$$
$$\mathbf{ek}_A + \mathbf{ek}_B = \mathbf{sk}$$

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]

$ct_x \leftarrow \text{Encrypt}(\text{pk}, x)$

$\text{Encrypt}(\text{pk}, y) \rightarrow ct_y$

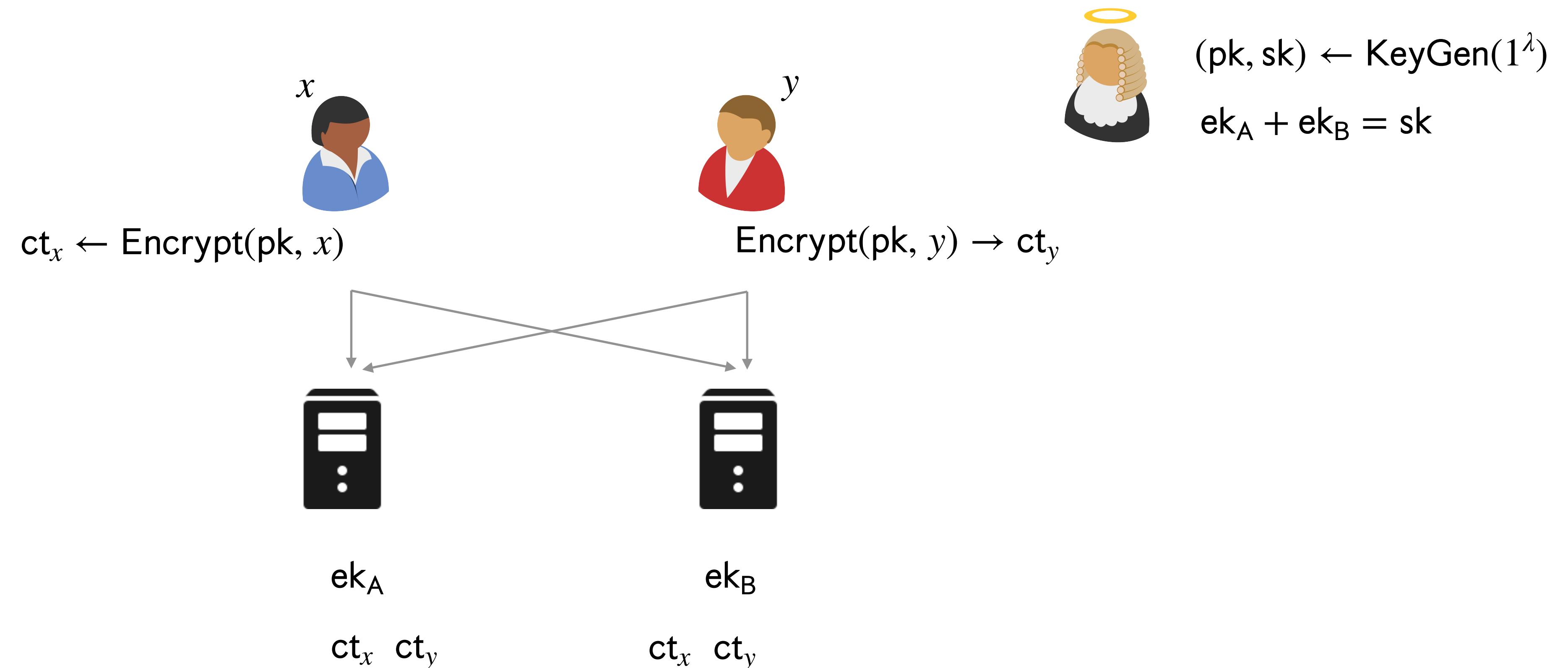
$(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^\lambda)$
 $\text{ek}_A + \text{ek}_B = \text{sk}$

ek_A

ek_B

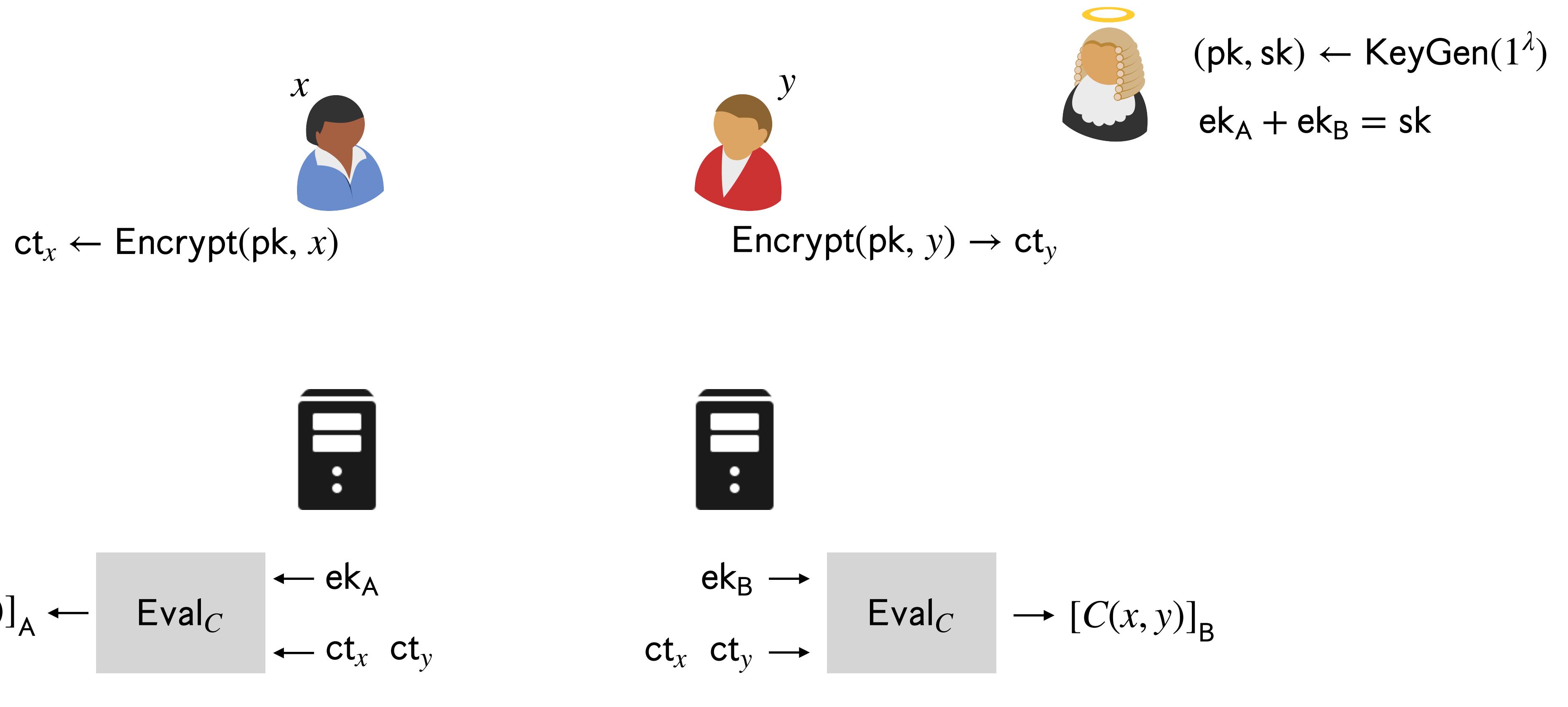
Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]



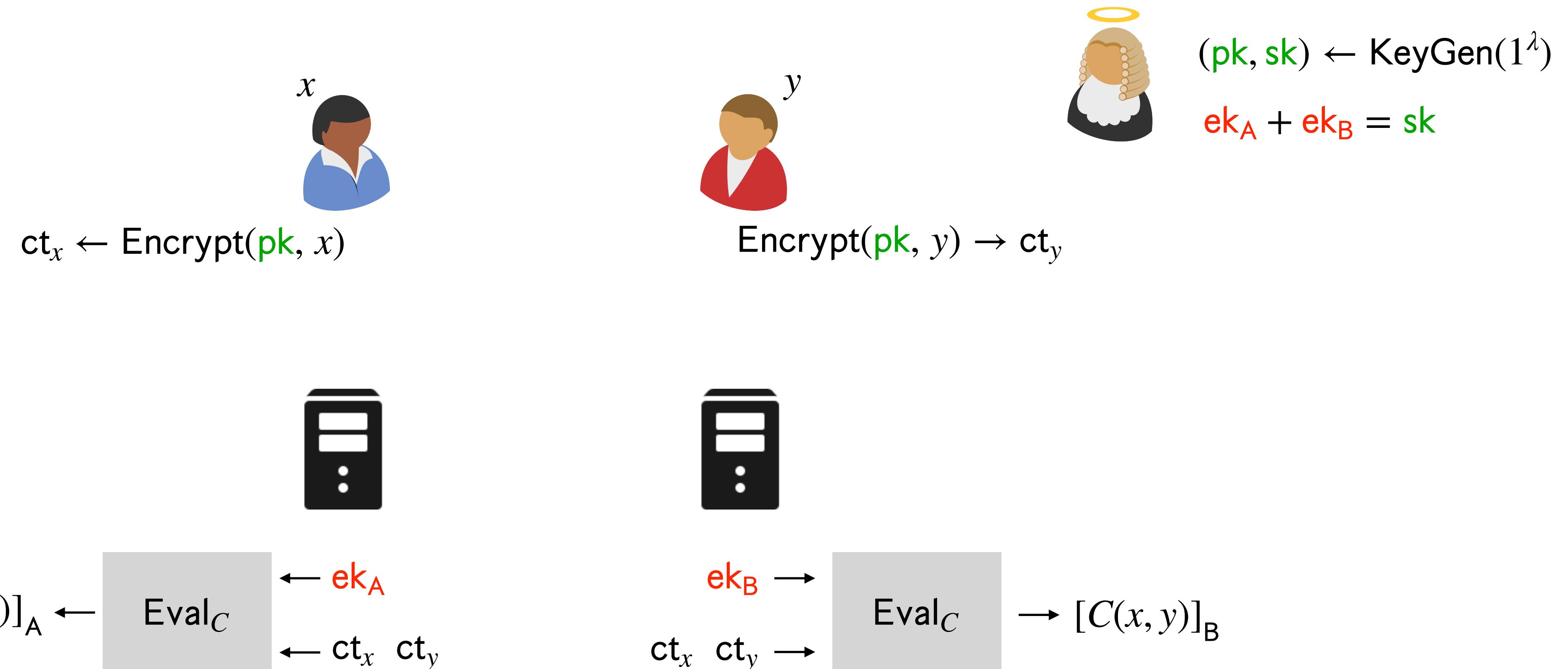
Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]



Client-Server HSS with Correlated Setup

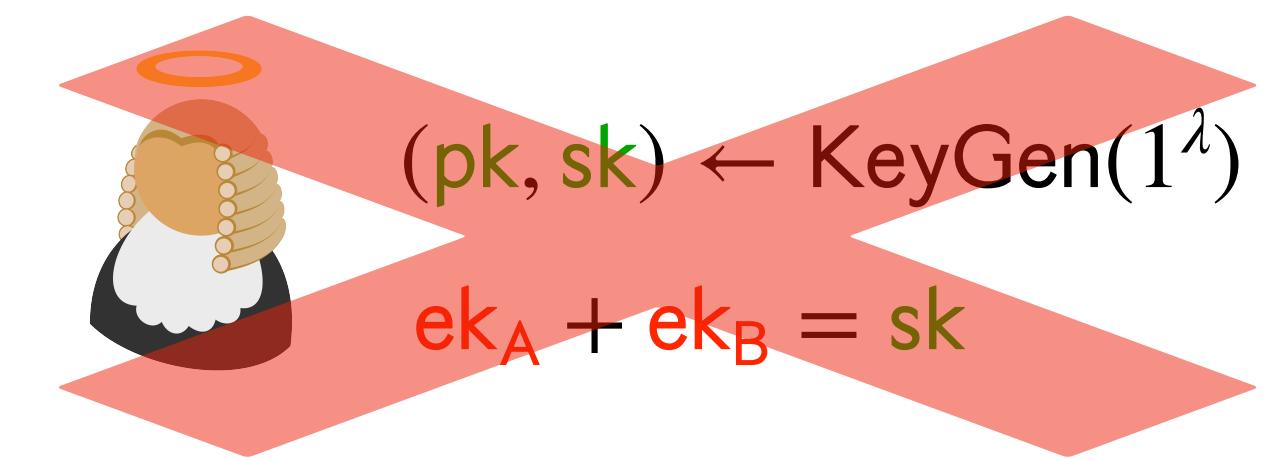
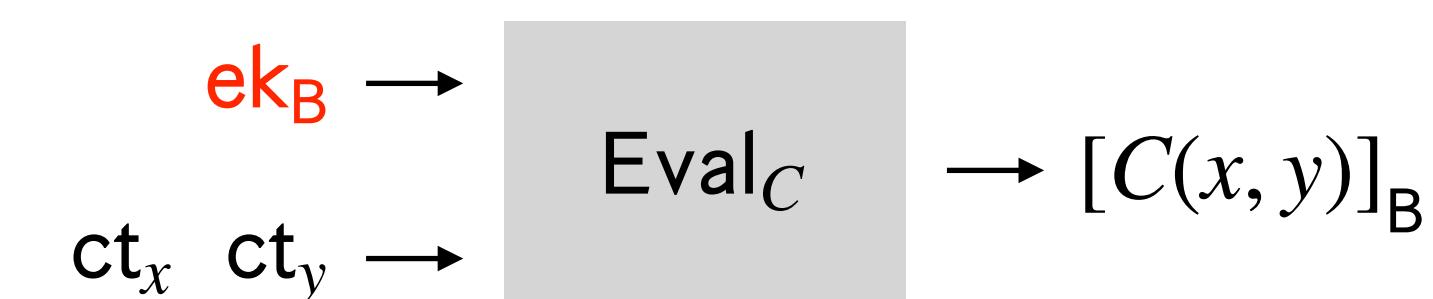
[Boyle-Gilboa-Ishai'16]



Barrier to Removing Correlated Setup: All inputs must be encrypted under a **common key**

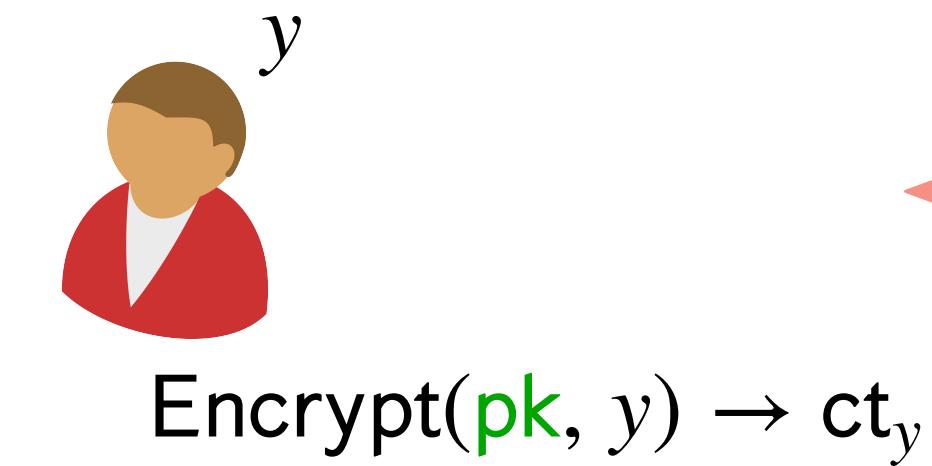
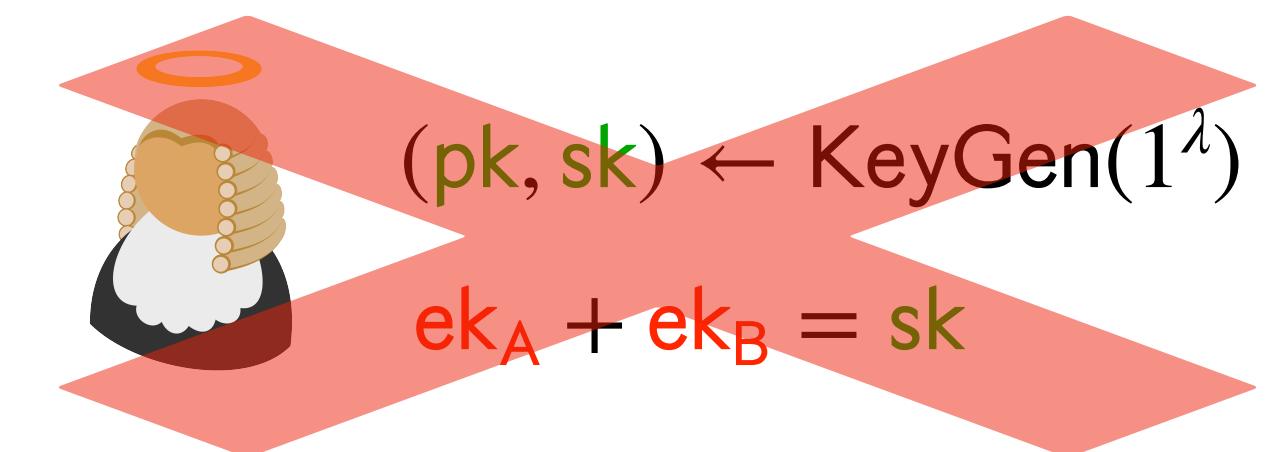
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



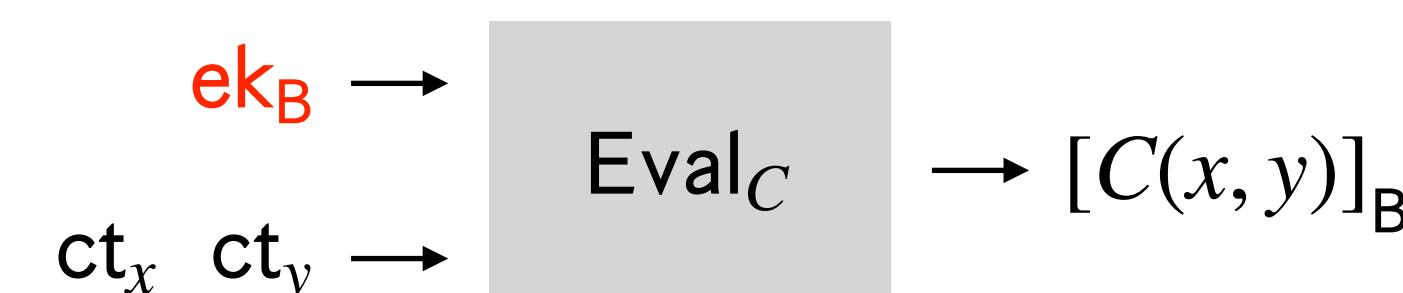
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



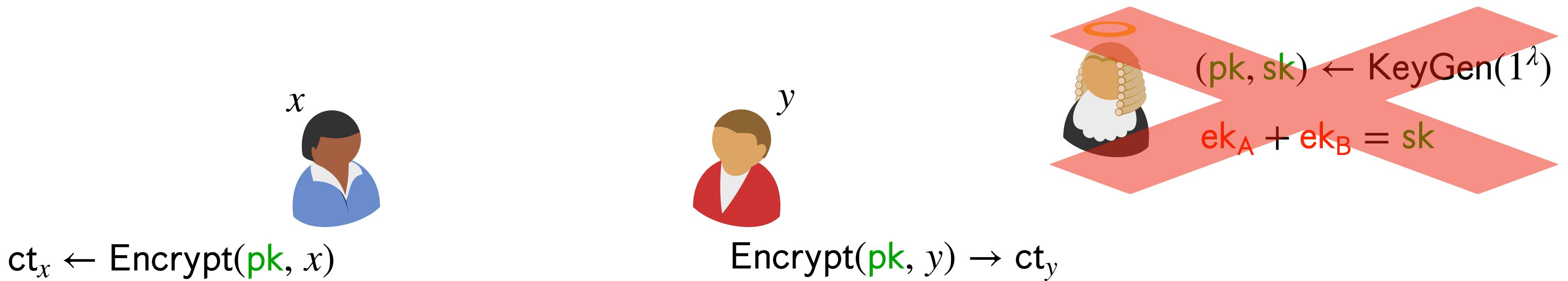
Approach

Modify input encoding
to use the **same**
evaluation algorithm



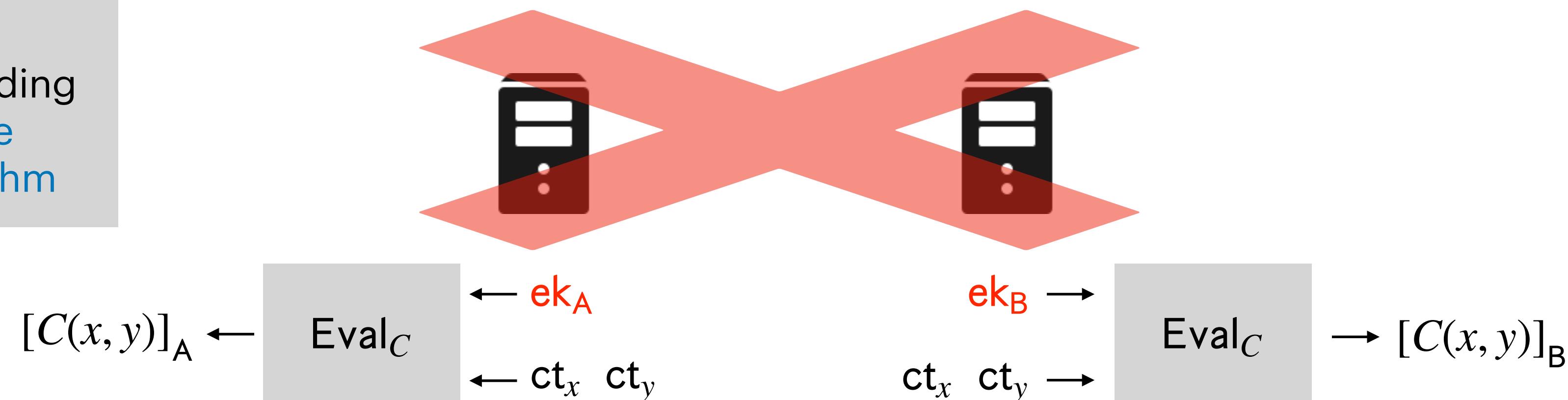
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



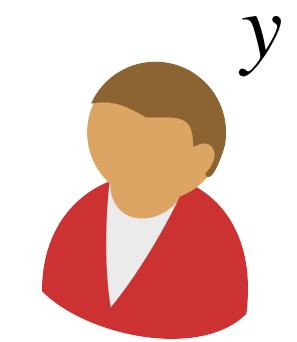
Approach

Modify input encoding
to use the **same**
evaluation algorithm



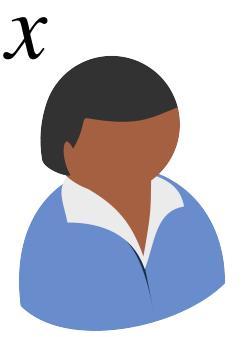
Two-Key HSS

[Couteau-Devadas-**H**-Jain-Servan-Schreiber'25]



Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



$(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$

$\text{KeyGen}(1^\lambda) \rightarrow (\mathbf{pk}_2, \mathbf{sk}_2)$

Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]

Common Reference String

$(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$

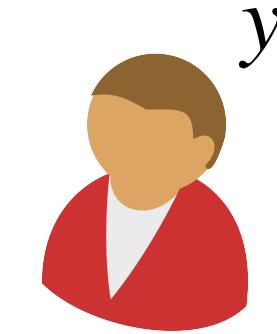


$\text{KeyGen}(1^\lambda) \rightarrow (\mathbf{pk}_2, \mathbf{sk}_2)$

Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]

Common Reference String



$(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$

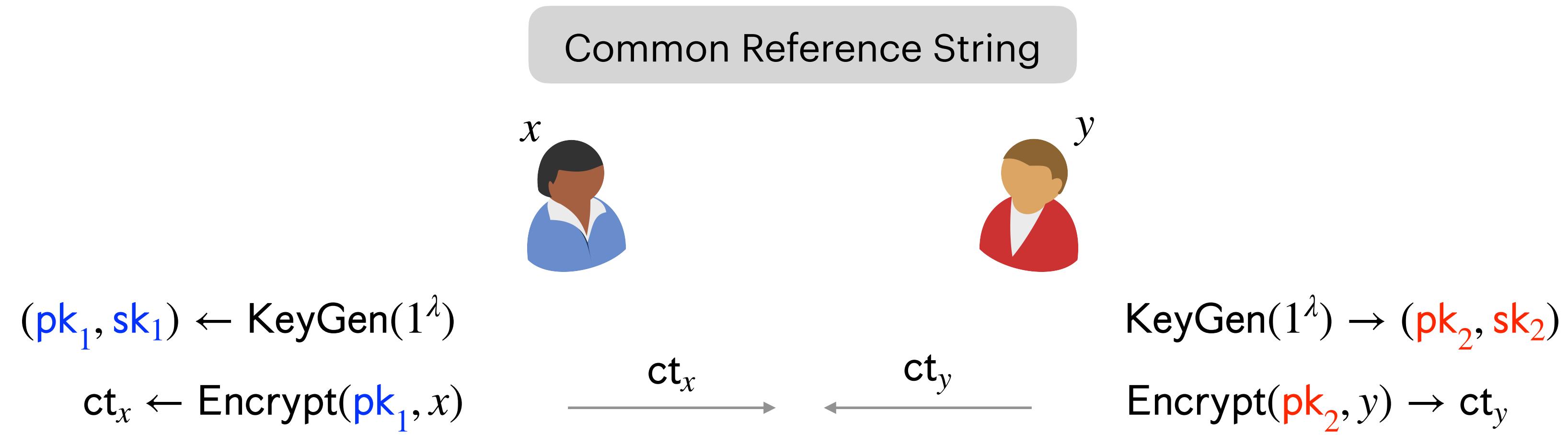
$\mathbf{ct}_x \leftarrow \text{Encrypt}(\mathbf{pk}_1, x)$

$\text{KeyGen}(1^\lambda) \rightarrow (\mathbf{pk}_2, \mathbf{sk}_2)$

$\text{Encrypt}(\mathbf{pk}_2, y) \rightarrow \mathbf{ct}_y$

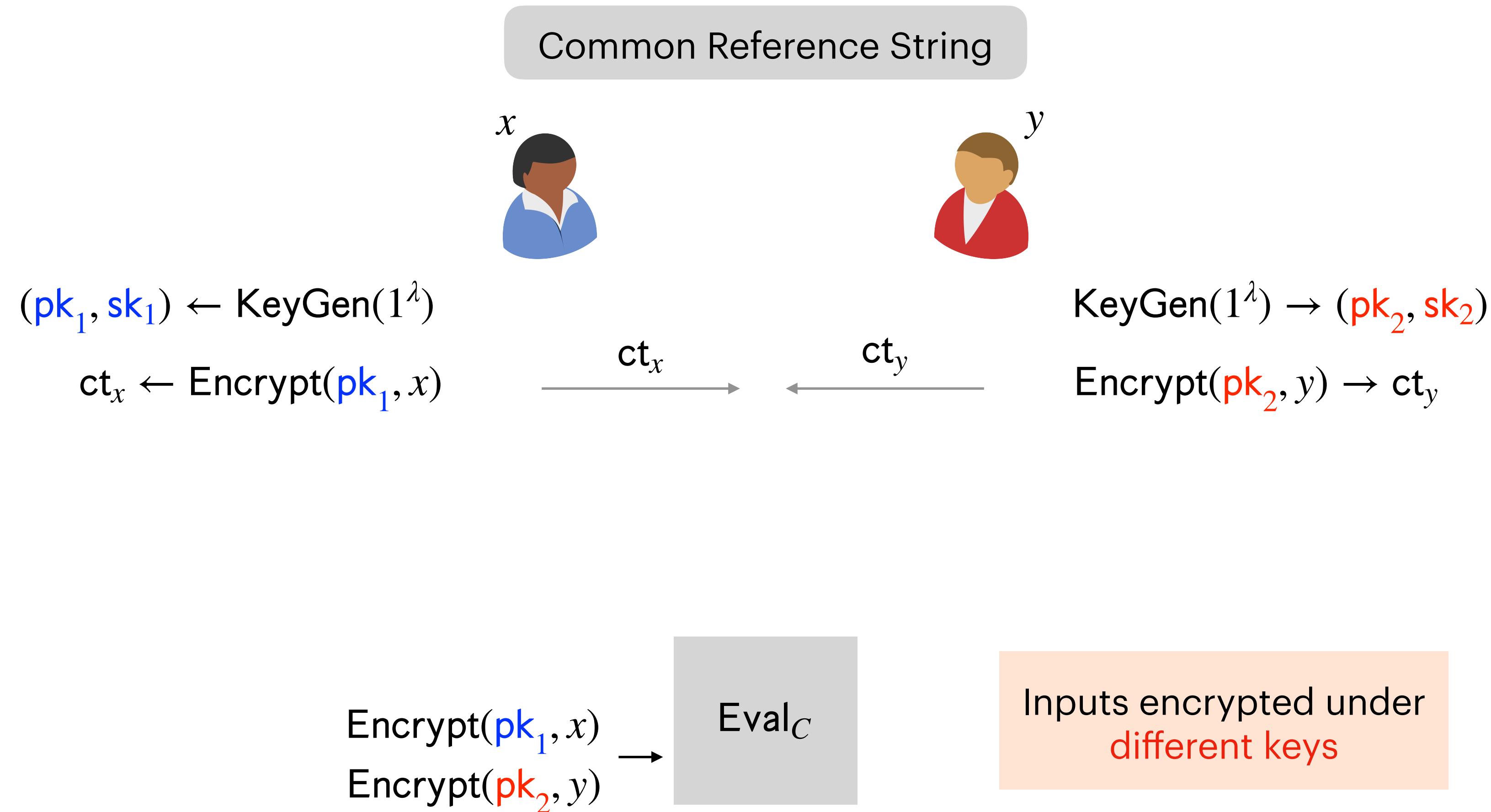
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



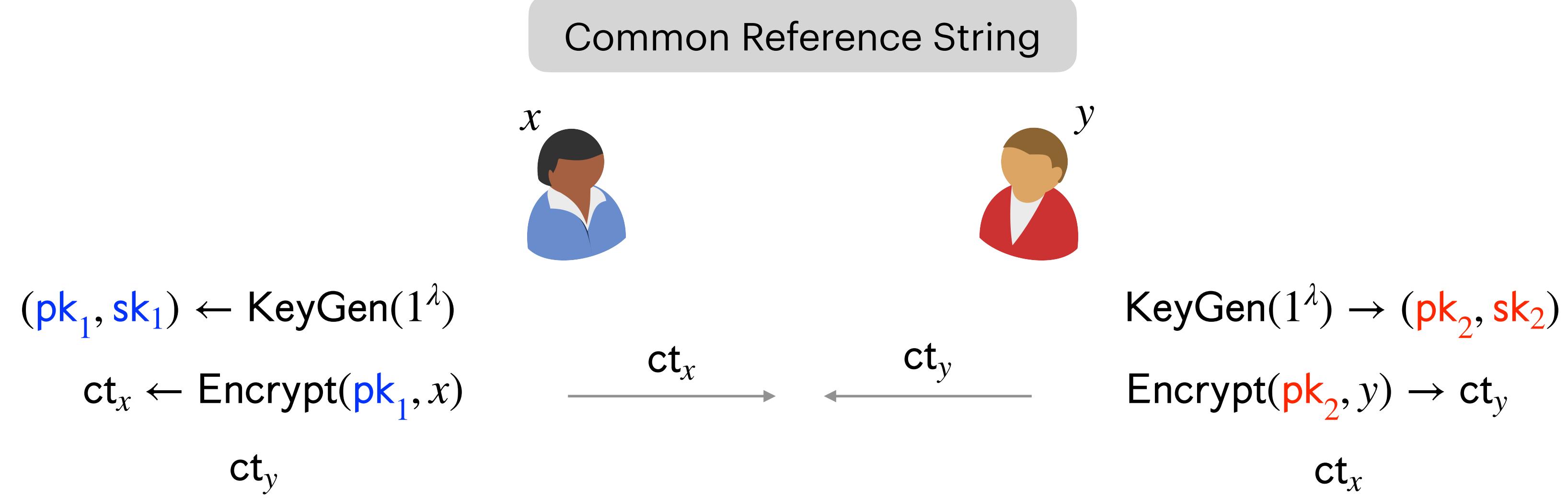
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



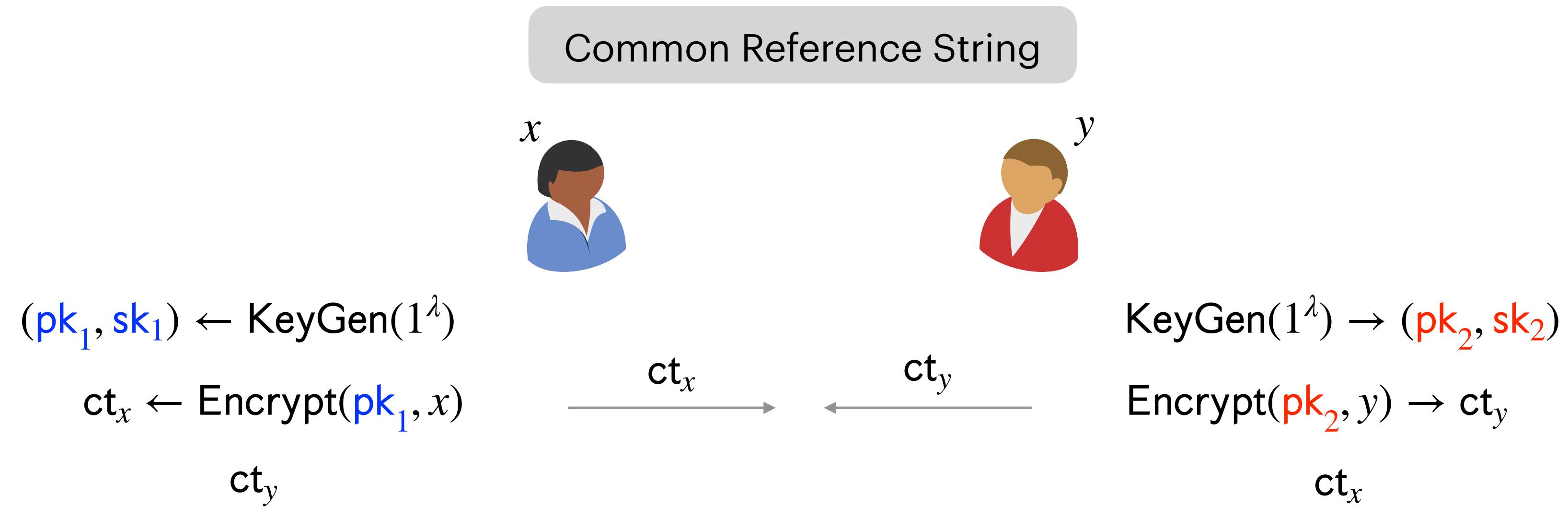
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



Two-Key HSS

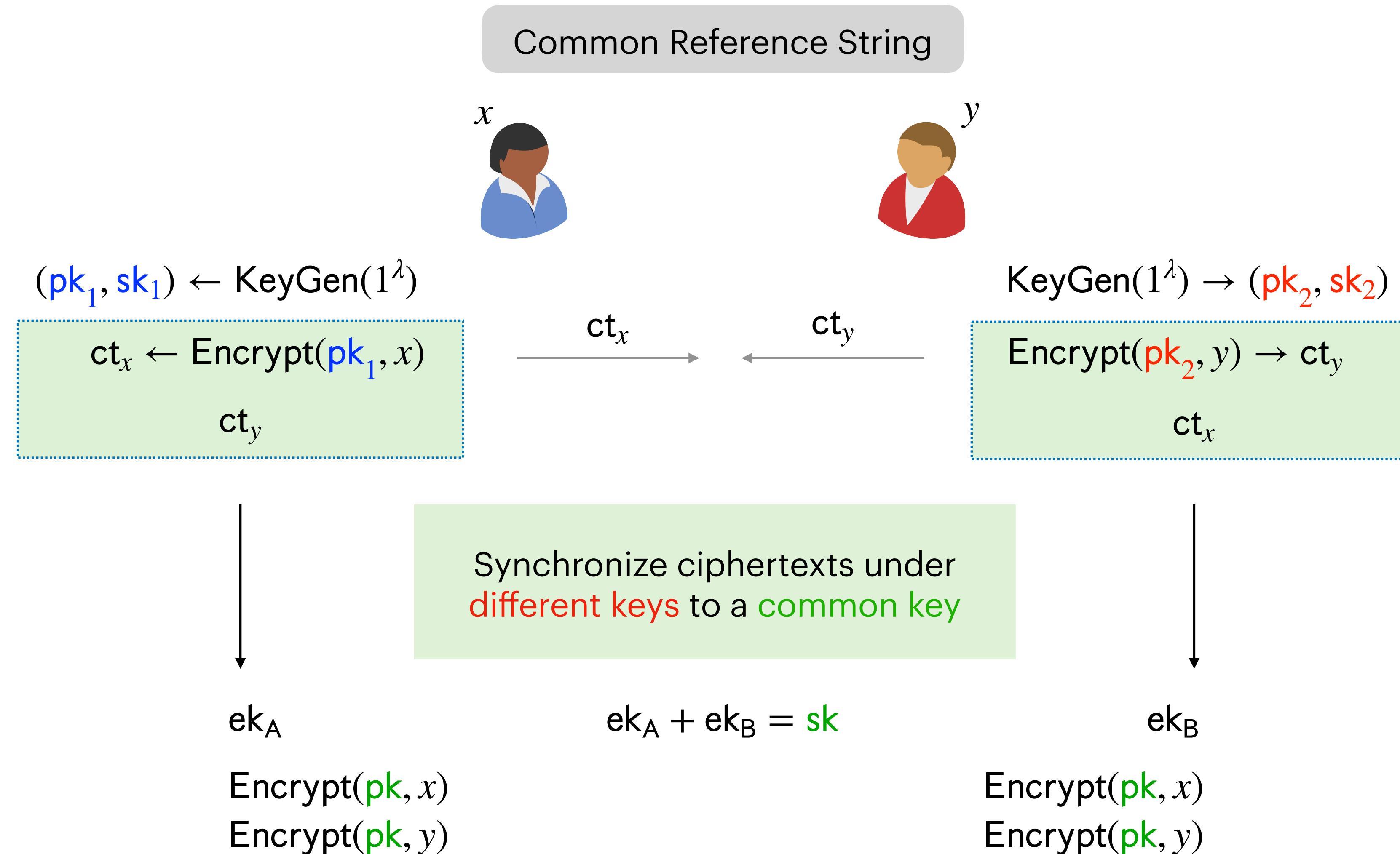
[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



Synchronize ciphertexts under
different keys to a **common key**

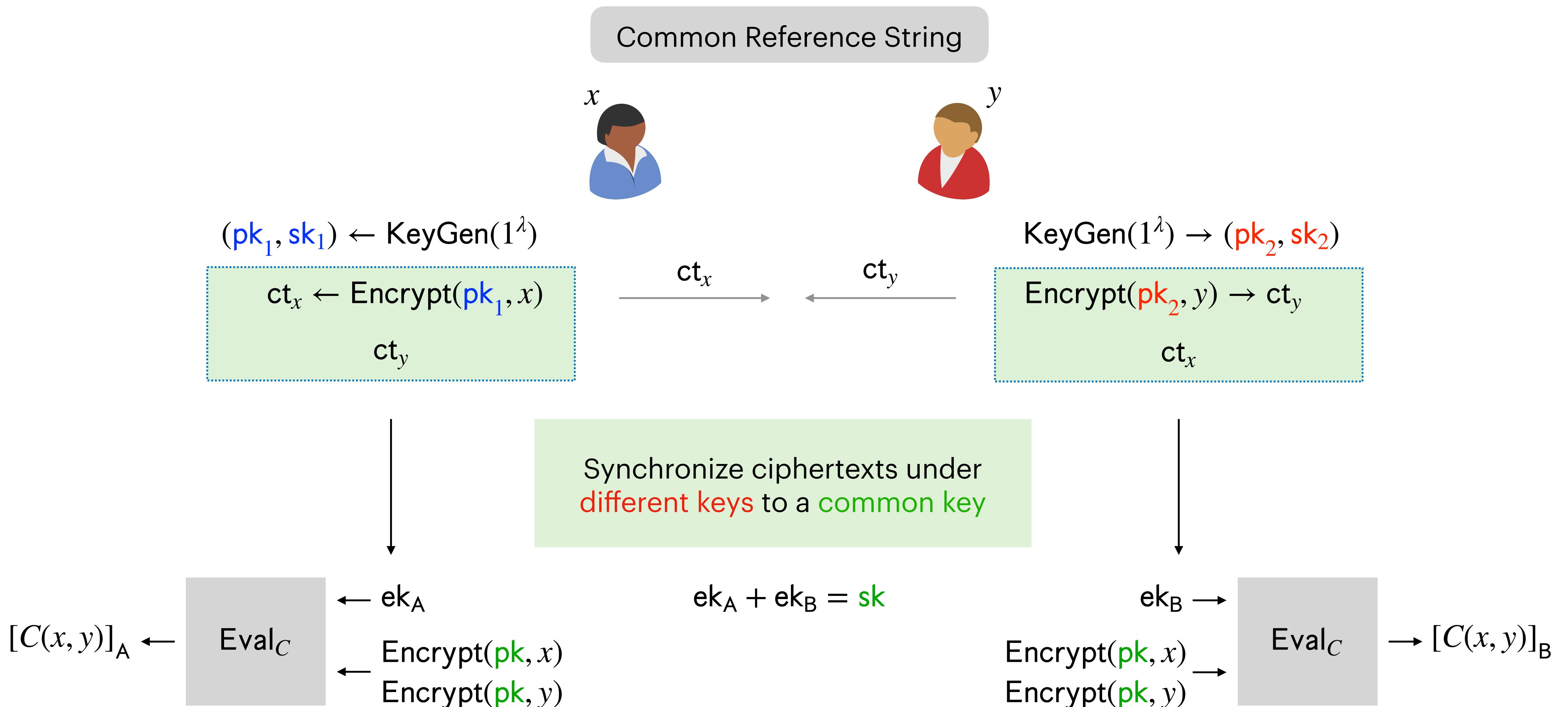
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



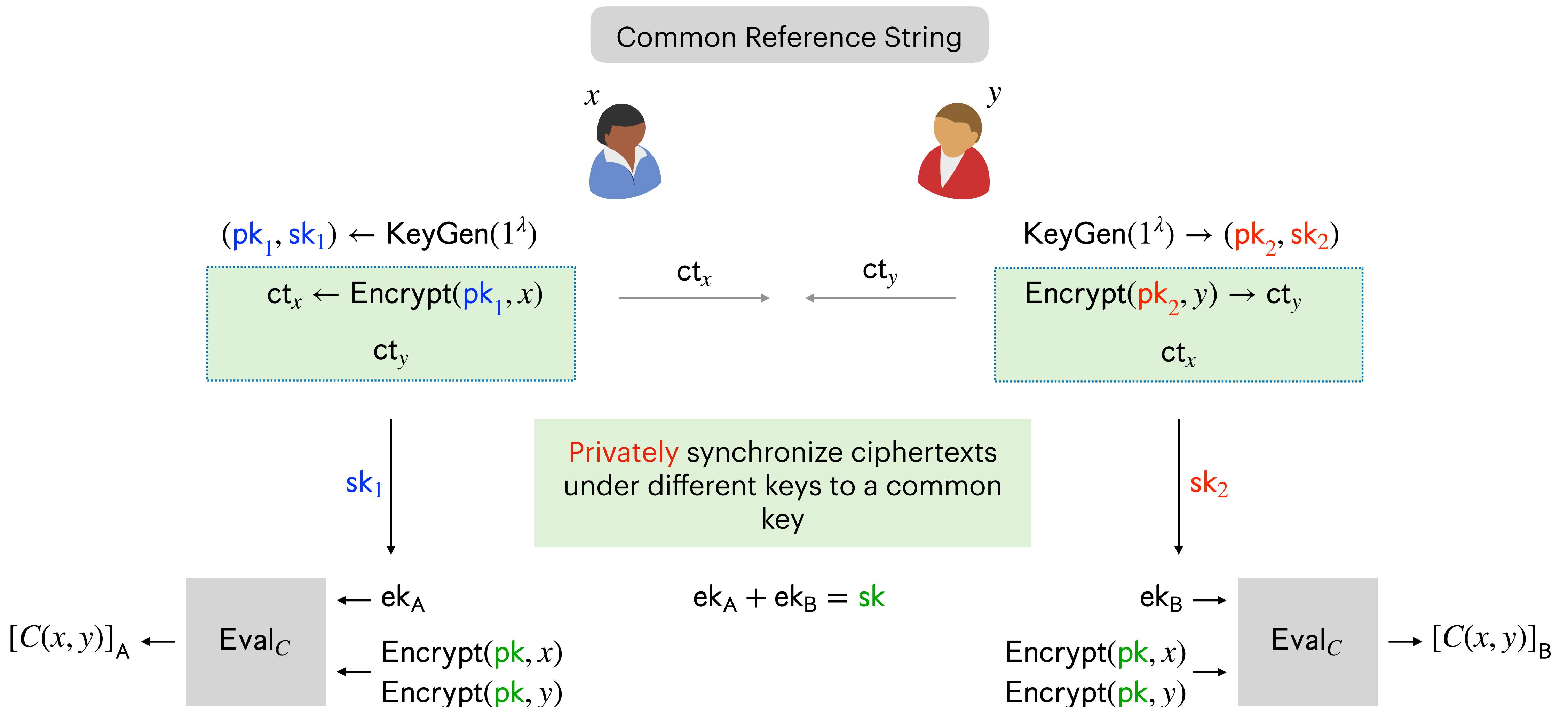
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



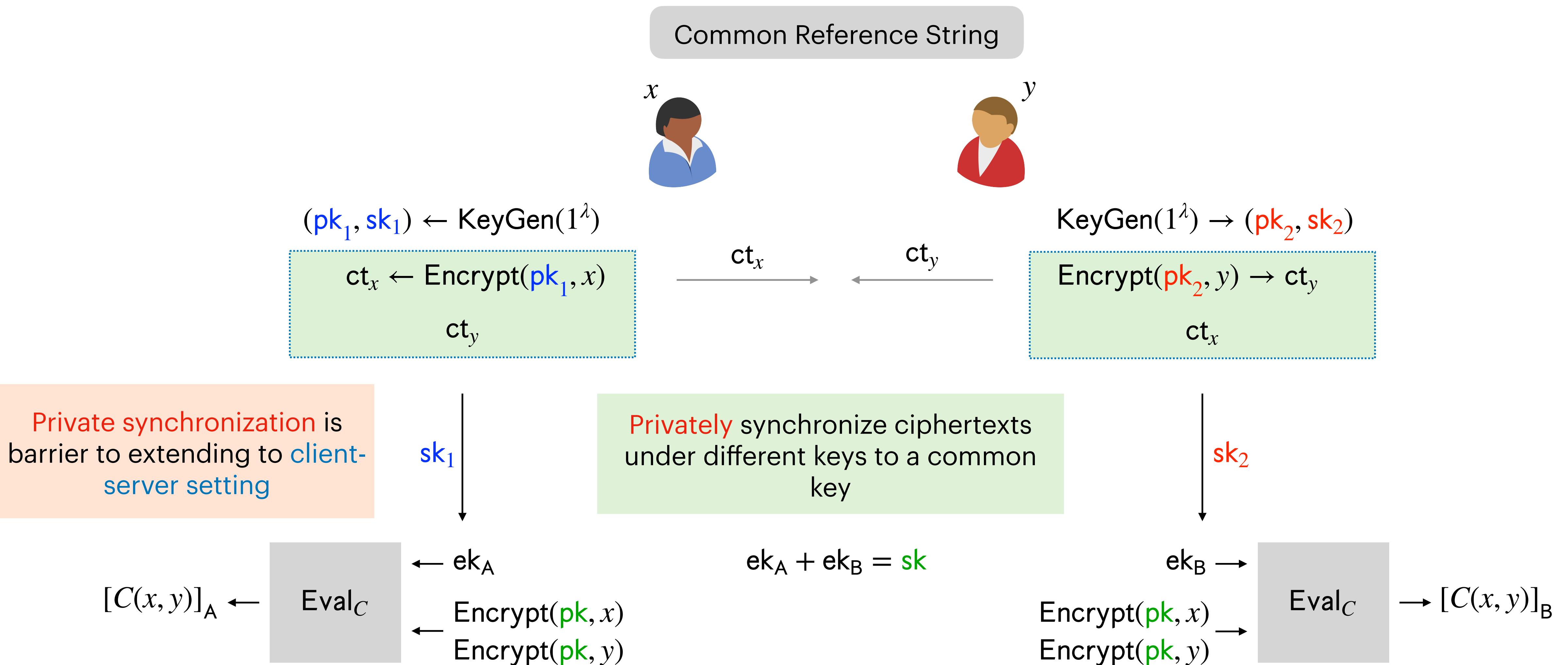
Two-Key HSS

[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



Two-Key HSS

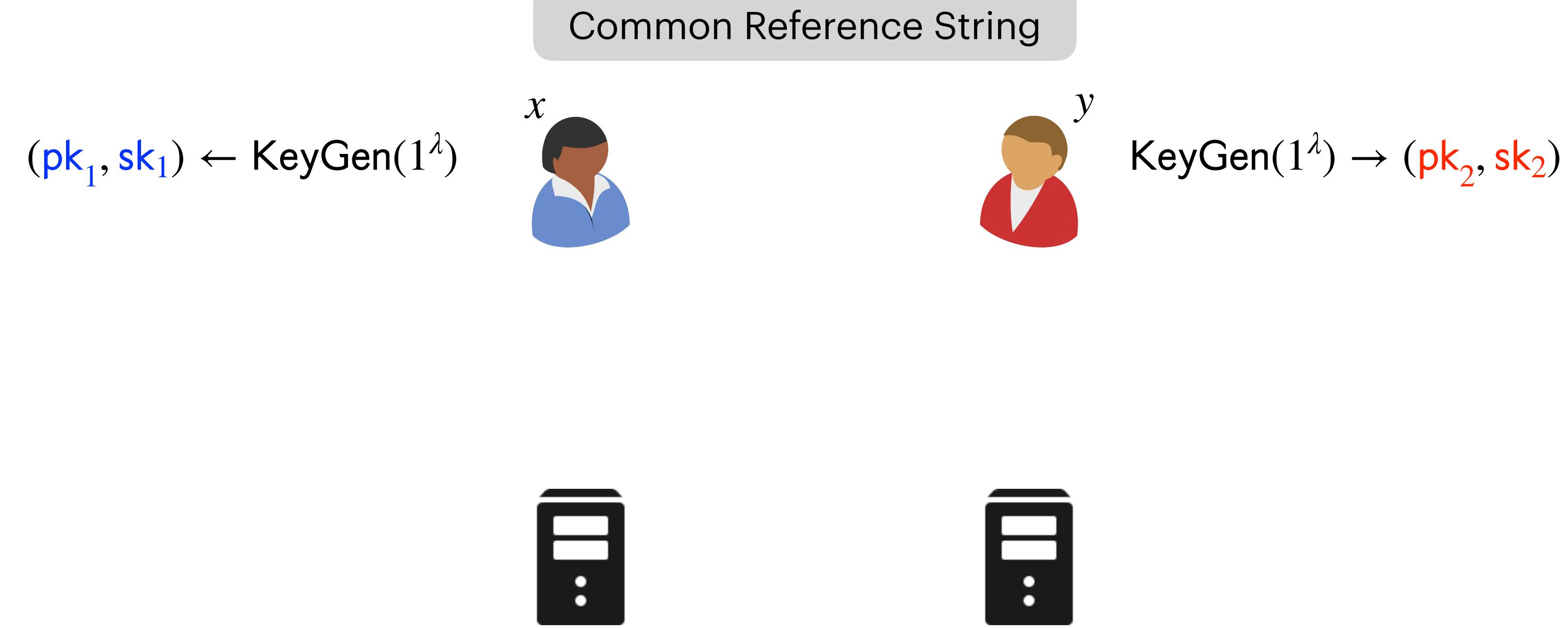
[Couteau–Devadas–H–Jain–Servan–Schreiber’25]



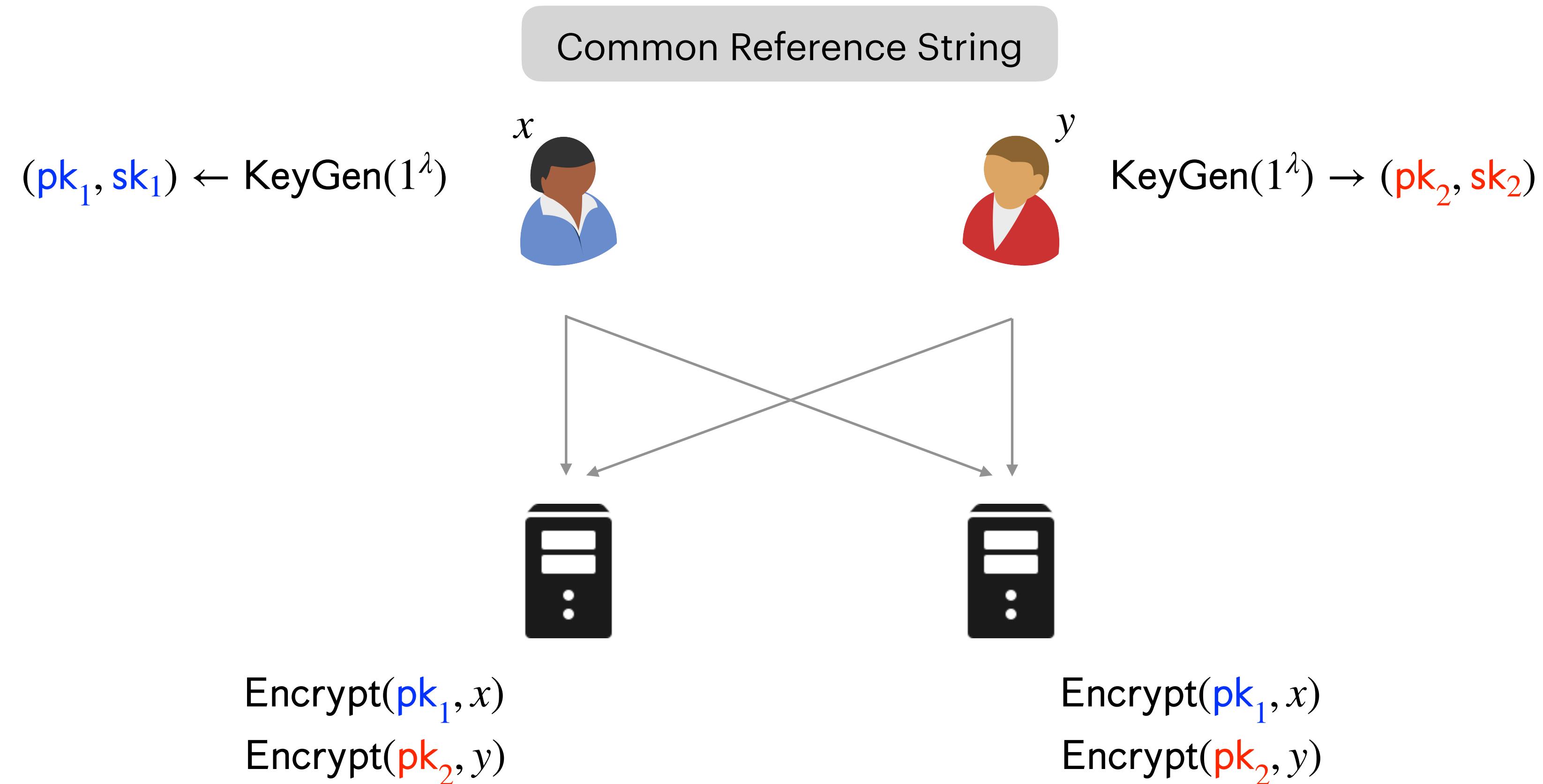
Barriers to Delegating Two-key HSS

Common Reference String

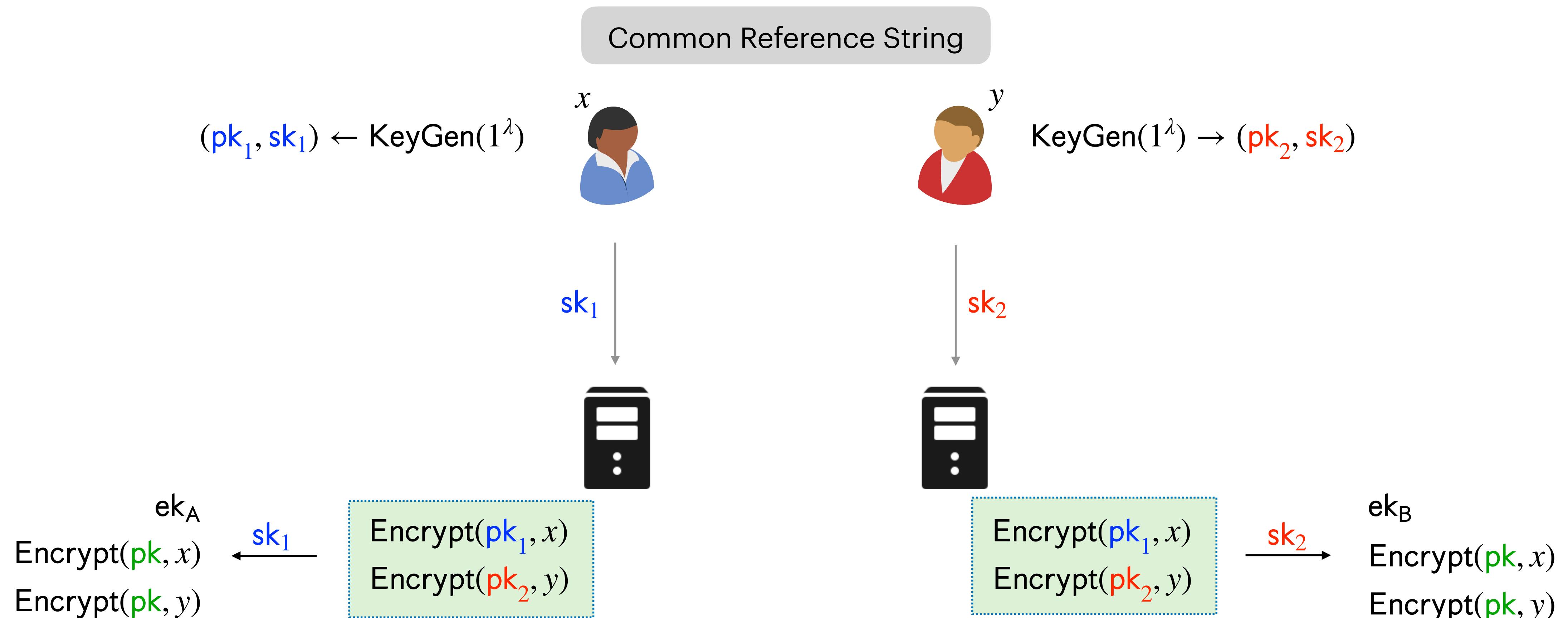
Barriers to Delegating Two-key HSS



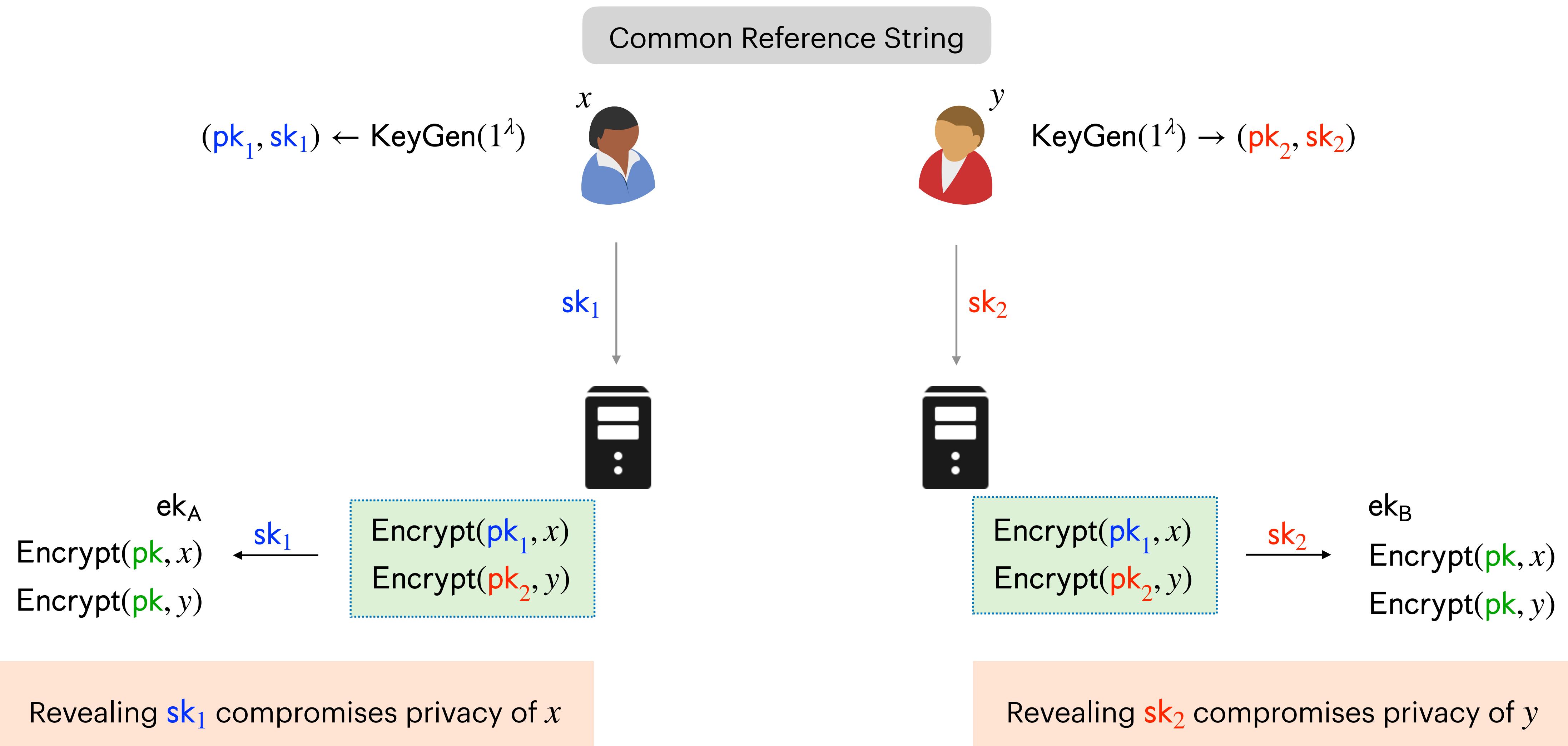
Barriers to Delegating Two-key HSS



Barriers to Delegating Two-key HSS



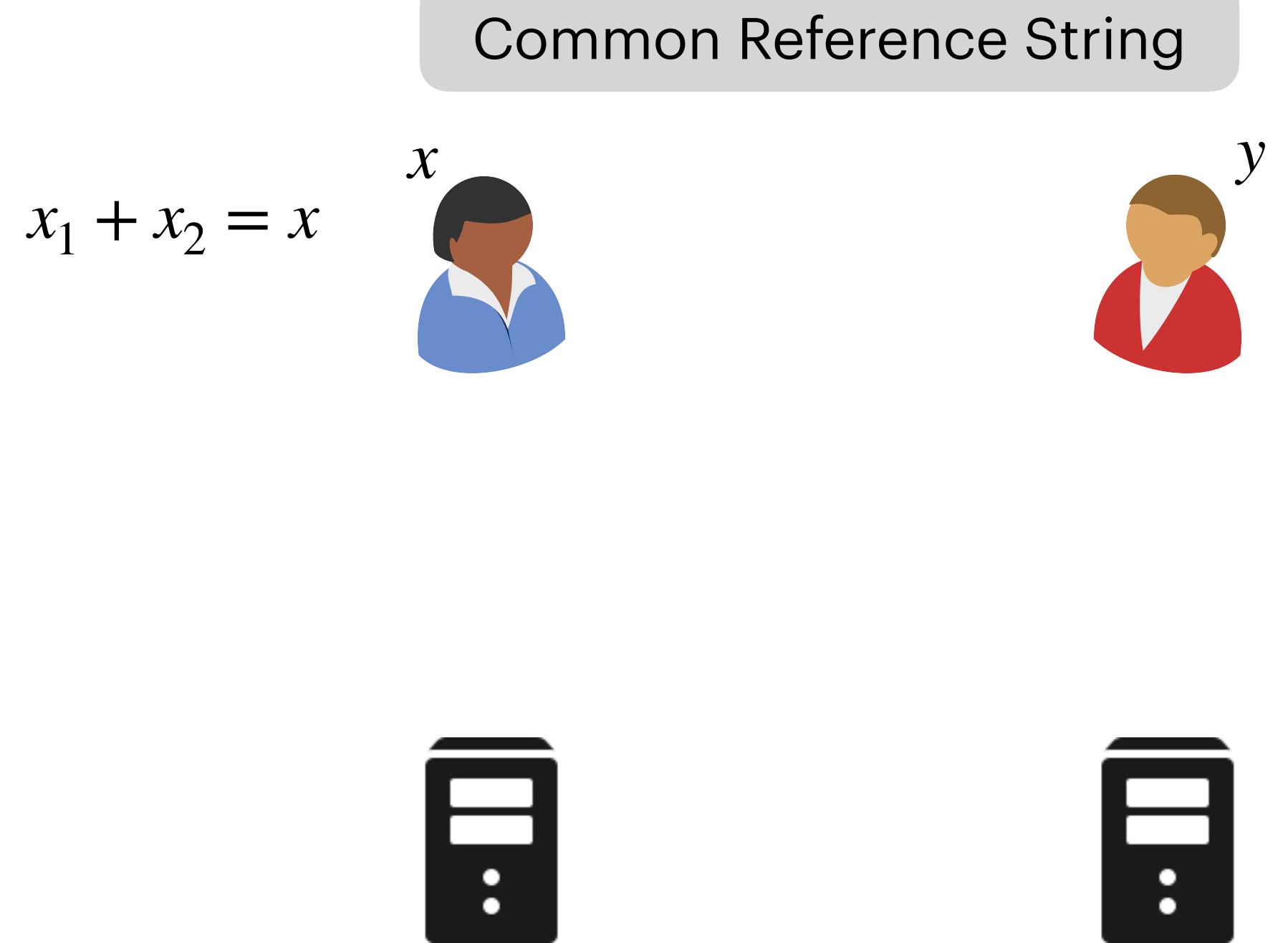
Barriers to Delegating Two-key HSS



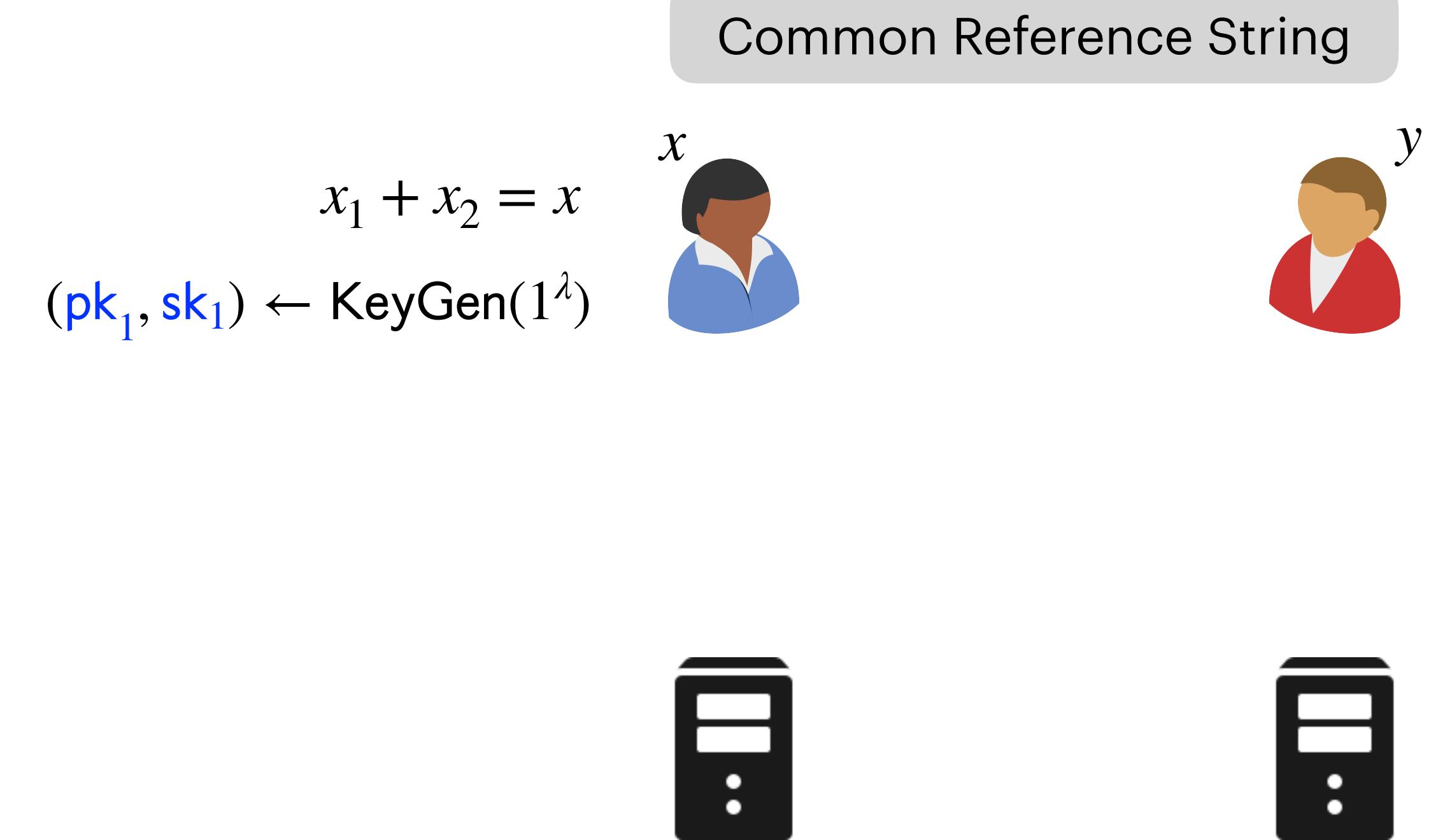
Barriers to Delegating Two-key HSS

Common Reference String

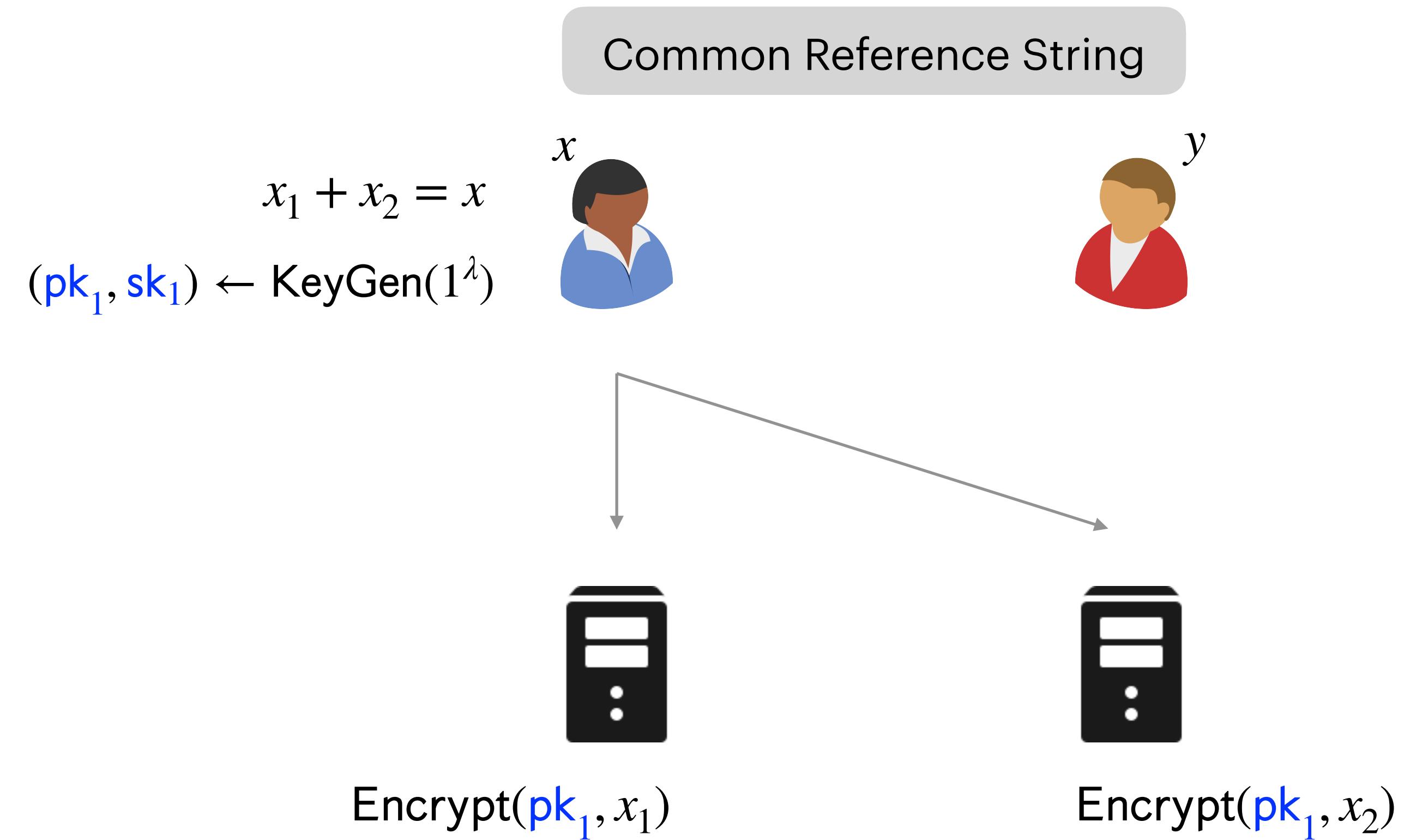
Barriers to Delegating Two-key HSS



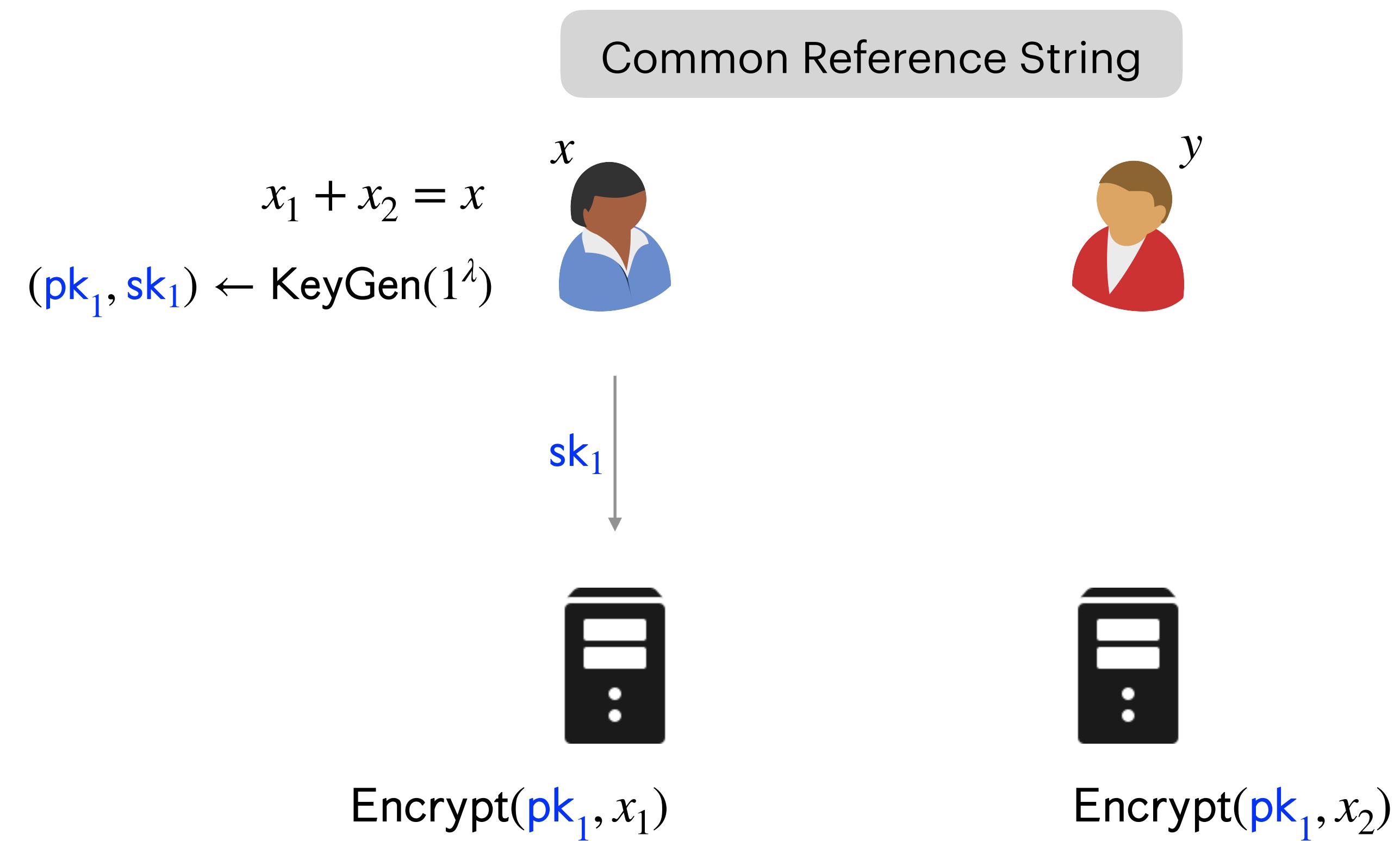
Barriers to Delegating Two-key HSS



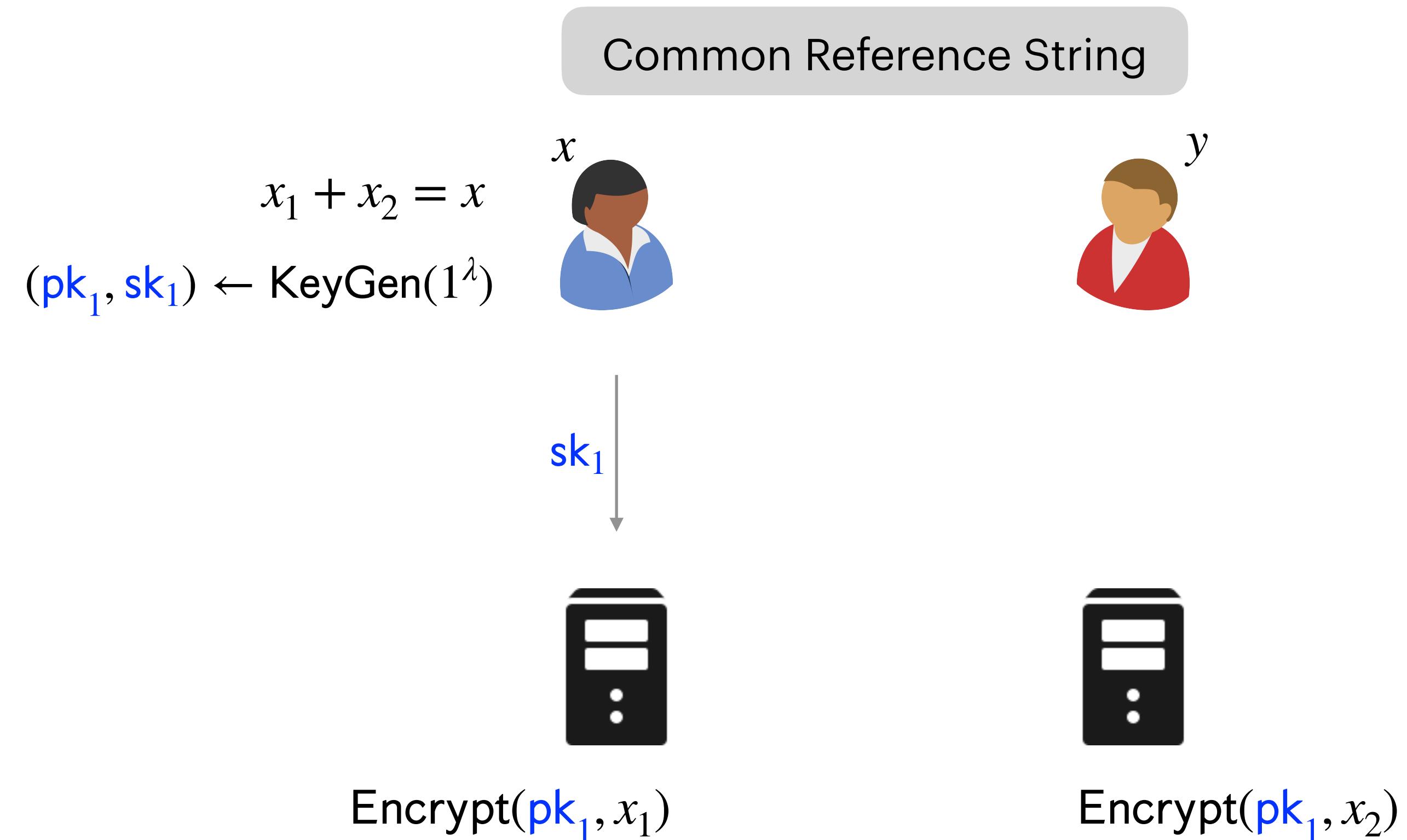
Barriers to Delegating Two-key HSS



Barriers to Delegating Two-key HSS

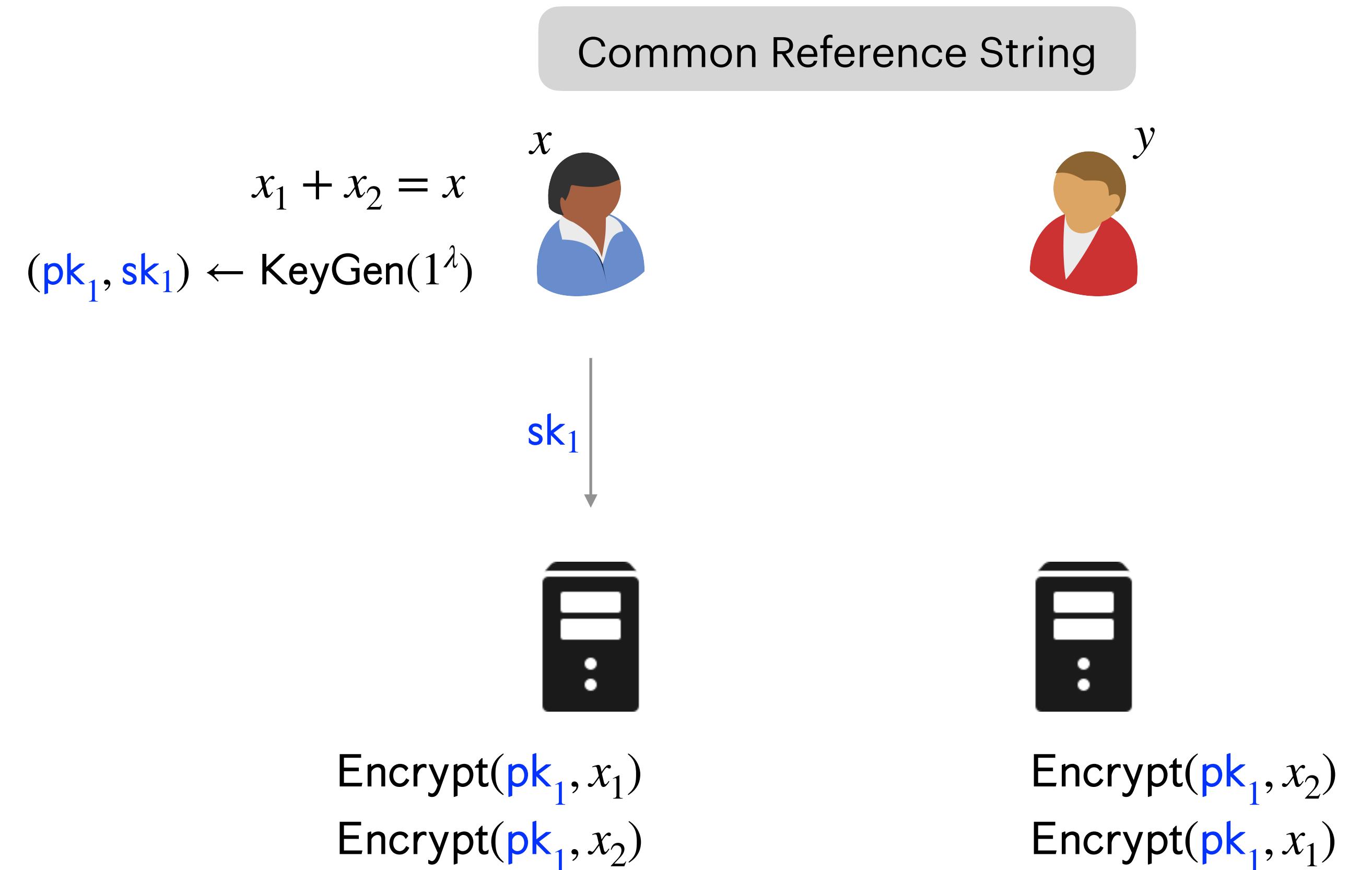


Barriers to Delegating Two-key HSS

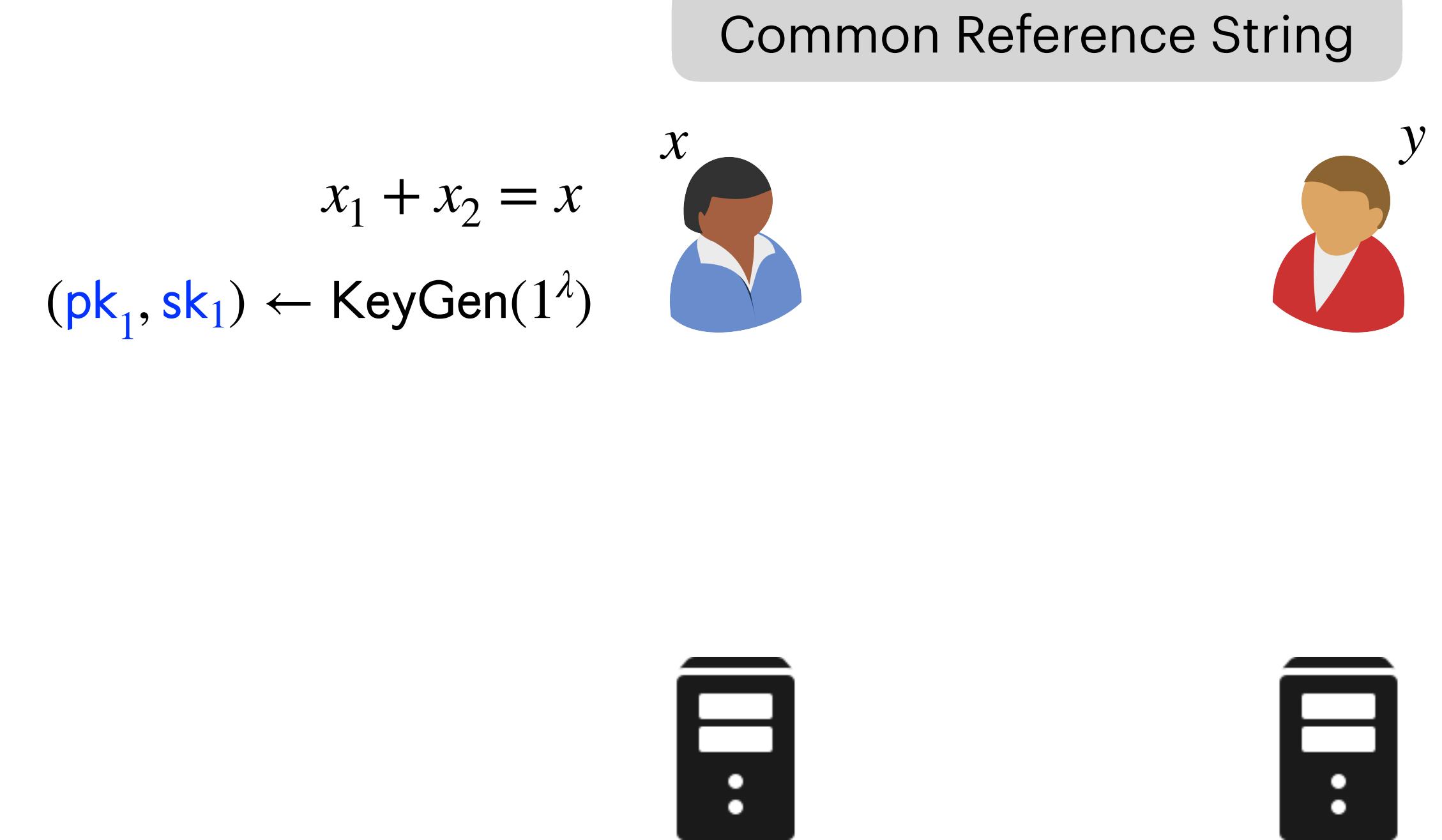


Evaluation requires encryptions of all input

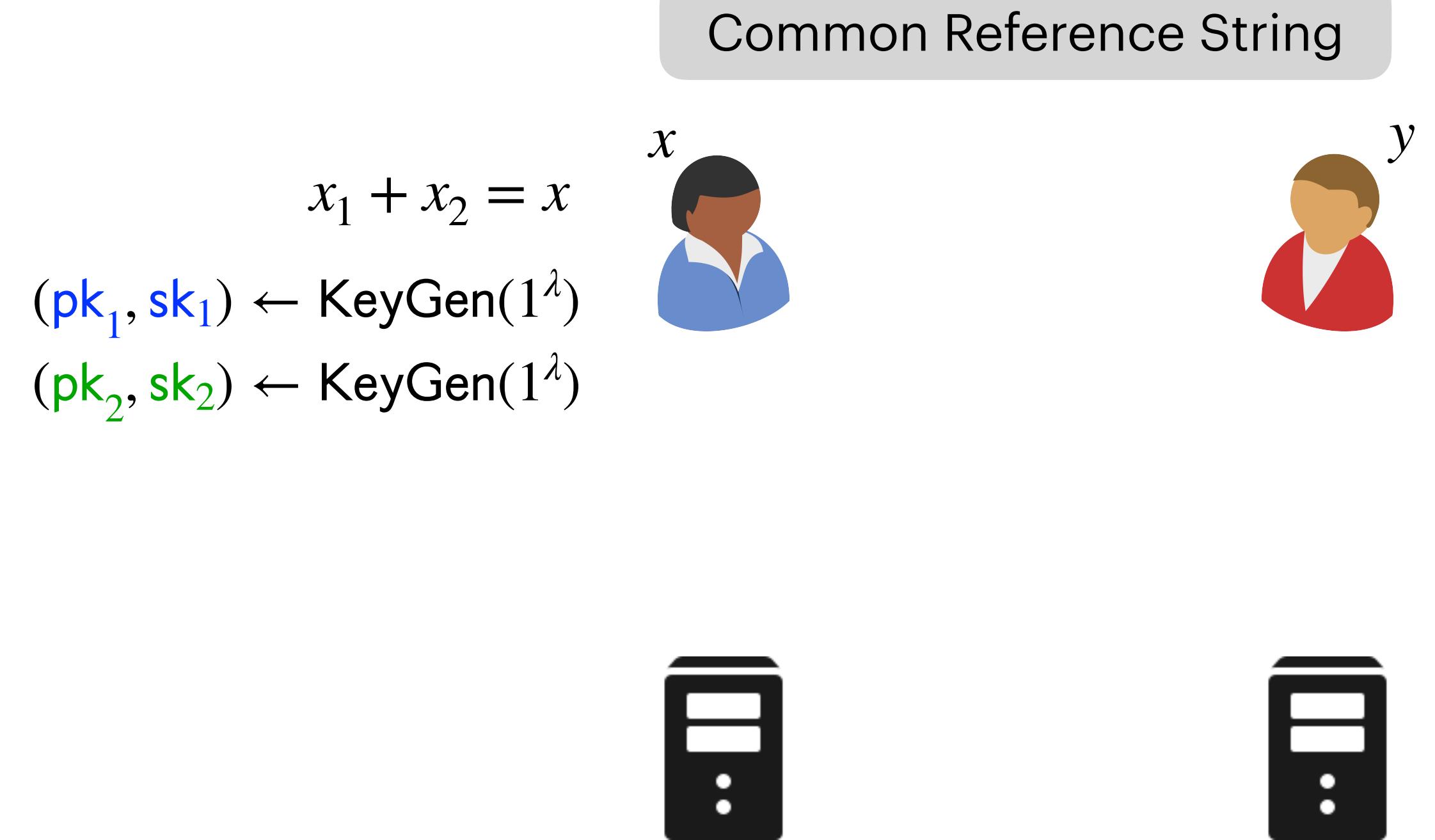
Barriers to Delegating Two-key HSS



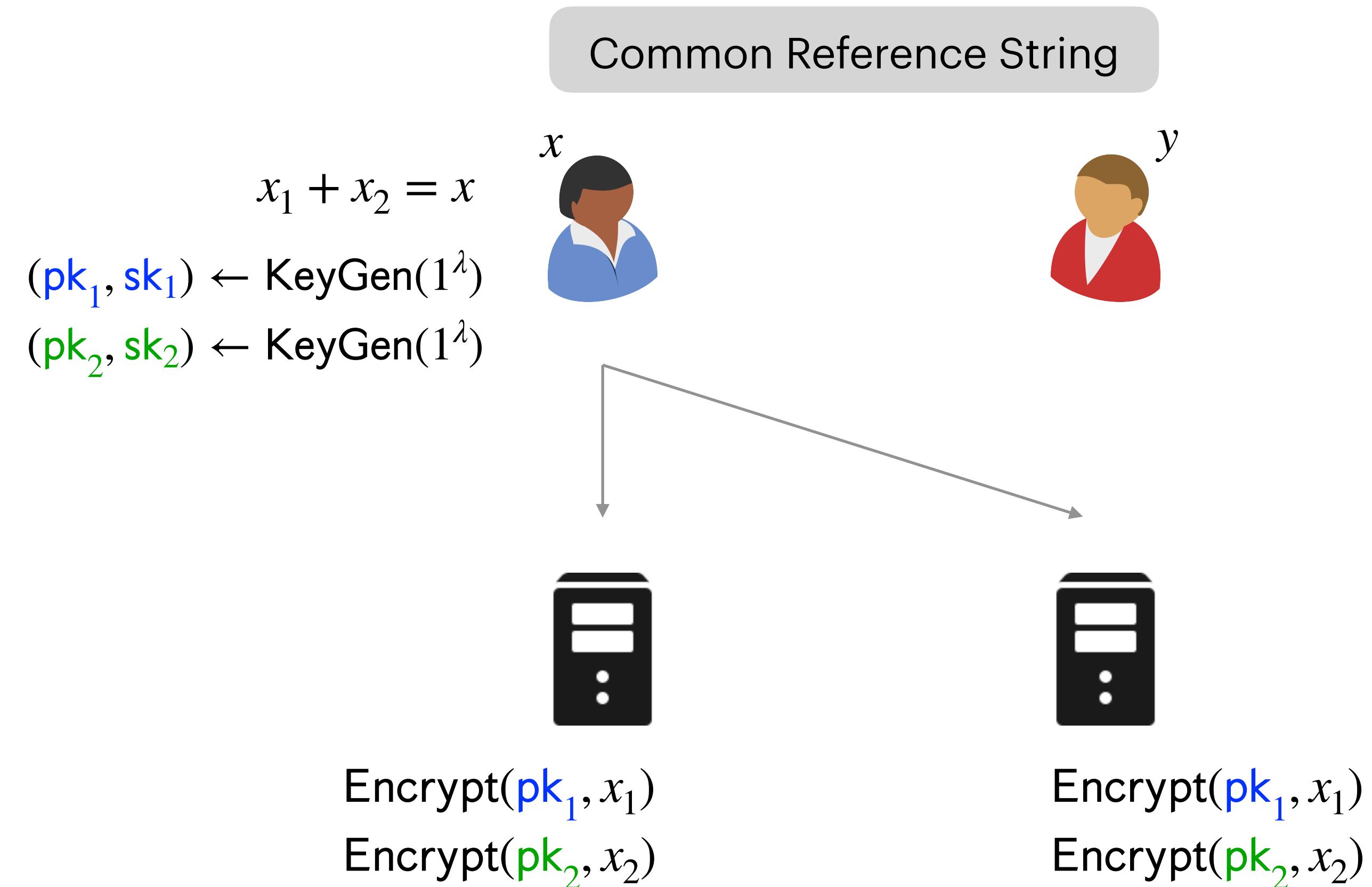
Barriers to Delegating Two-key HSS



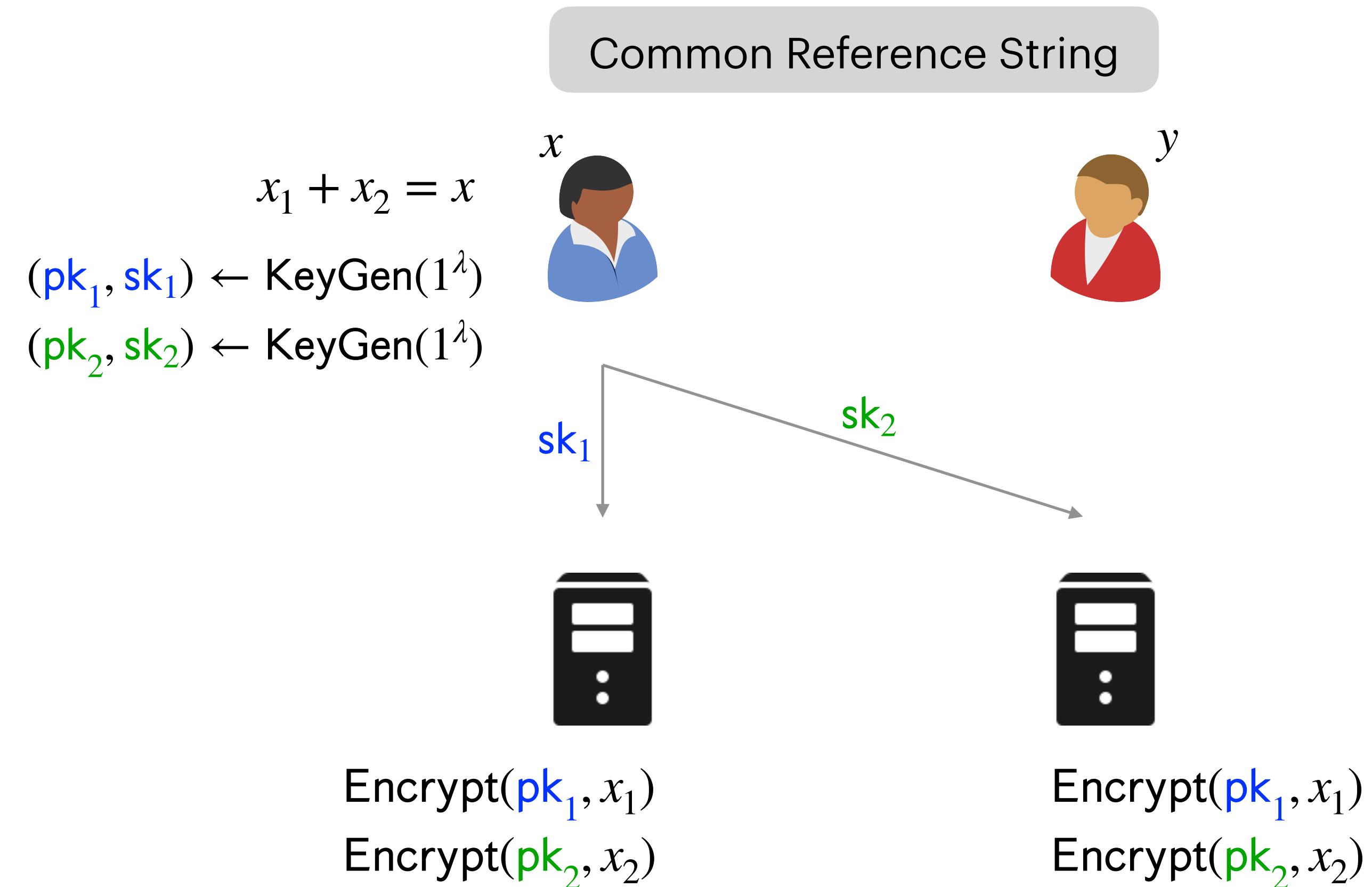
Barriers to Delegating Two-key HSS



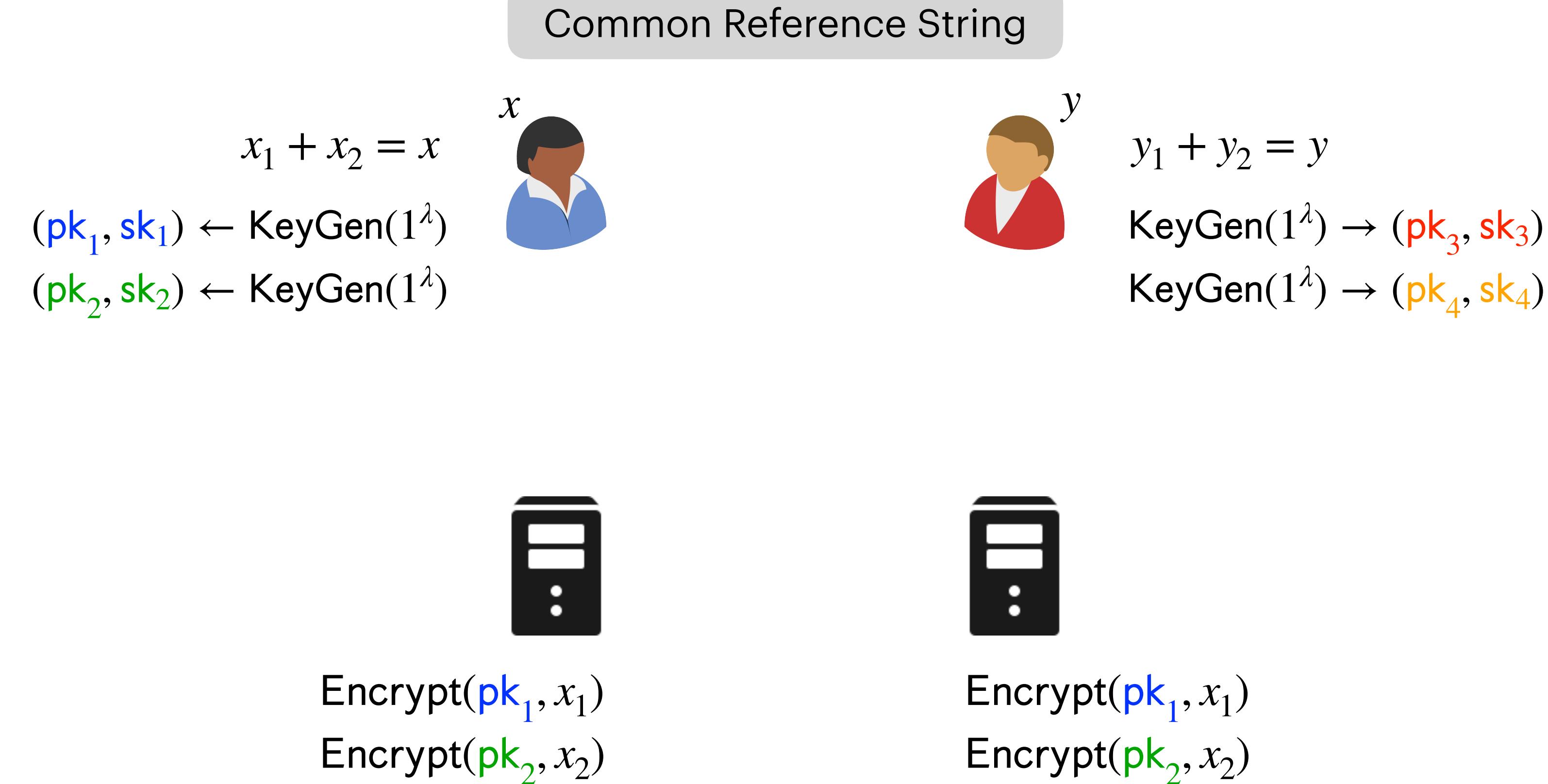
Barriers to Delegating Two-key HSS



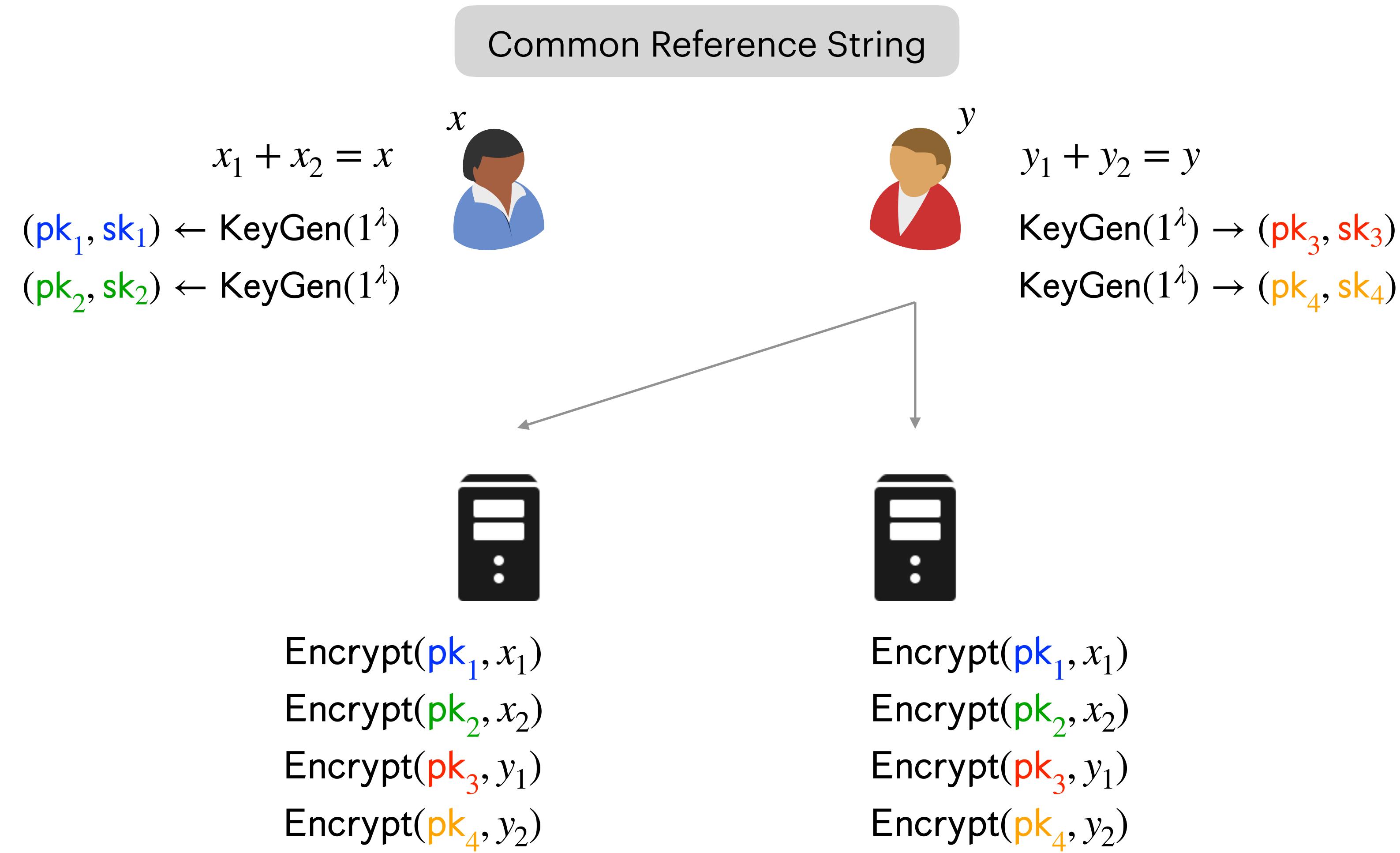
Barriers to Delegating Two-key HSS



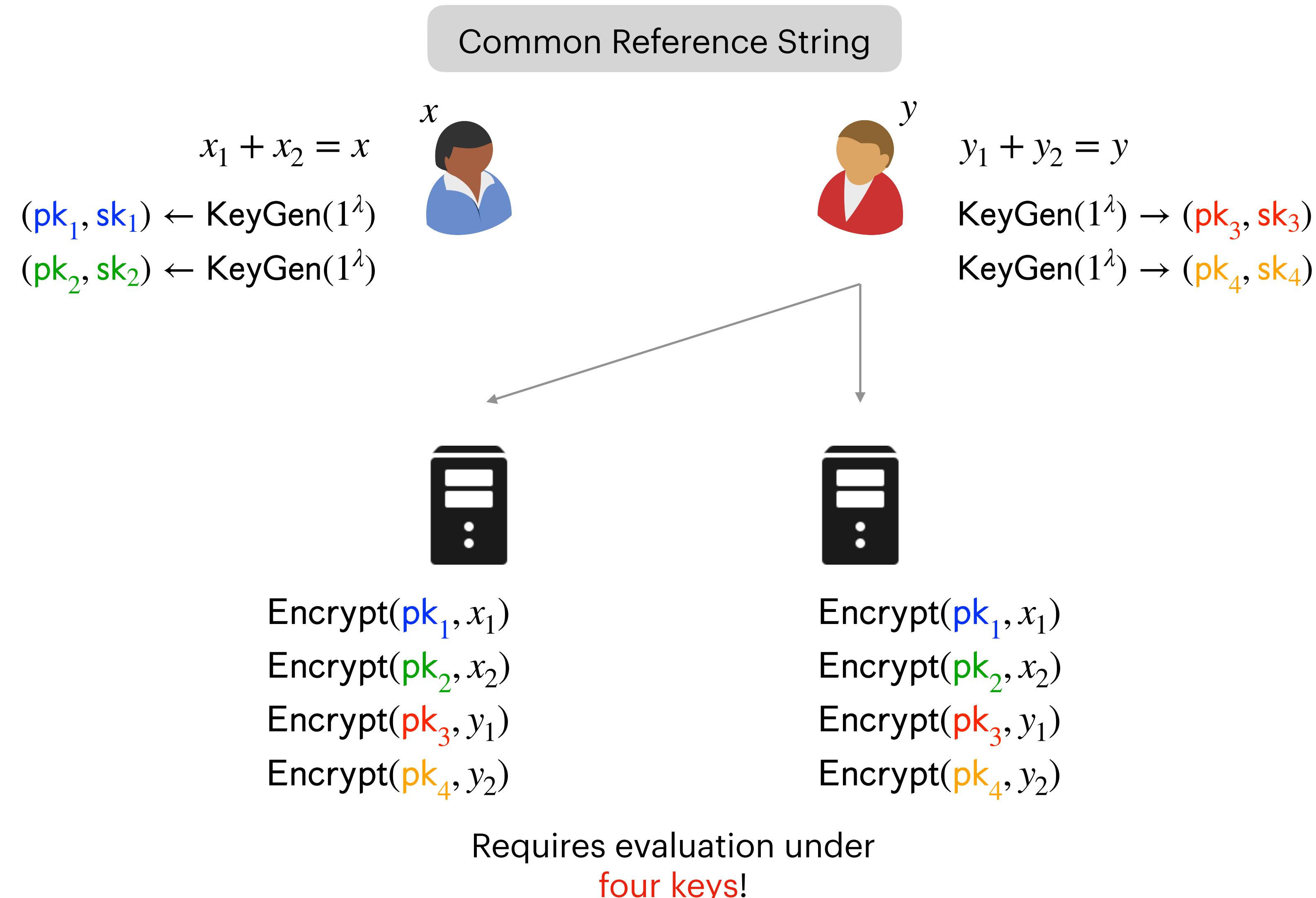
Barriers to Delegating Two-key HSS



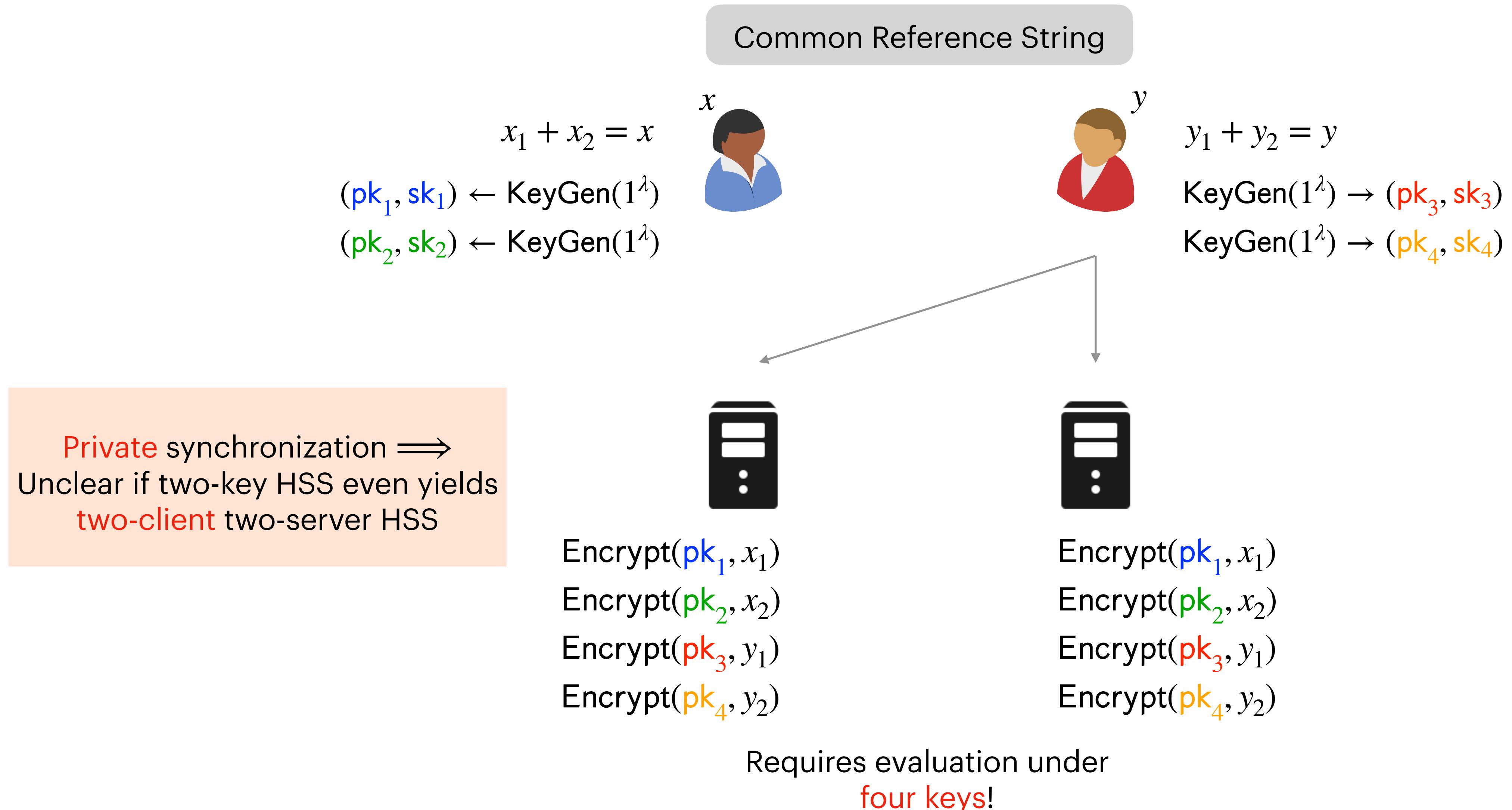
Barriers to Delegating Two-key HSS



Barriers to Delegating Two-key HSS



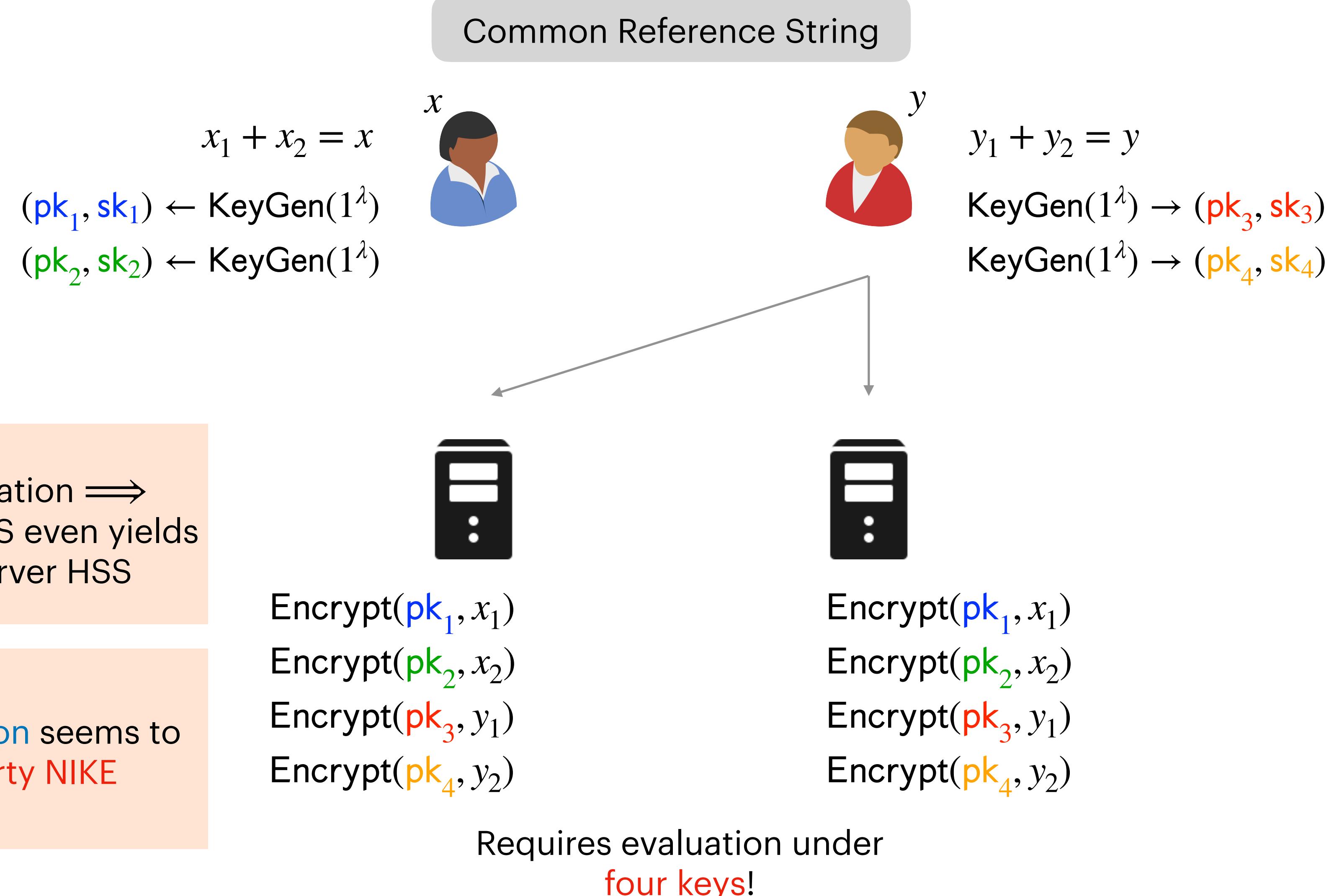
Barriers to Delegating Two-key HSS



Barriers to Delegating Two-key HSS

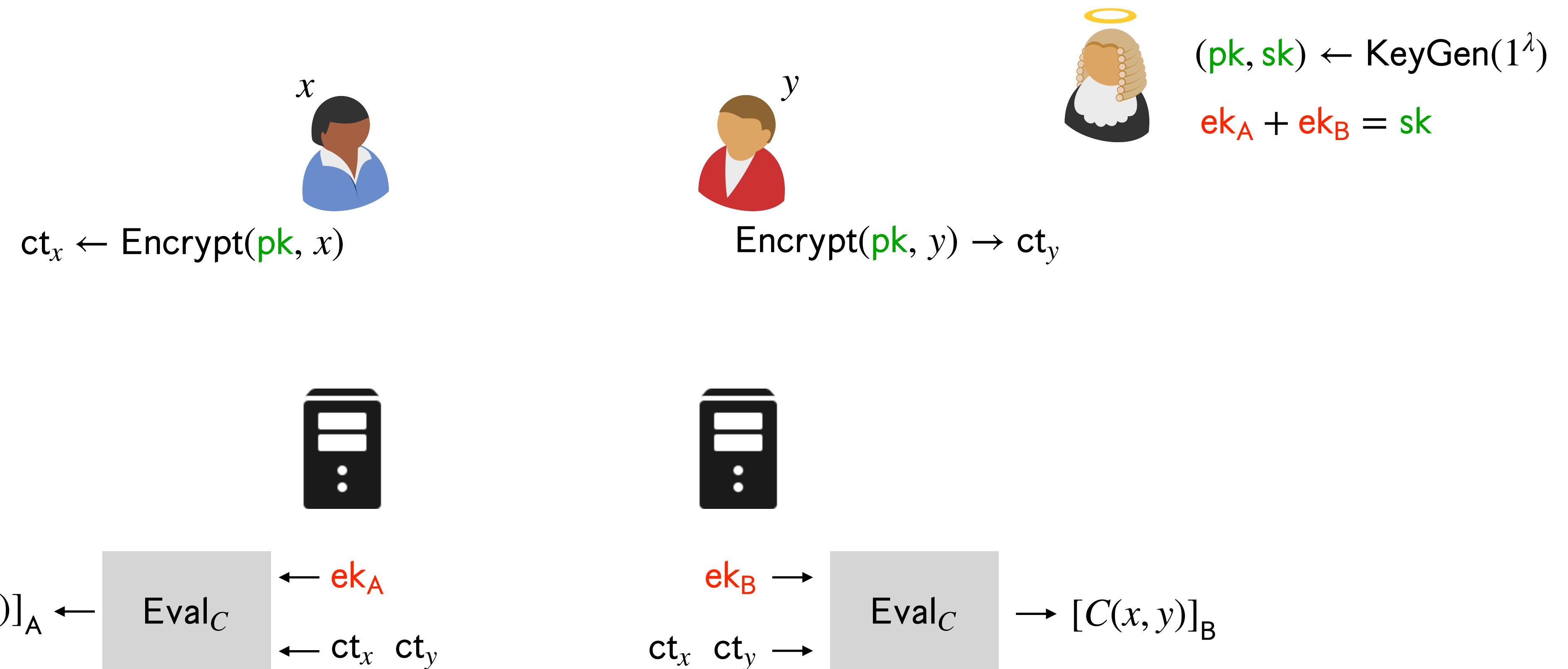
Private synchronization \implies
Unclear if two-key HSS even yields
two-client two-server HSS

Public synchronization seems to
require three-party NIKE



Client-Server HSS with Correlated Setup

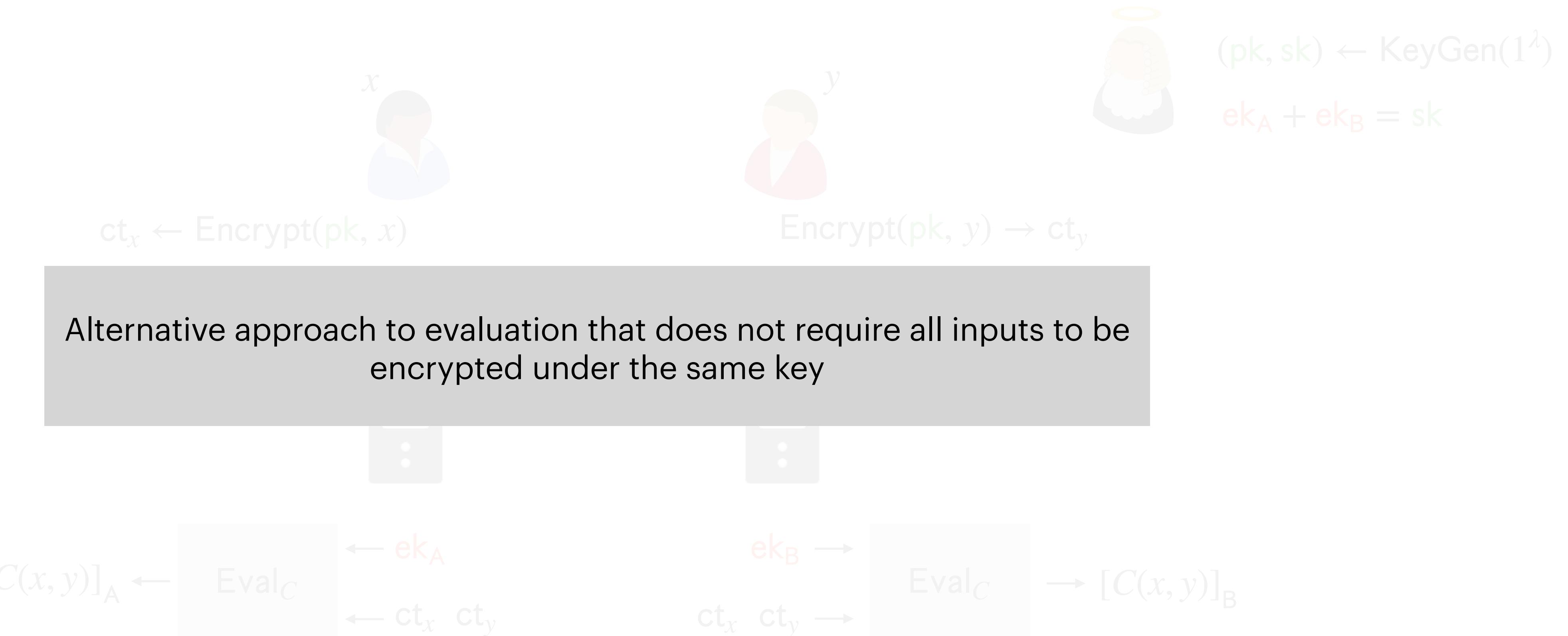
[Boyle-Gilboa-Ishai'16]



Barrier to Removing Correlated Setup: All inputs must be encrypted under a **common key**

Client-Server HSS with Correlated Setup

[Boyle-Gilboa-Ishai'16]



Barrier to Removing Correlated Setup: All inputs must be encrypted under a common key

Outline

Barriers to Removing Correlated Setup

Our Approach

Extensions

HSS for Multiplication is All You Need

HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

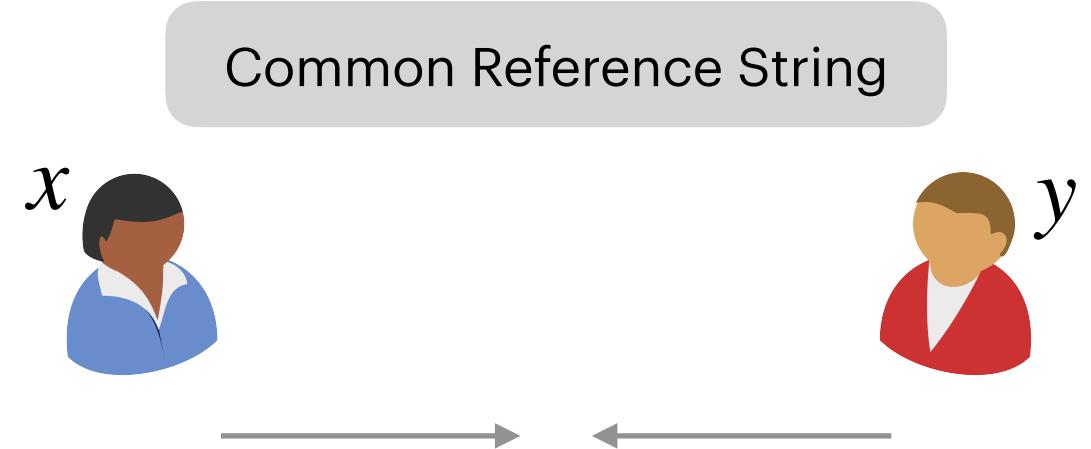
HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model

Common Reference String

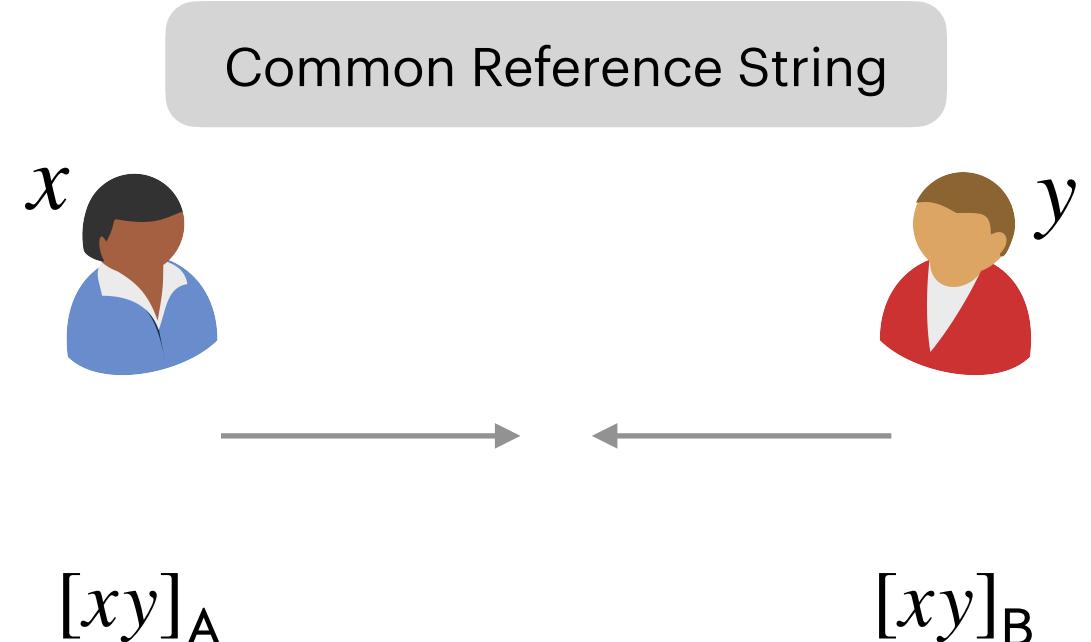
HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model



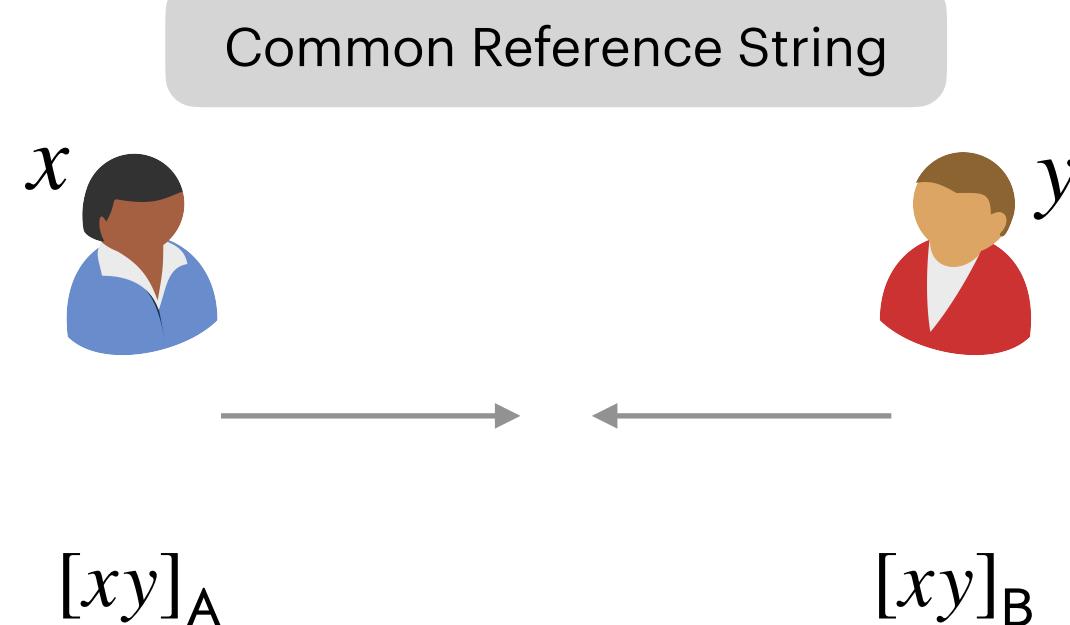
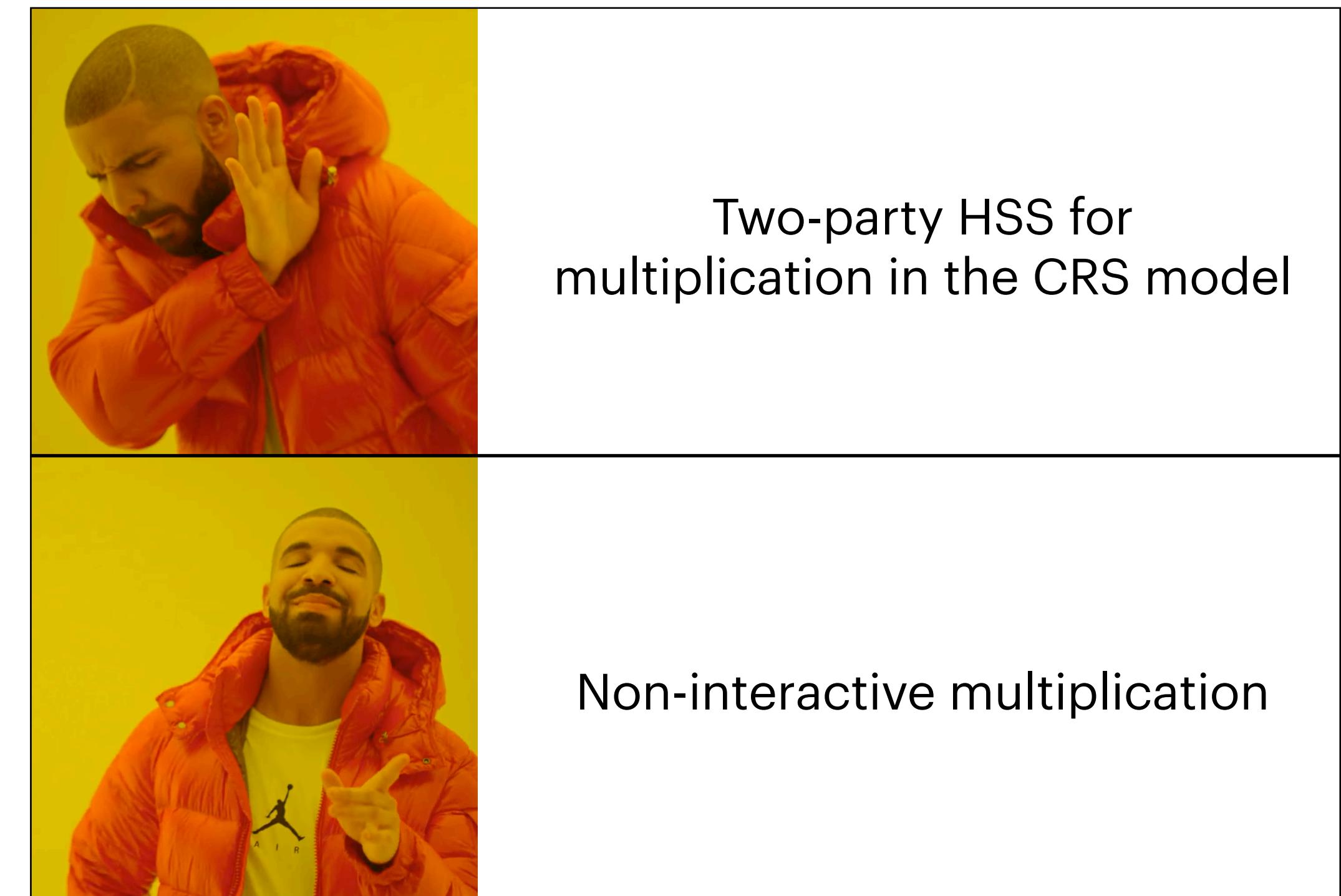
HSS for Multiplication is All You Need

Two-party HSS for
multiplication in the CRS model



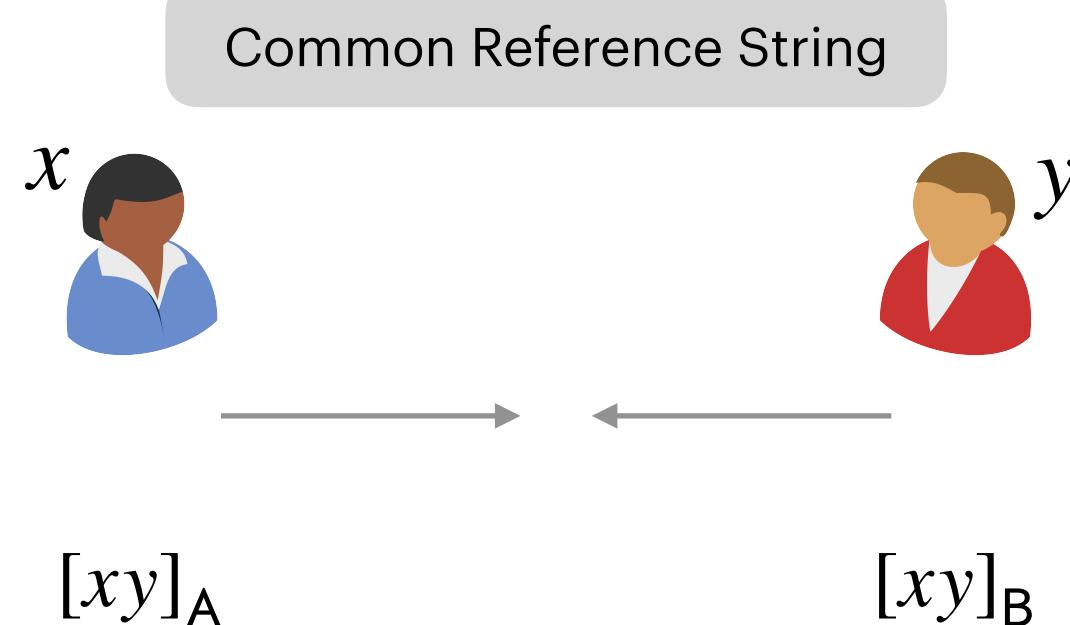
HSS for Multiplication is All You Need

Two-party HSS for multiplication in the CRS model



HSS for Multiplication is All You Need

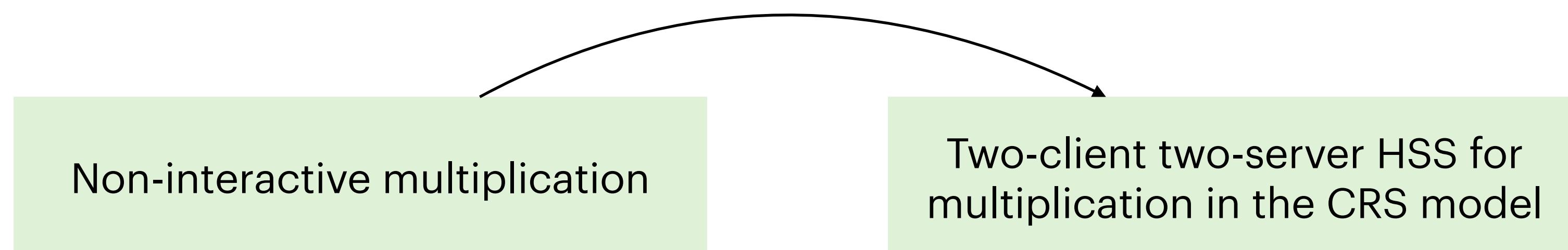
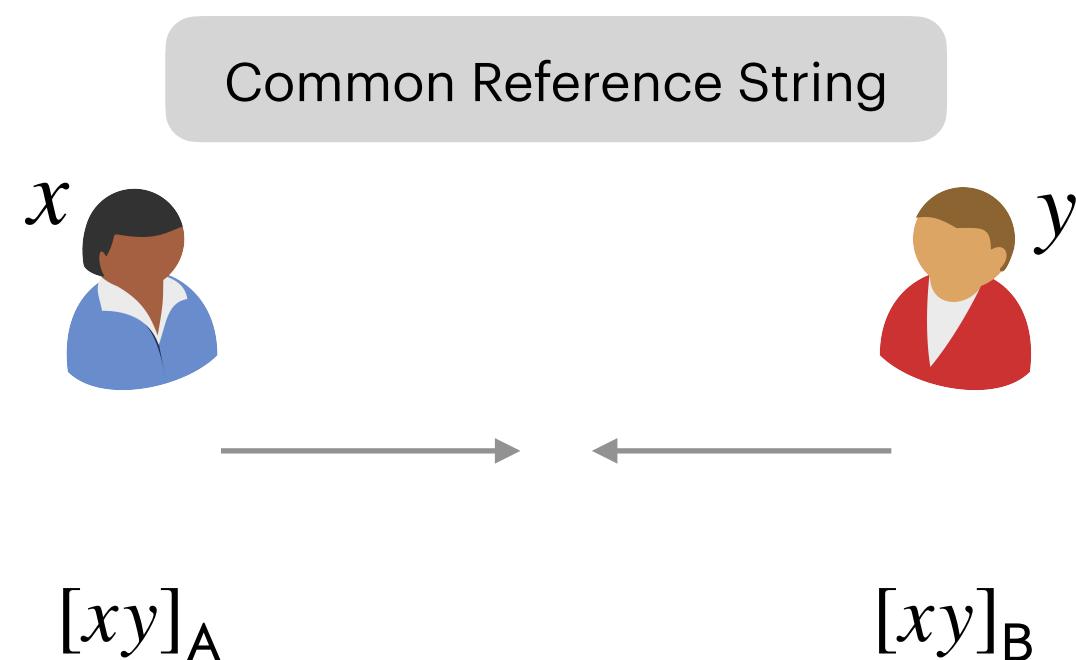
Non-interactive multiplication



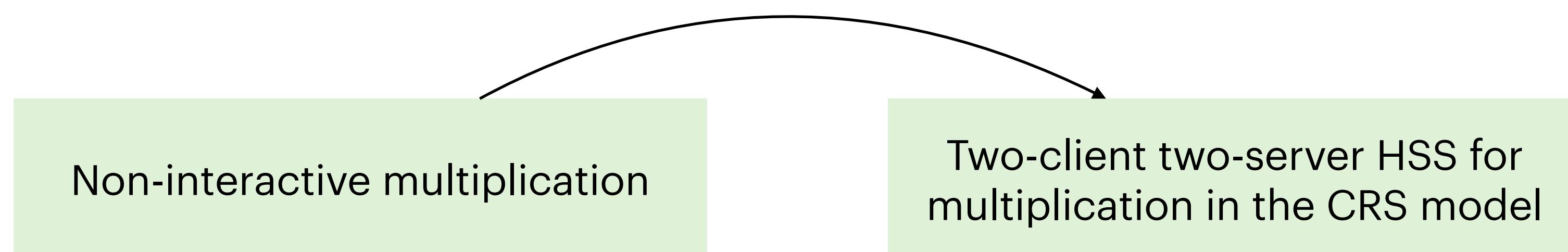
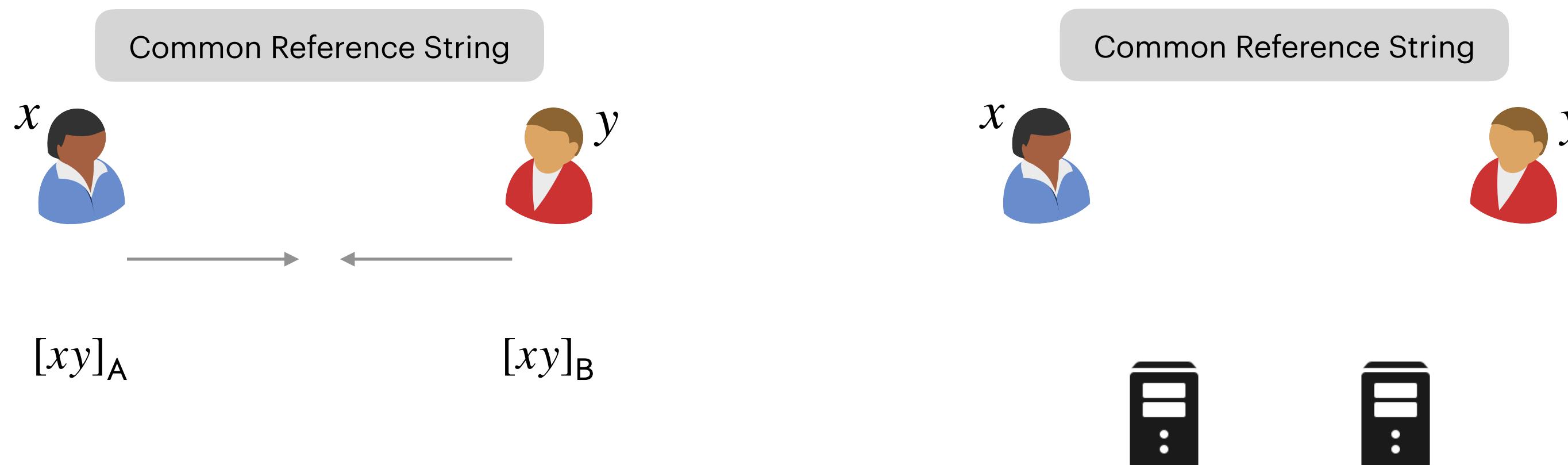
Two-party HSS for multiplication in the CRS model

Non-interactive multiplication

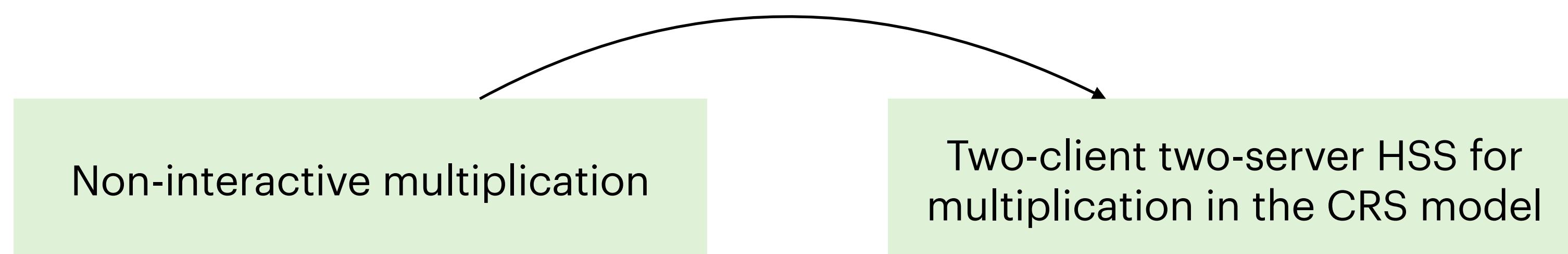
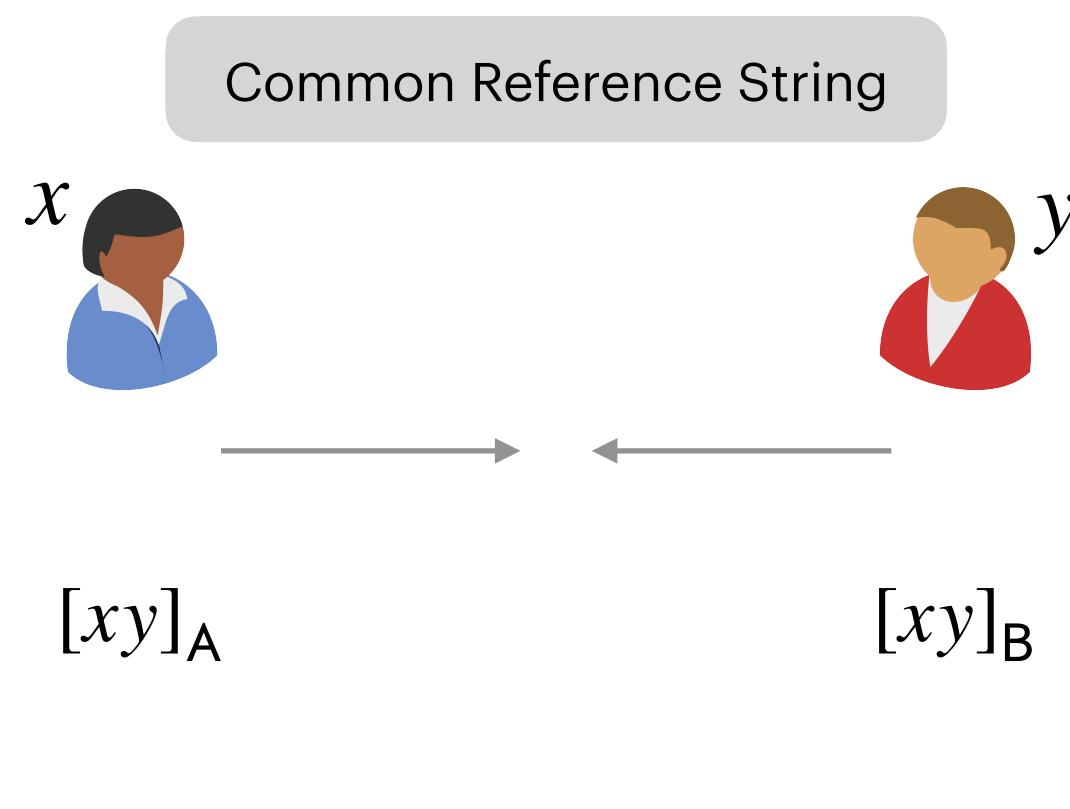
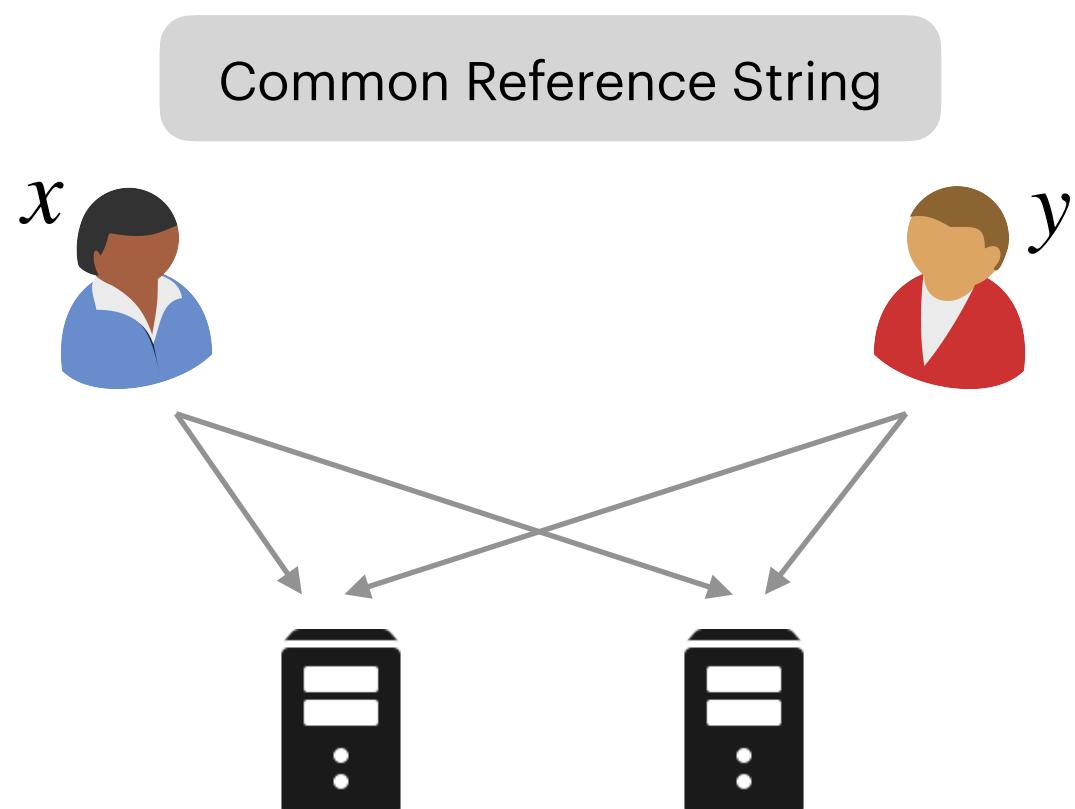
HSS for Multiplication is All You Need



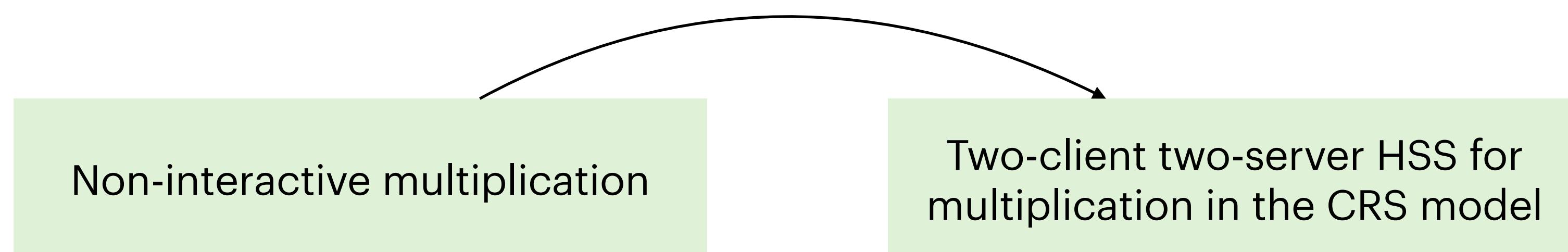
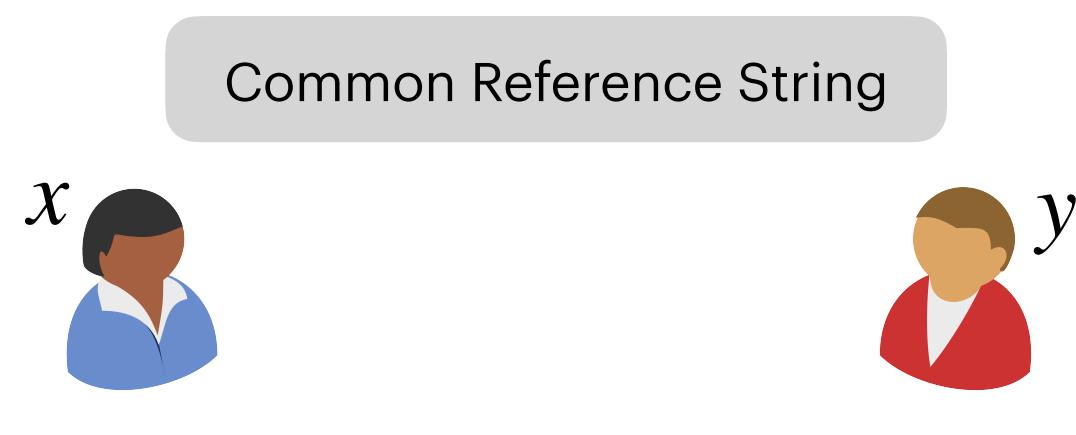
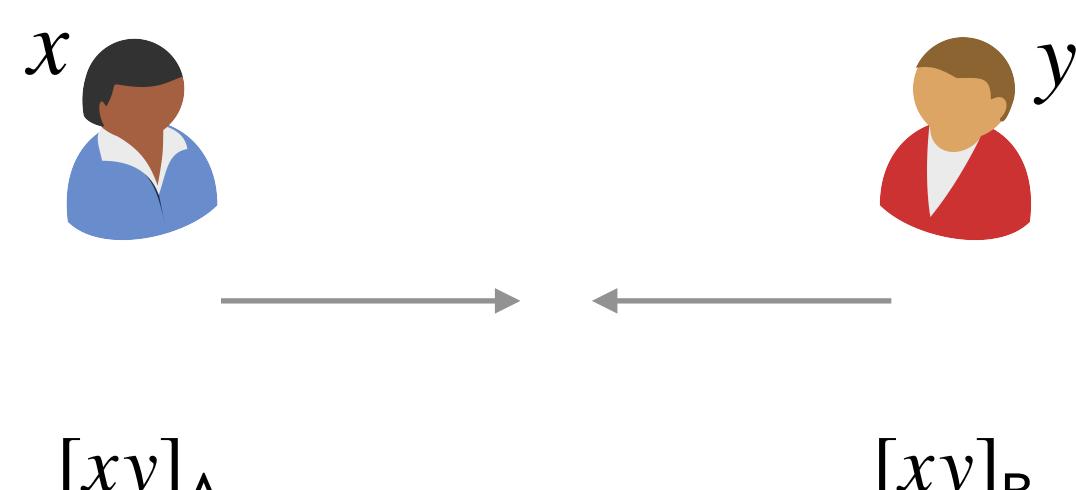
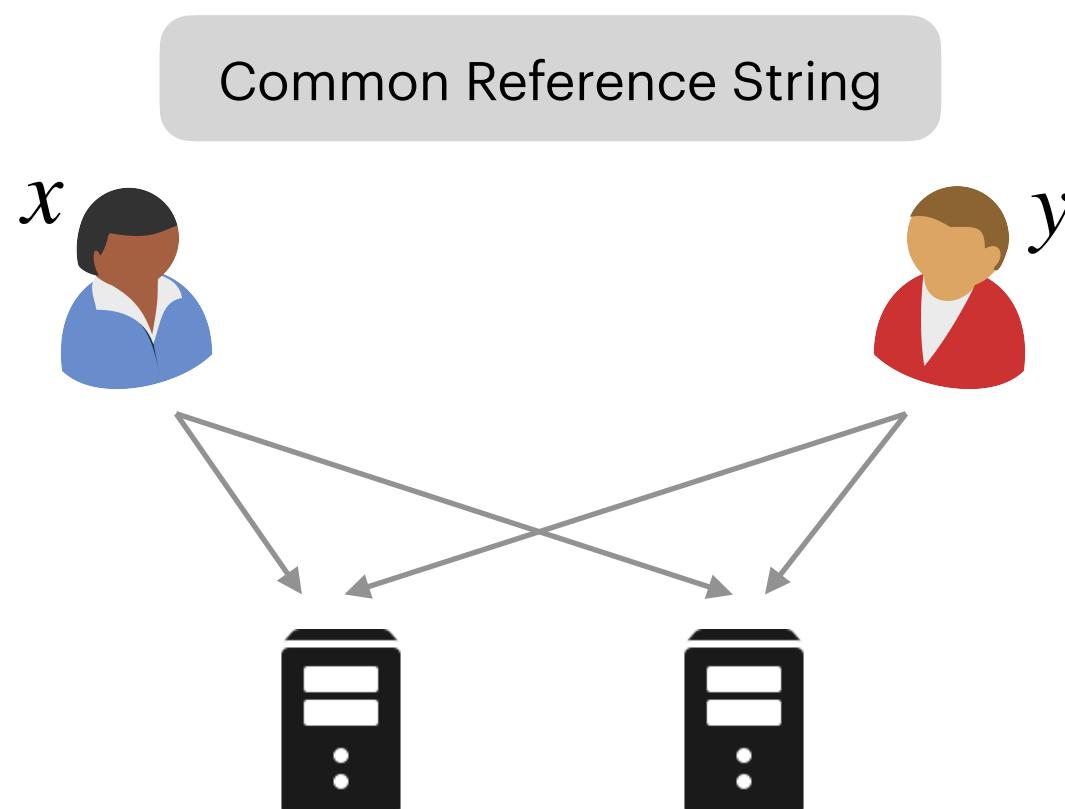
HSS for Multiplication is All You Need



HSS for Multiplication is All You Need



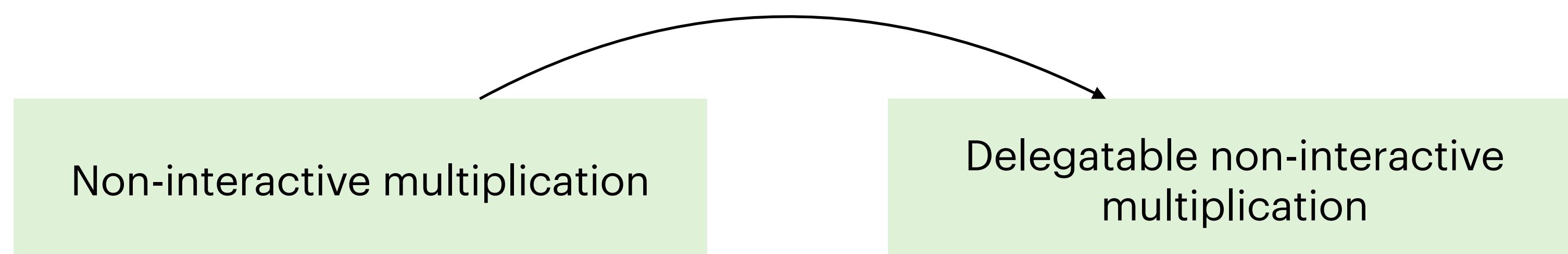
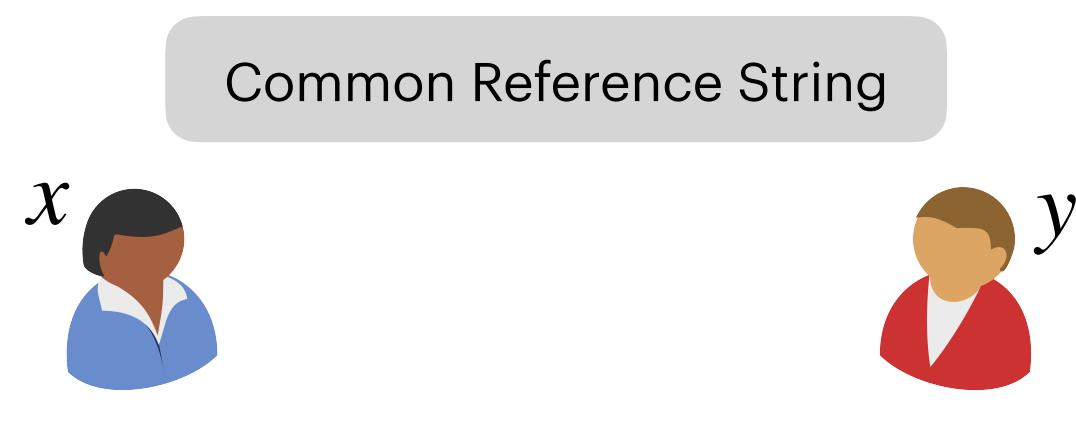
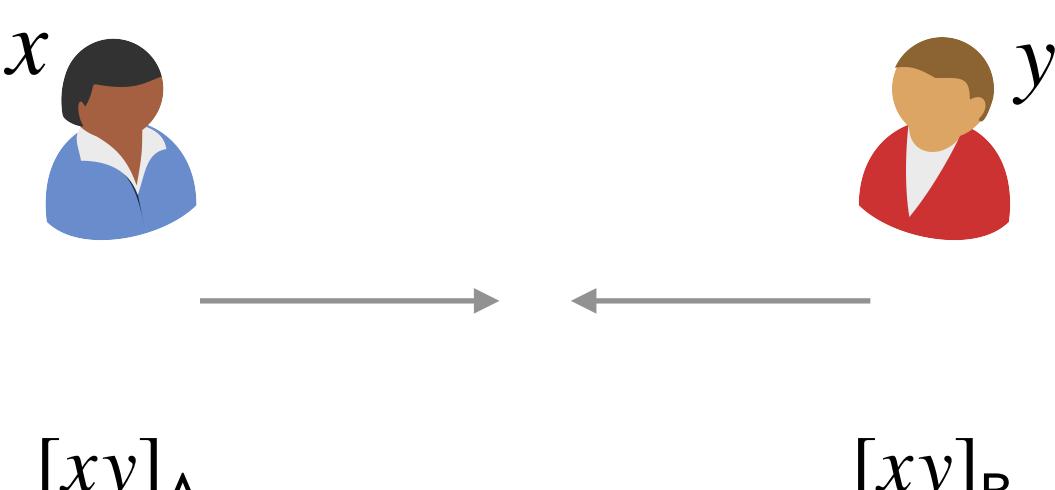
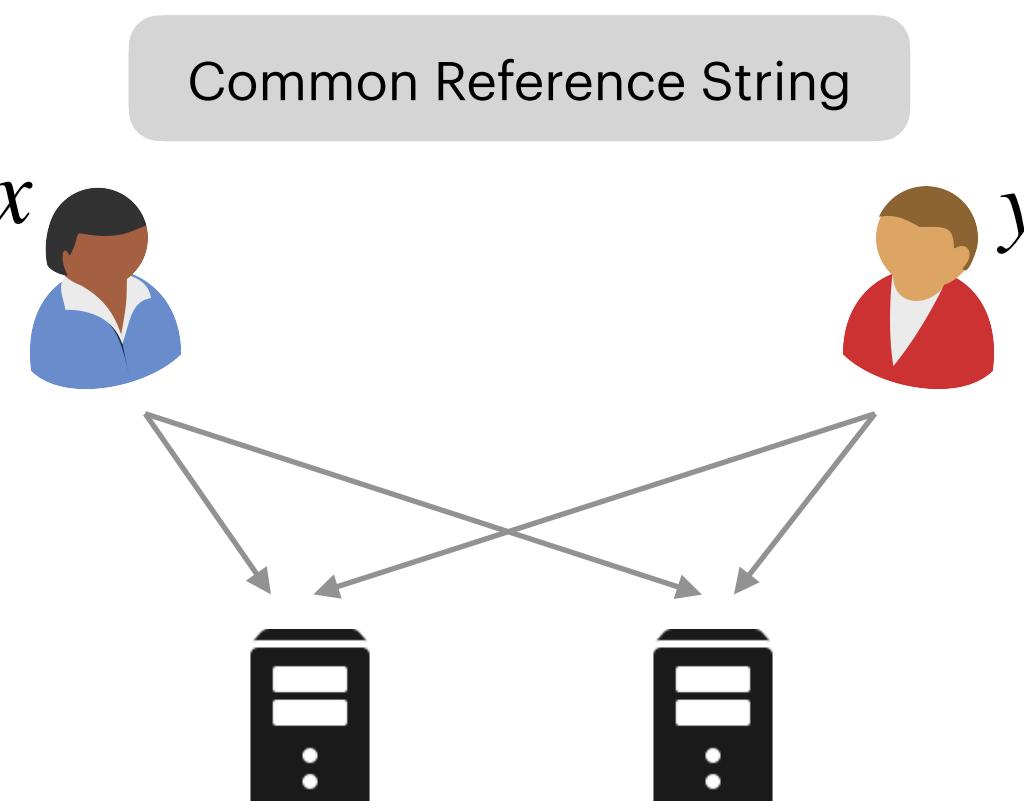
HSS for Multiplication is All You Need



$[xy]_A$

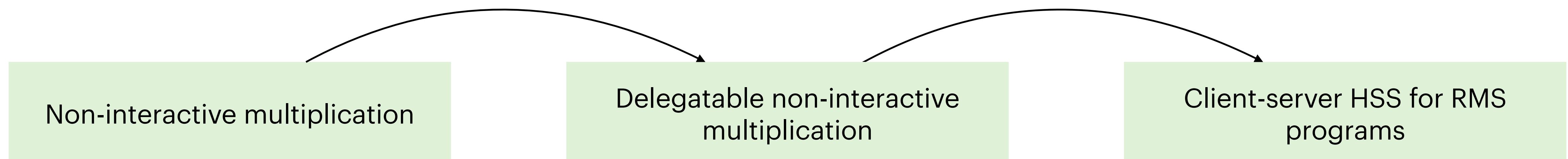
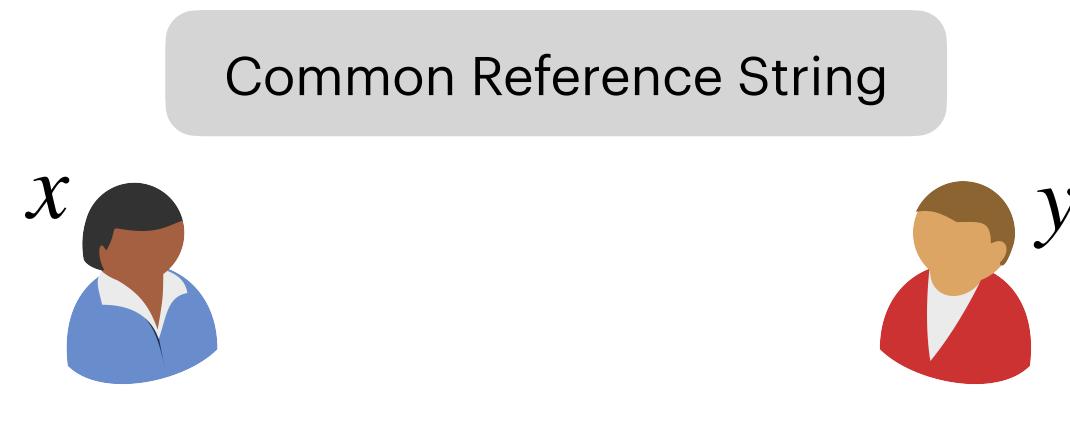
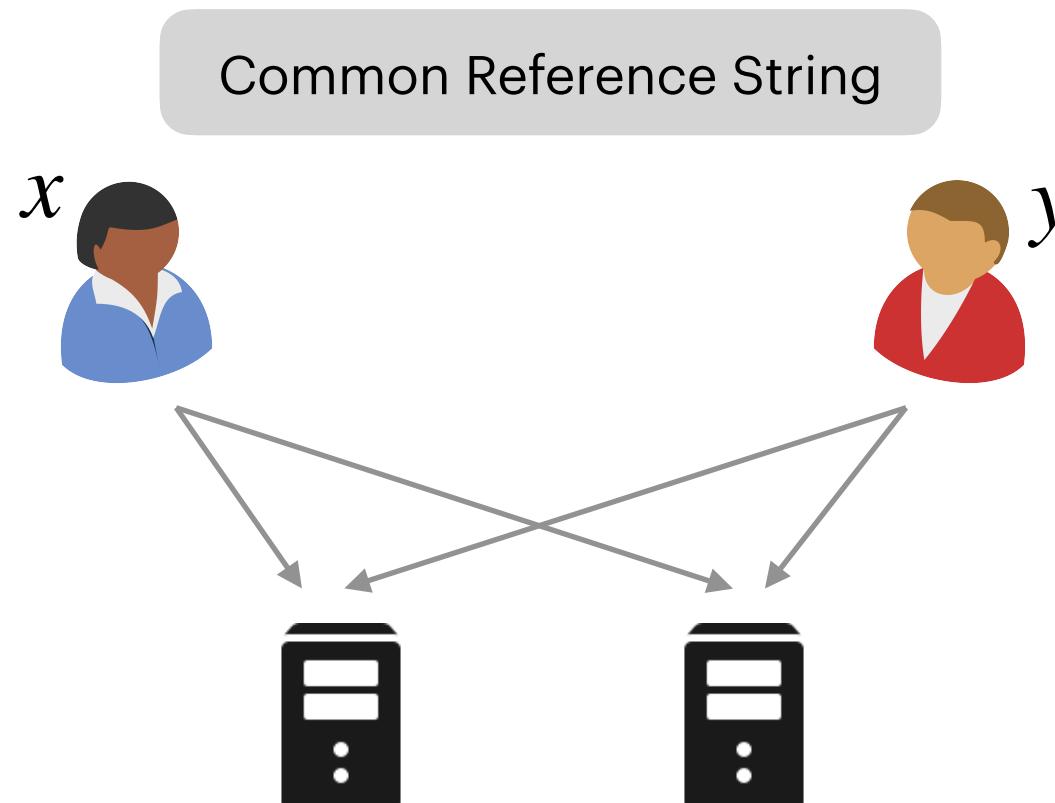
$[xy]_B$

HSS for Multiplication is All You Need



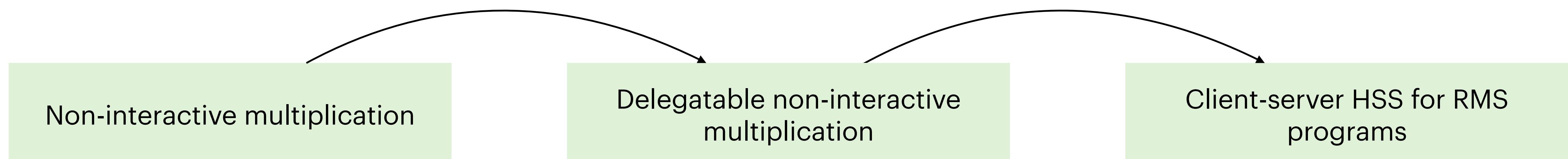
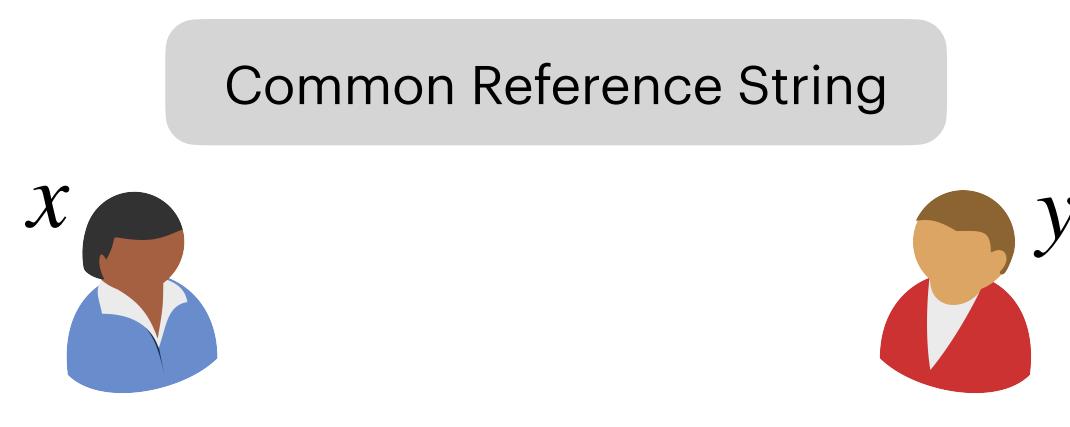
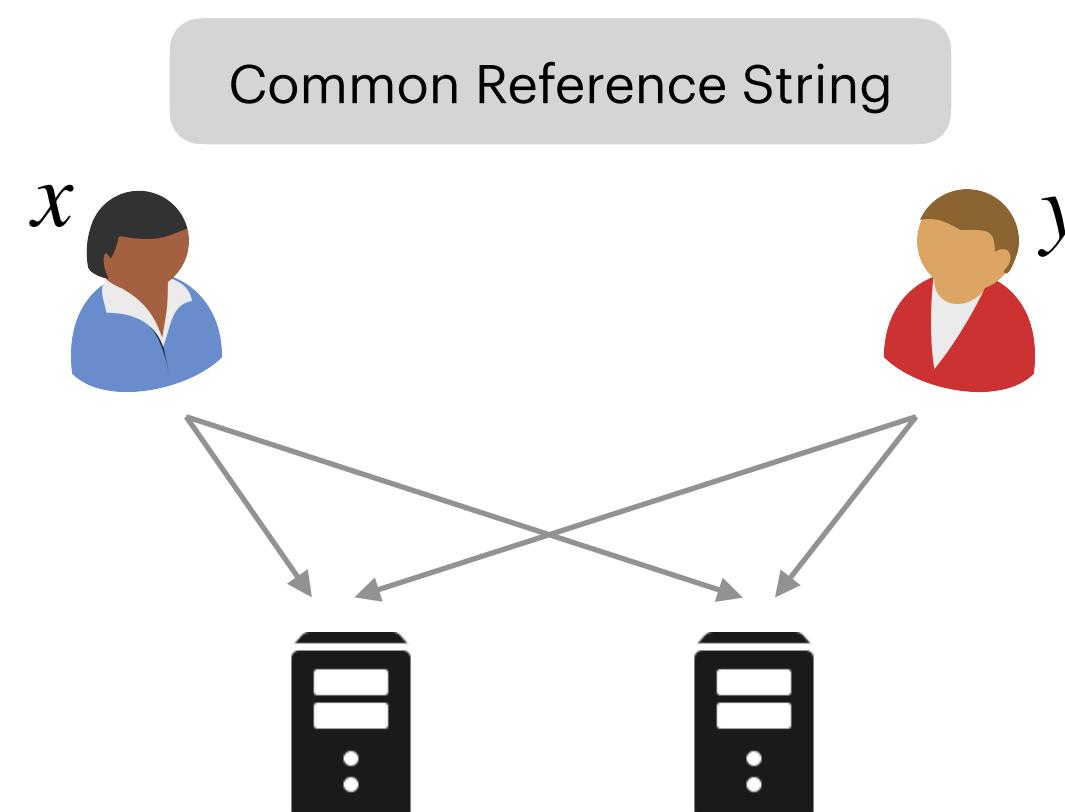
$[xy]_A$ $[xy]_B$

HSS for Multiplication is All You Need

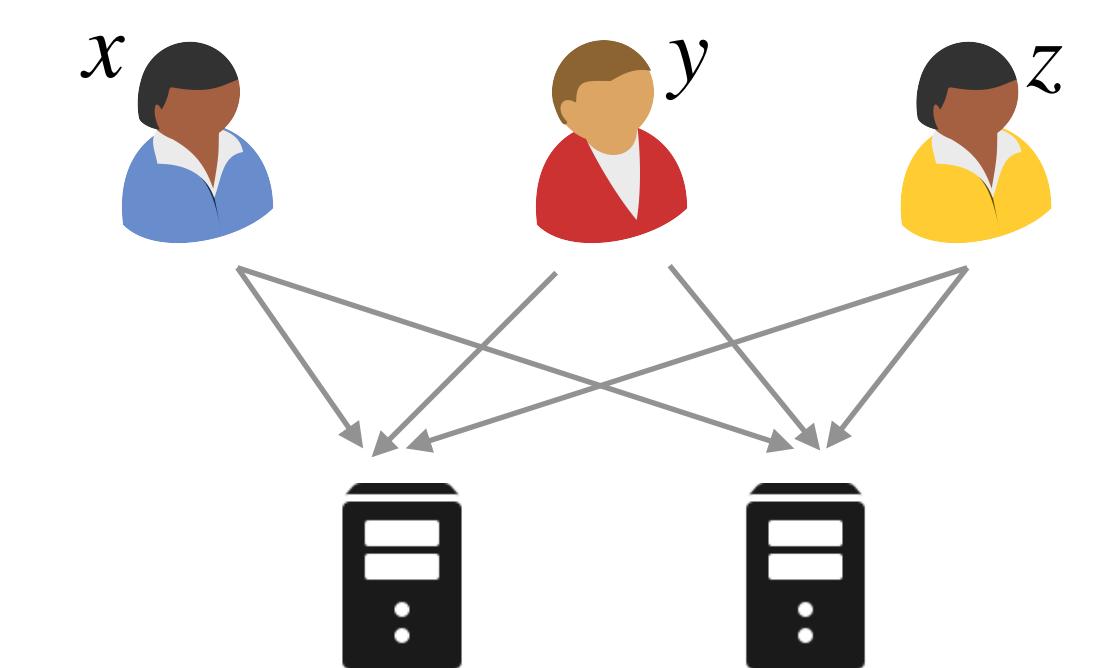


$[xy]_A$ $[xy]_B$

HSS for Multiplication is All You Need

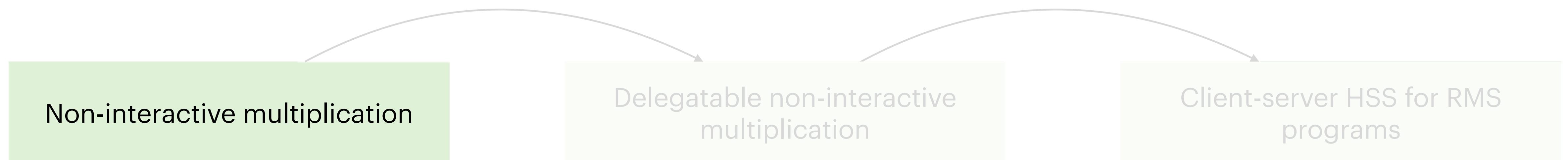
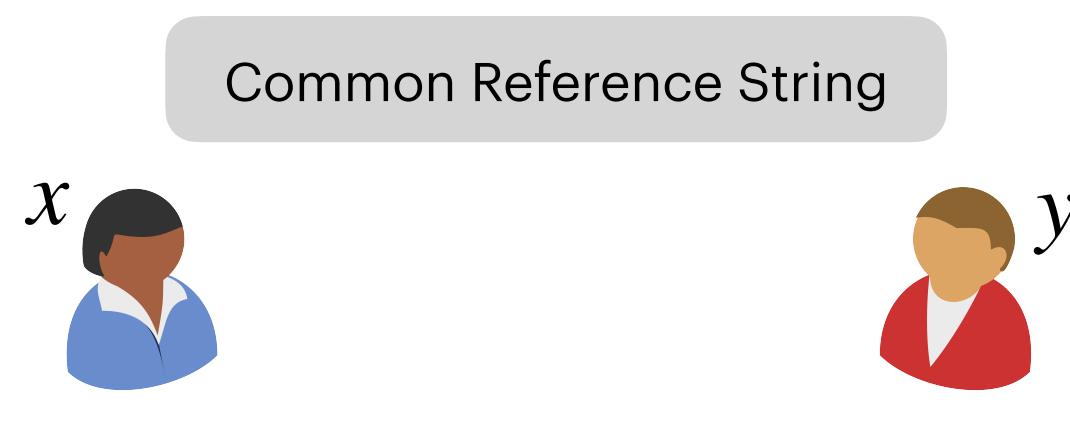
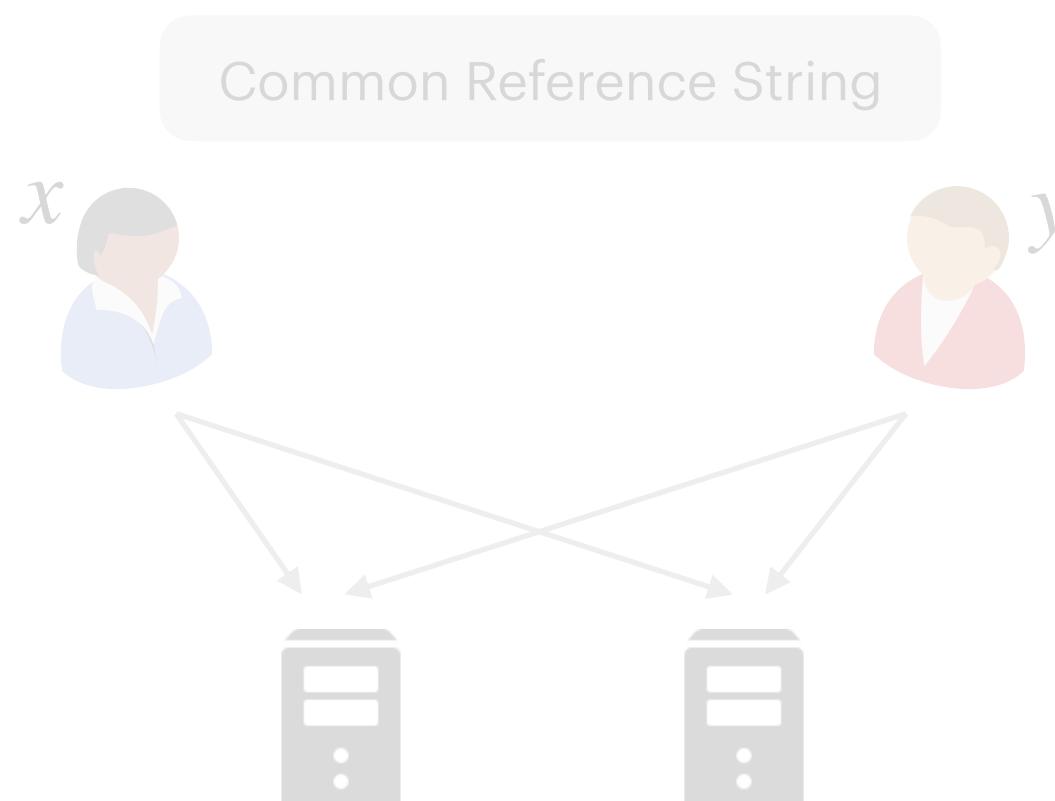
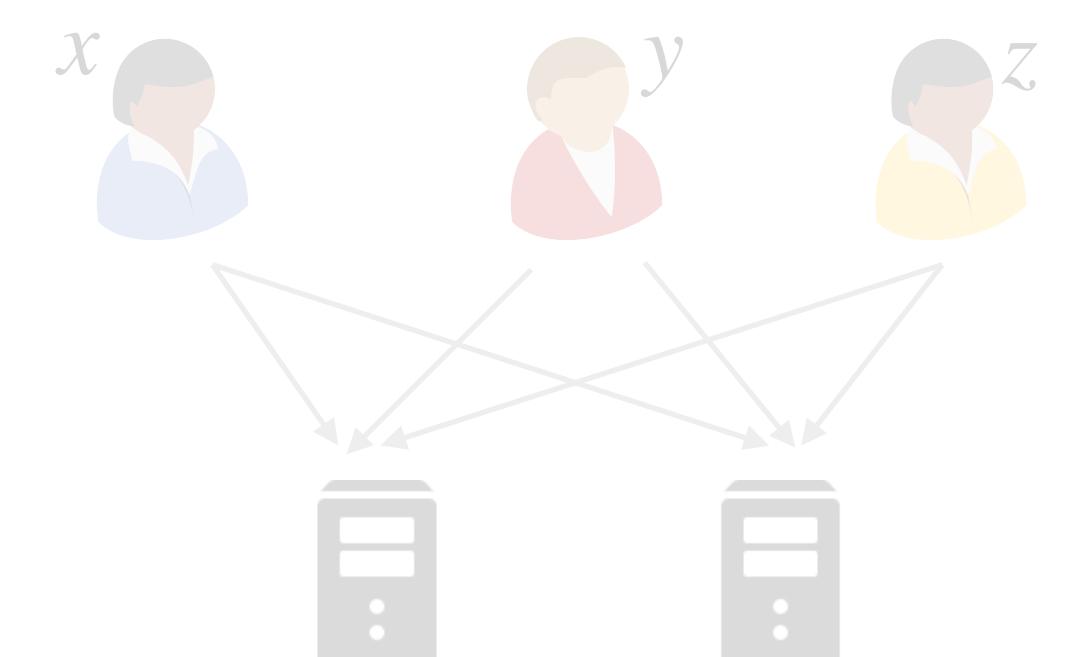


$[xy]_A$ $[xy]_B$



$[C(x, y, z)]_A$ $[C(x, y, z)]_B$

HSS for Multiplication is All You Need

 $[xy]_A$ $[xy]_B$  $[xy]_A$ $[xy]_B$  $[C(x, y, z)]_A$ $[C(x, y, z)]_B$

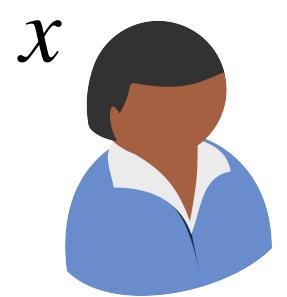
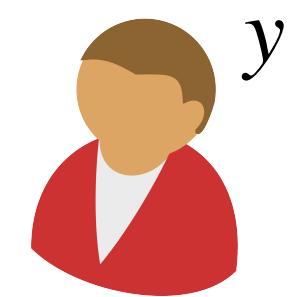
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]

Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$



x

y

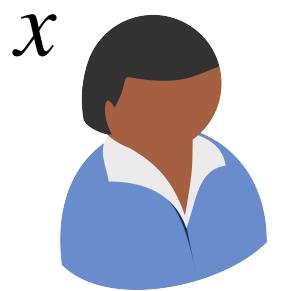
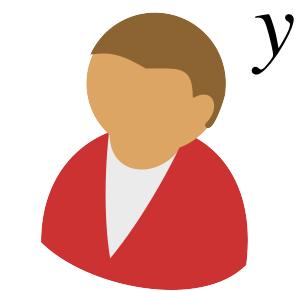
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]

\mathbb{G} $p = |\mathbb{G}|$ g h

$$r \leftarrow \mathbb{Z}_p$$

$$\hat{x} = (h^r, g^r \cdot g^x)$$



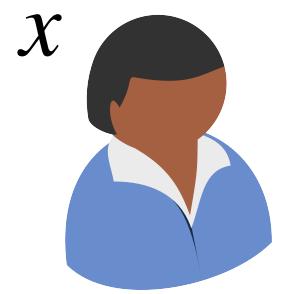
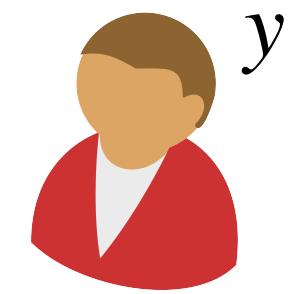
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p$$

$$\hat{x}_\bullet = (h^r, g^r \cdot g^x)$$

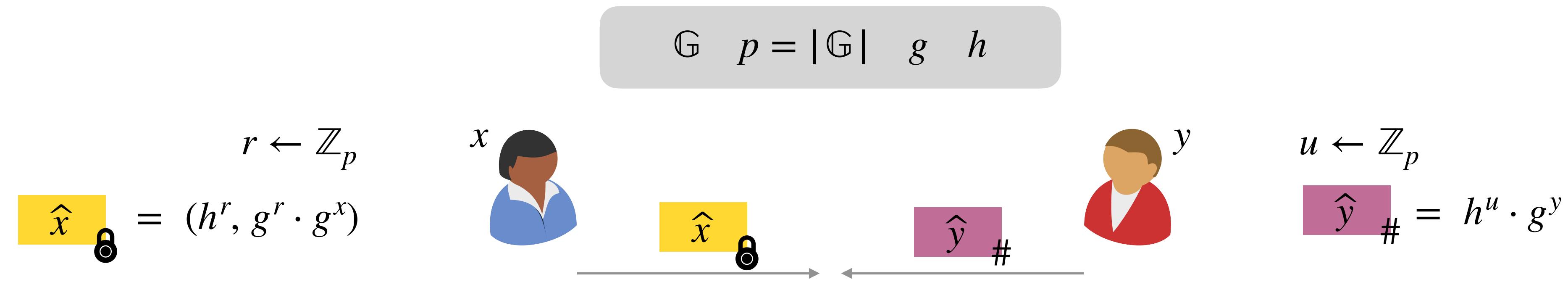


$$u \leftarrow \mathbb{Z}_p$$

$$\hat{y}_\# = h^u \cdot g^y$$

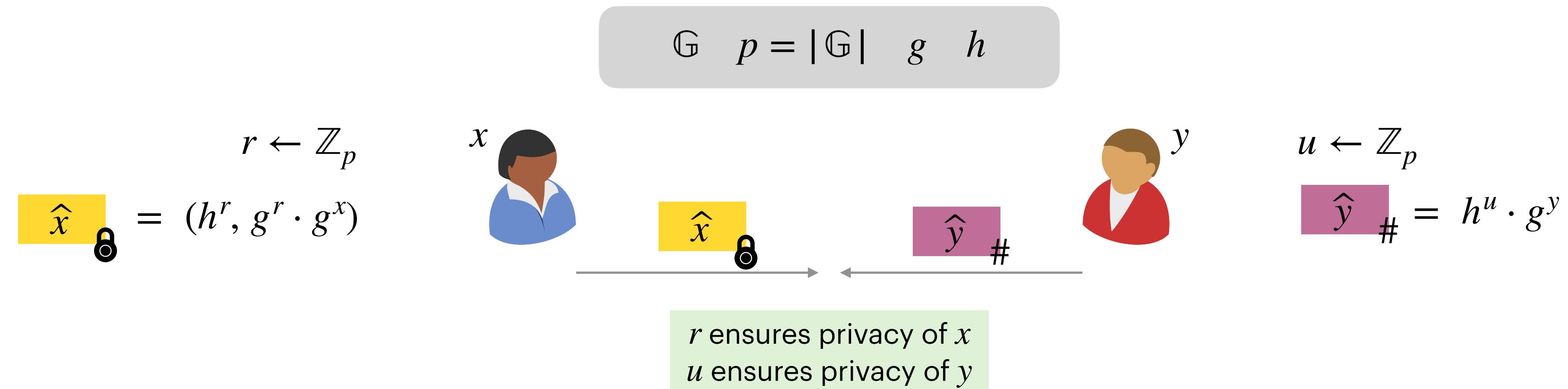
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]



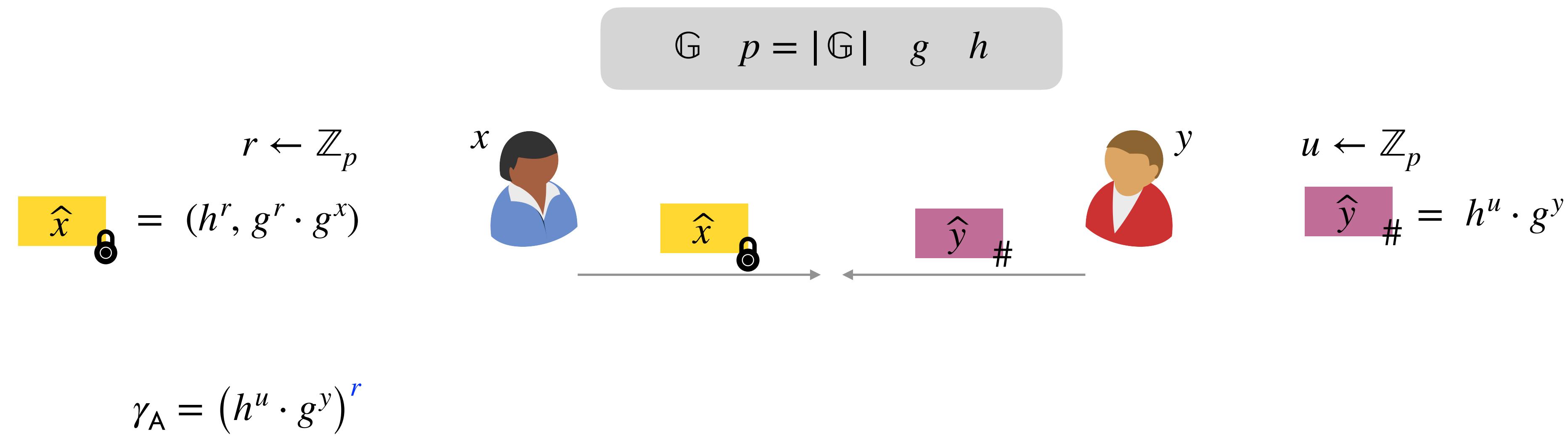
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]



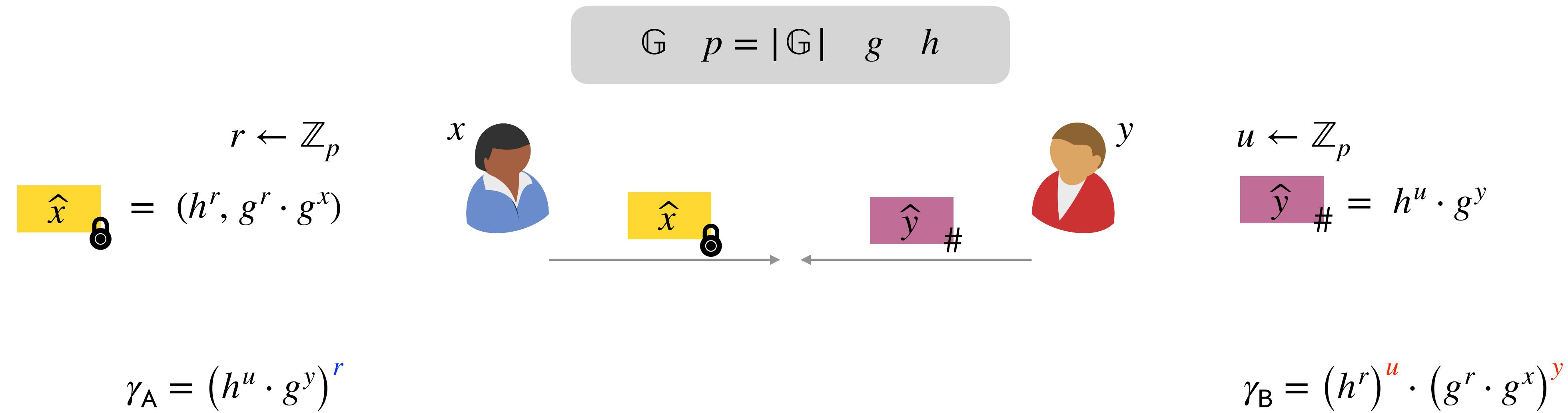
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]



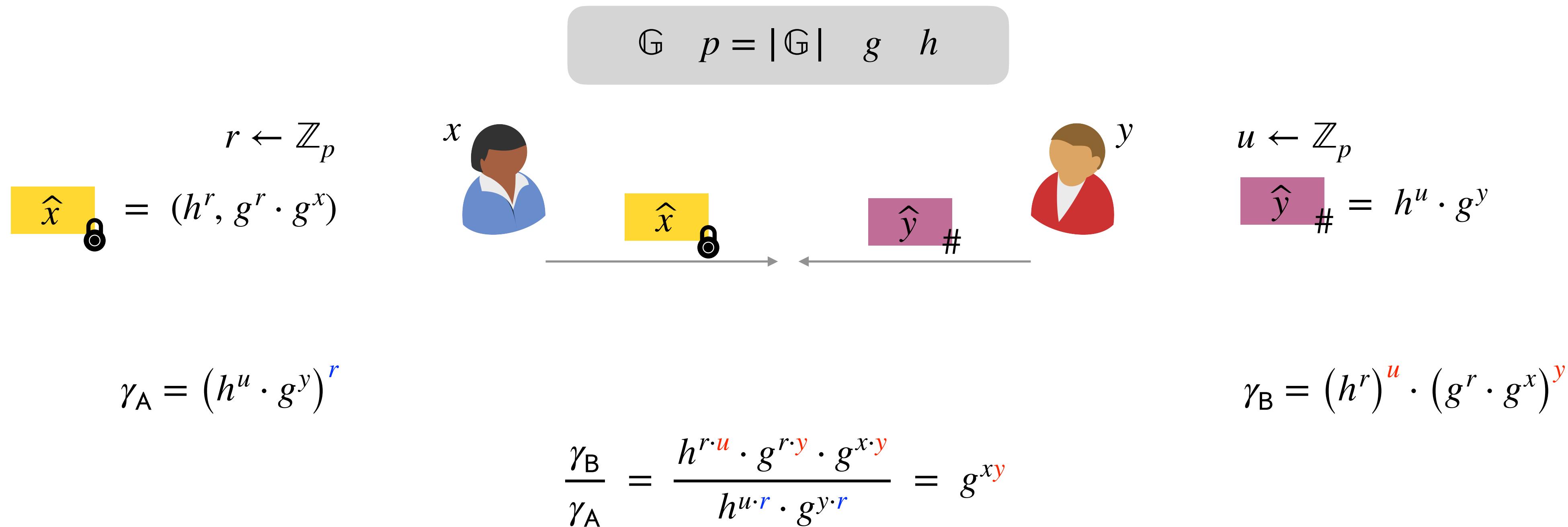
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]



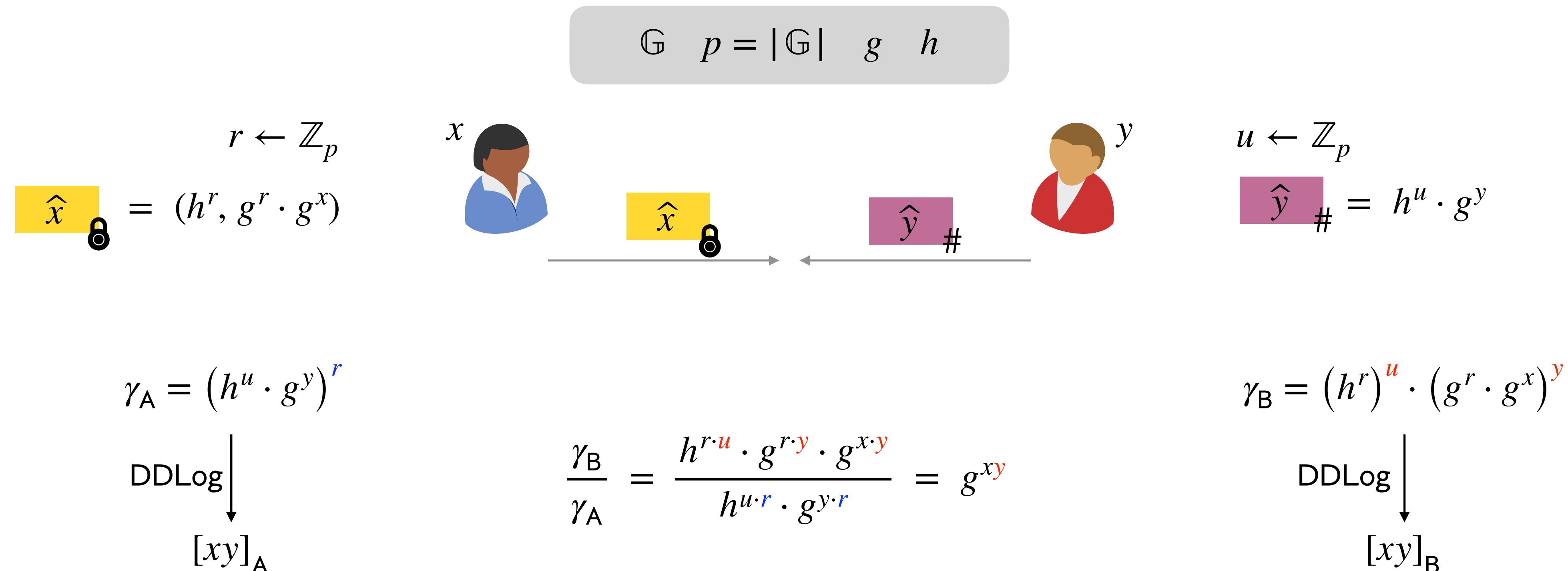
Non-Interactive Multiplication

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]



Non-Interactive Multiplication

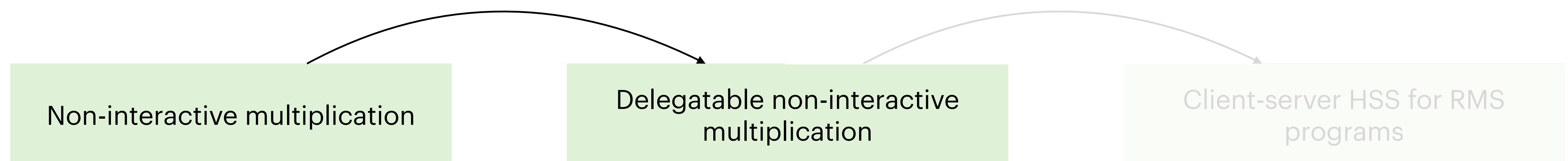
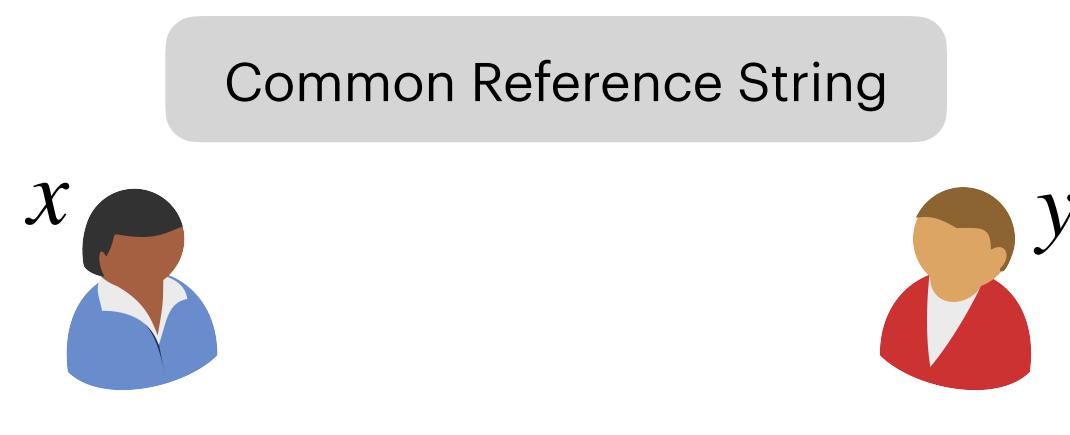
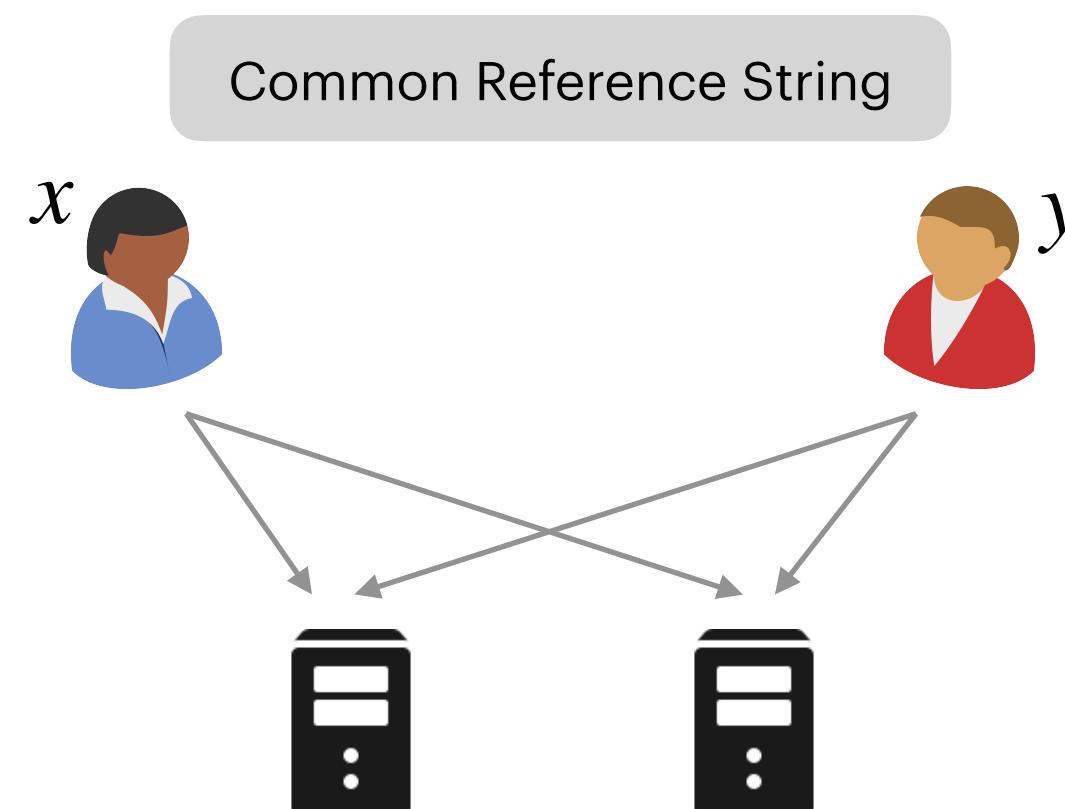
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19] [Abram-Roy-Scholl'24]



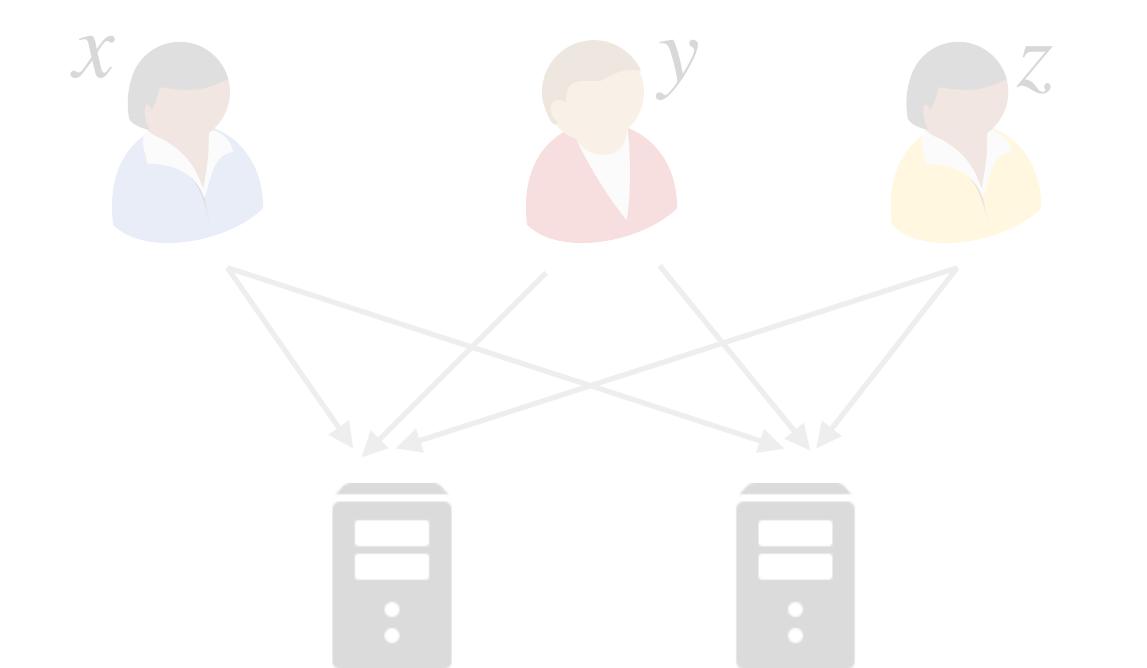
Distributed Discrete Log (DDLog): Non-interactively convert divisive shares into additive shares

[Boyle-Gilboa-Ishai'16]

HSS for Multiplication is All You Need

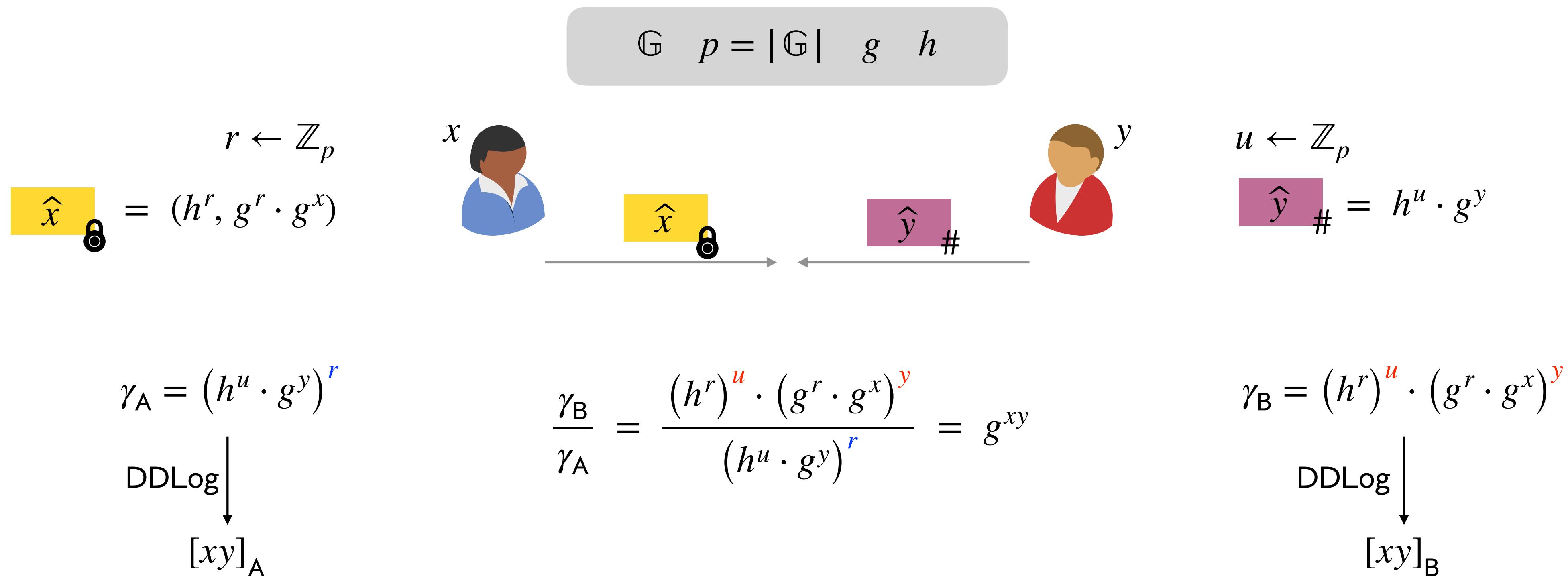


$[xy]_A$ $[xy]_B$

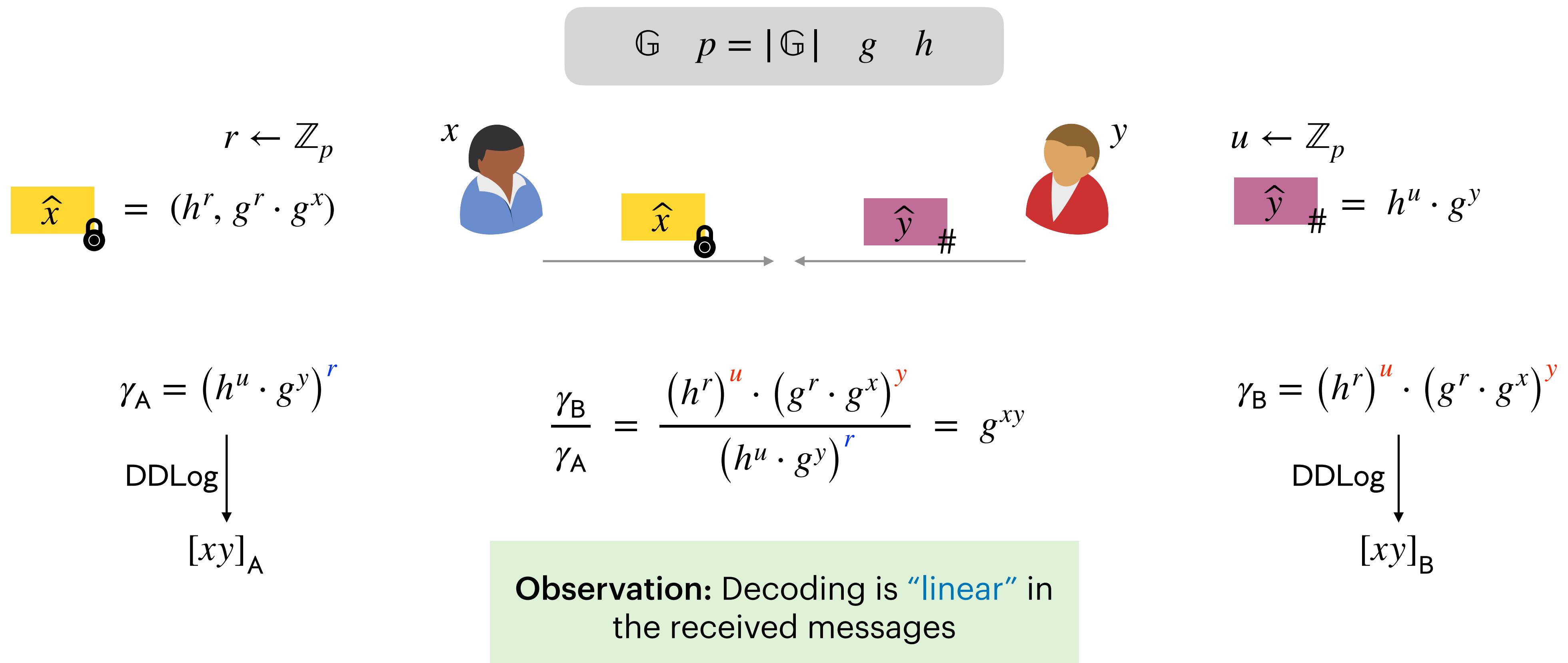


$[C(x, y, z)]_A$ $[C(x, y, z)]_B$

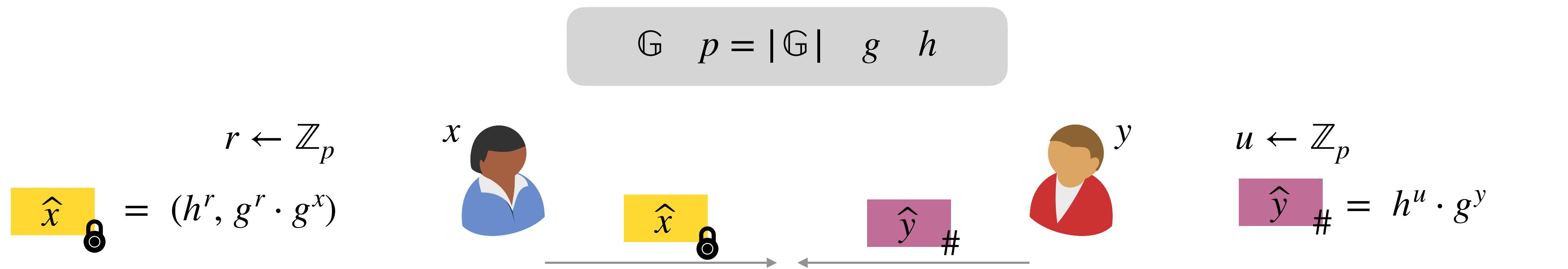
Delegating Non-Interactive Multiplication



Delegating Non-Interactive Multiplication



Delegating Non-Interactive Multiplication



$$\gamma_A = (h^u \cdot g^y)^{\textcolor{blue}{r}}$$

DDLog
↓

$$[xy]_A$$

$$\frac{\gamma_B}{\gamma_A} = \frac{(h^r)^{\textcolor{red}{u}} \cdot (g^r \cdot g^x)^{\textcolor{red}{y}}}{(h^u \cdot g^y)^{\textcolor{blue}{r}}} = g^{xy}$$

$$\gamma_B = (h^r)^{\textcolor{red}{u}} \cdot (g^r \cdot g^x)^{\textcolor{red}{y}}$$

DDLog
↓

$$[xy]_B$$

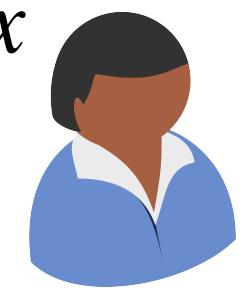
Observation: Decoding is “linear” in the received messages

Using **shares** of r , u , and y to decode gives divisive shares of xy

Delegatable Non-Interactive Multiplication

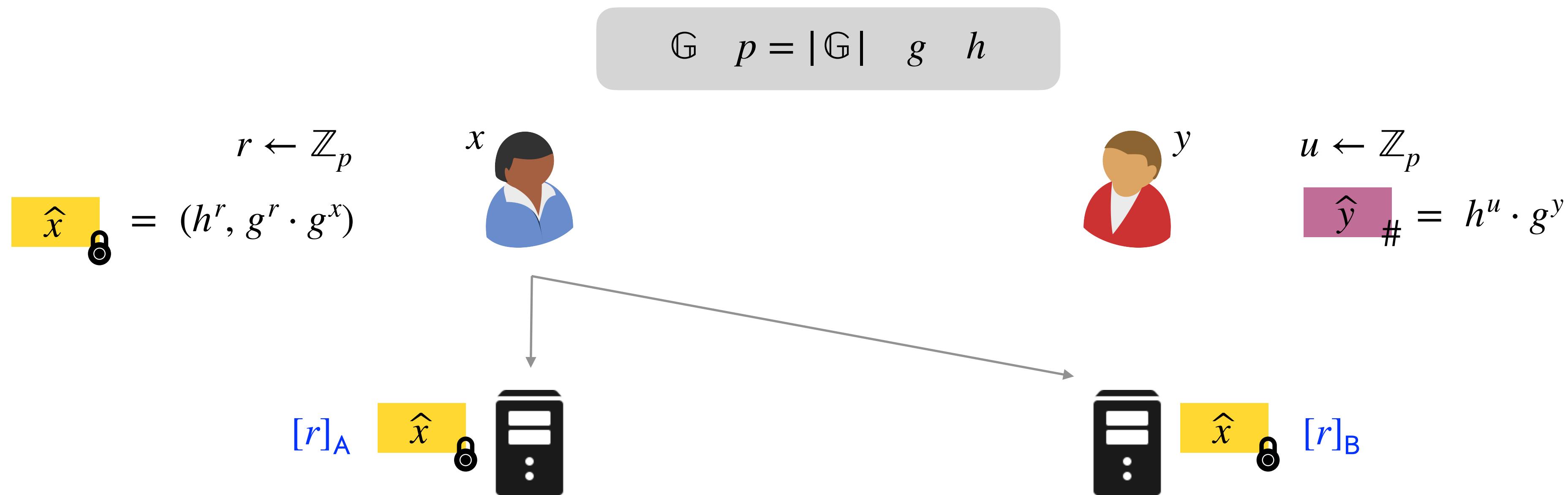
\mathbb{G} $p = |\mathbb{G}|$ g h

$r \leftarrow \mathbb{Z}_p$
 $\hat{x}_\otimes = (h^r, g^r \cdot g^x)$

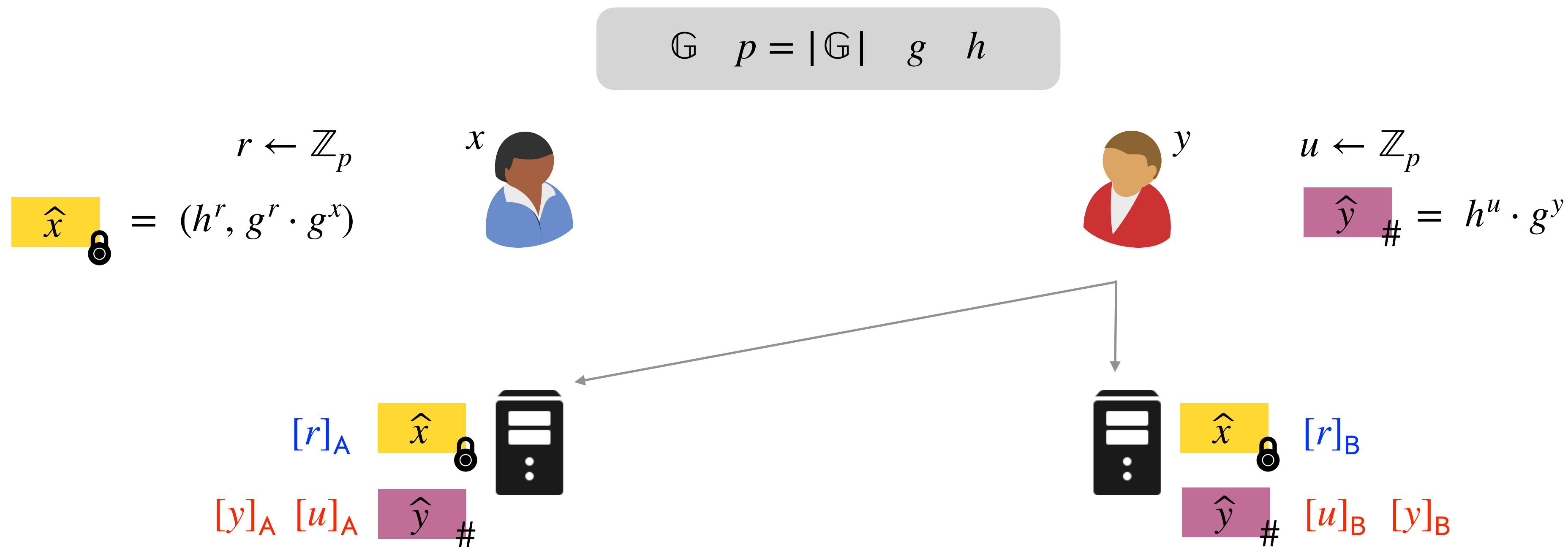


y
 $u \leftarrow \mathbb{Z}_p$
 $\hat{y}_\# = h^u \cdot g^y$

Delegatable Non-Interactive Multiplication



Delegatable Non-Interactive Multiplication



Delegatable Non-Interactive Multiplication

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User A}$$
$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad \text{User B}$$
$$u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[r]_A \quad \hat{x} \otimes \quad \text{Calculator}$$
$$[y]_A \quad [u]_A \quad \hat{y} \#$$

$$\text{Calculator} \quad \hat{x} \otimes \quad [r]_B$$
$$\hat{y} \# \quad [u]_B \quad [y]_B$$

$$g^{-[xy]_A} = \frac{(h^u \cdot g^y)^{[r]_A}}{(h^r)^{[u]_A} \cdot (g^r \cdot g^x)^{[y]_A}}$$

Delegatable Non-Interactive Multiplication

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User A}$$

$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad \text{User B}$$

$$u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[r]_A \quad \hat{x} \otimes \quad \text{Calculator}$$

$$[y]_A \quad [u]_A \quad \hat{y} \#$$

$$\text{Calculator} \quad \hat{x} \otimes [r]_B$$

$$\hat{y} \# [u]_B \quad [y]_B$$

$$g^{-[xy]_A} = \frac{(h^u \cdot g^y)^{[r]_A}}{(h^r)^{[u]_A} \cdot (g^r \cdot g^x)^{[y]_A}}$$

$$\frac{(h^r)^{[u]_B} \cdot (g^r \cdot g^x)^{[y]_B}}{(h^u \cdot g^y)^{[r]_B}} = g^{[xy]_B}$$

Delegatable Non-Interactive Multiplication

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User}$$

$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad \text{User}$$

$$u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[r]_A \quad \hat{x} \otimes \quad \text{Calculator}$$

$$[y]_A \quad [u]_A \quad \hat{y} \#$$

$$\text{Calculator} \quad \hat{x} \otimes [r]_B$$

$$\hat{y} \# [u]_B \quad [y]_B$$

$$g^{-[xy]_A} = \frac{(h^u \cdot g^y)^{[r]_A}}{(h^r)^{[u]_A} \cdot (g^r \cdot g^x)^{[y]_A}}$$

$$\frac{g^{[xy]_B}}{g^{-[xy]_A}} = g^{xy}$$

$$\frac{(h^r)^{[u]_B} \cdot (g^r \cdot g^x)^{[y]_B}}{(h^u \cdot g^y)^{[r]_B}} = g^{[xy]_B}$$

Delegatable Non-Interactive Multiplication

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User}$$

$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad \text{User}$$

$$u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[r]_A \quad \hat{x} \otimes \quad \text{Verifier}$$

$$[y]_A \quad [u]_A \quad \hat{y} \#$$

$$\text{Verifier} \quad \hat{x} \otimes [r]_B$$

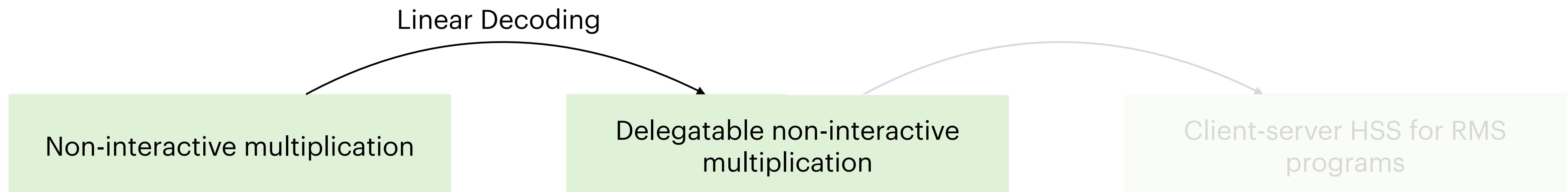
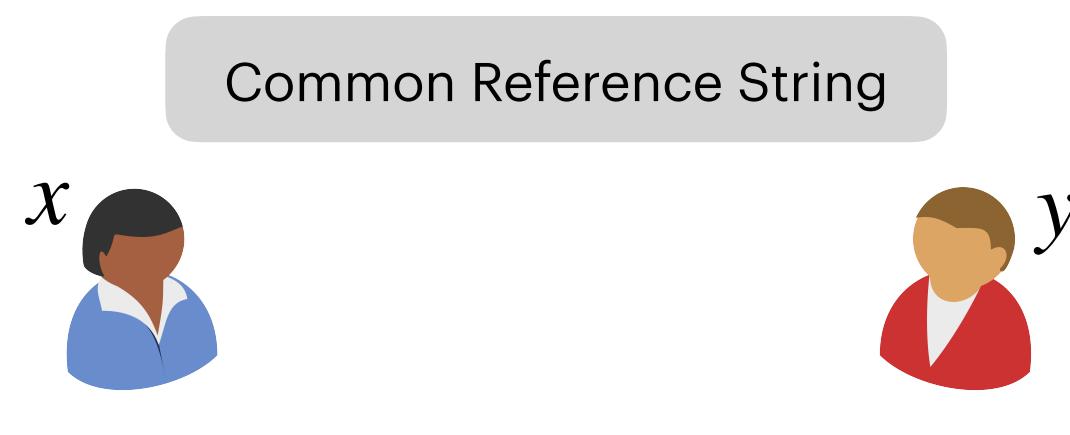
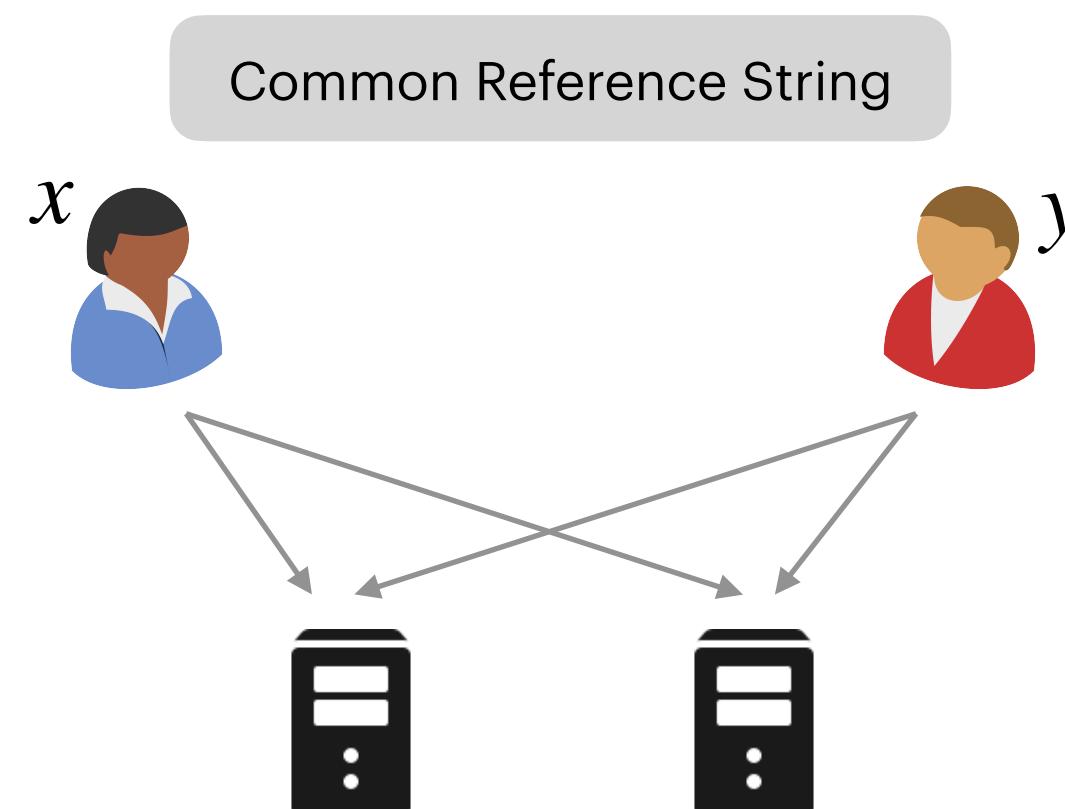
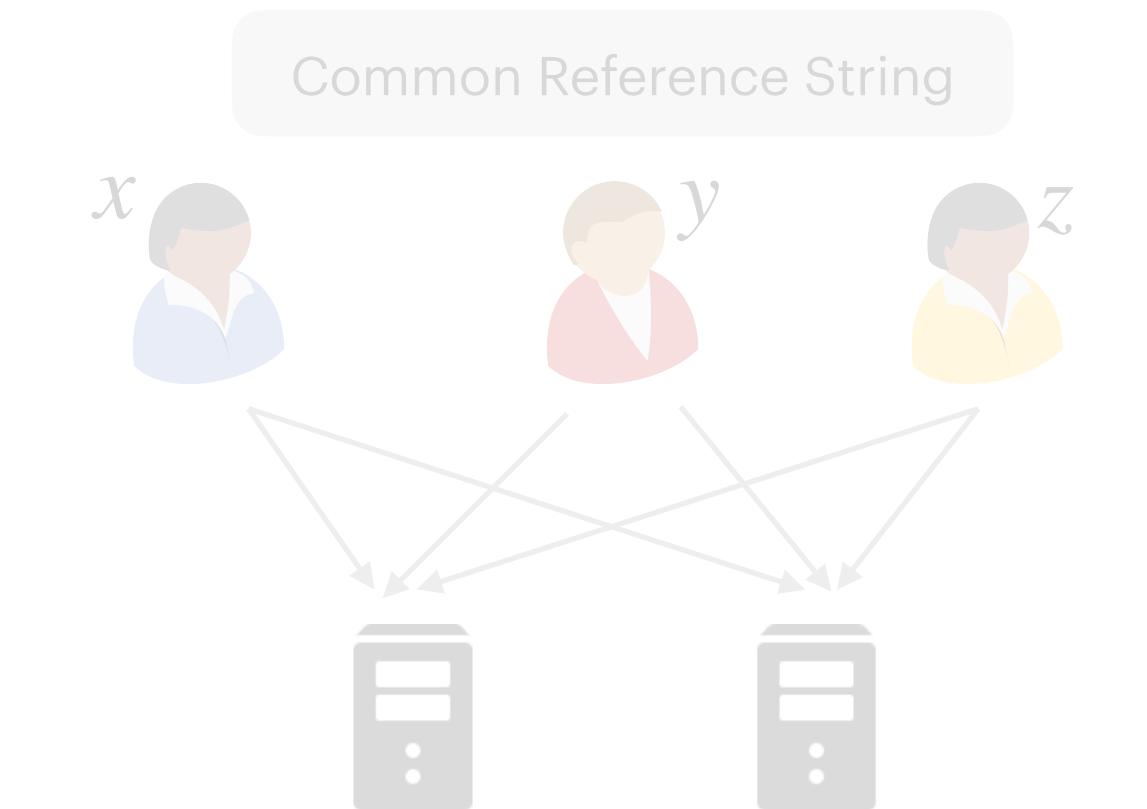
$$\hat{y} \# [u]_B \quad [y]_B$$

$$[xy]_A \xleftarrow{\text{DDLog}} g^{-[xy]_A} = \frac{(h^u \cdot g^y)^{[r]_A}}{(h^r)^{[u]_A} \cdot (g^r \cdot g^x)^{[y]_A}}$$

$$\frac{g^{[xy]_B}}{g^{-[xy]_A}} = g^{xy}$$

$$\frac{(h^r)^{[u]_B} \cdot (g^r \cdot g^x)^{[y]_B}}{(h^u \cdot g^y)^{[r]_B}} = g^{[xy]_B} \xrightarrow{\text{DDLog}} [xy]_B$$

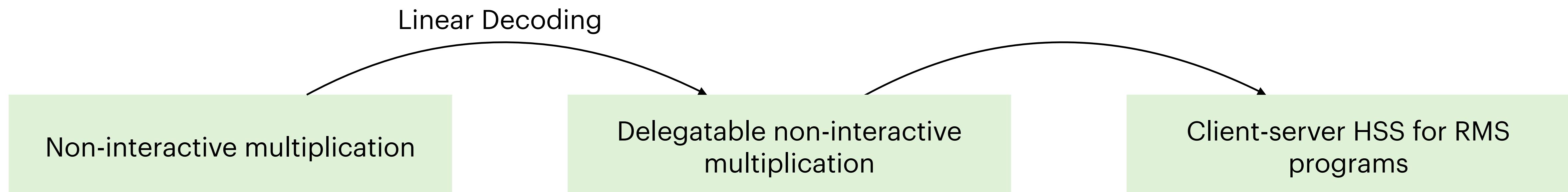
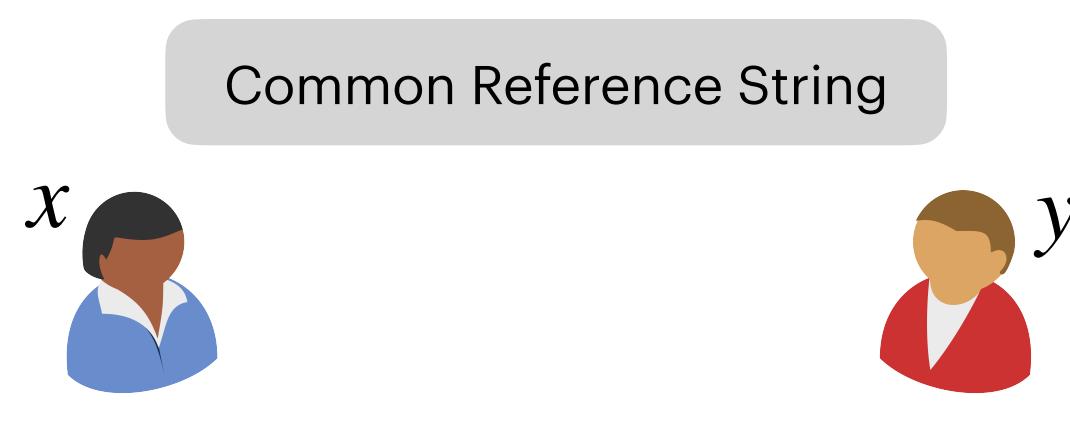
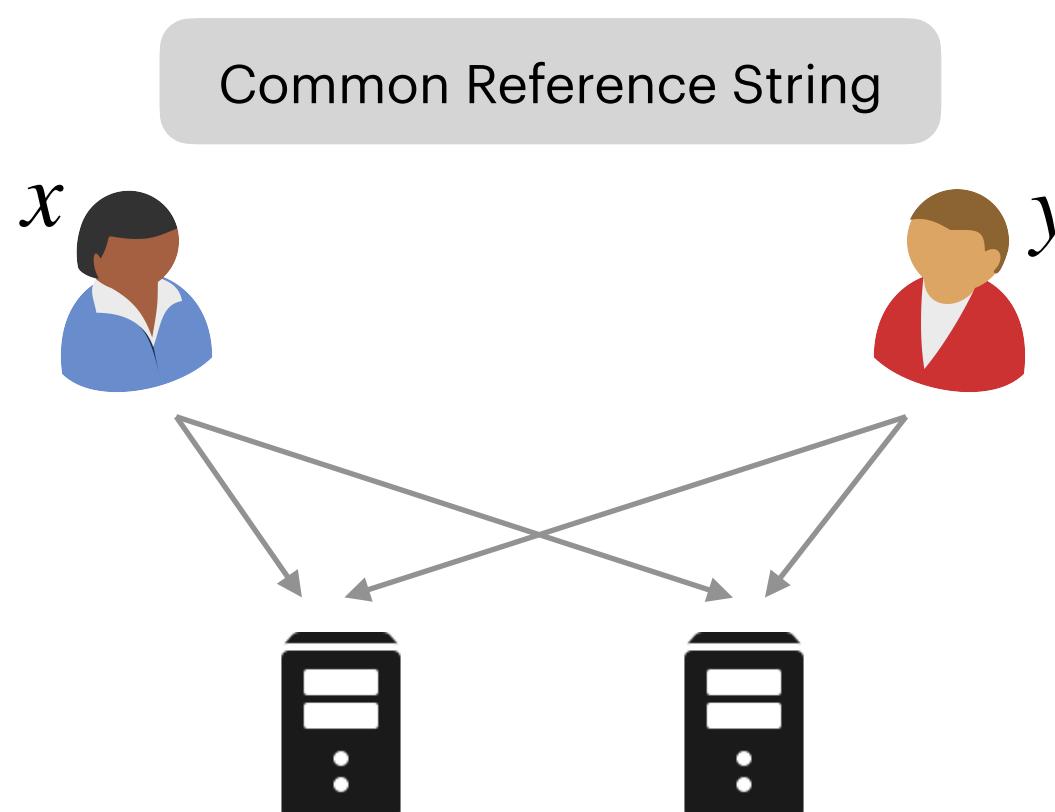
HSS for Multiplication is All You Need



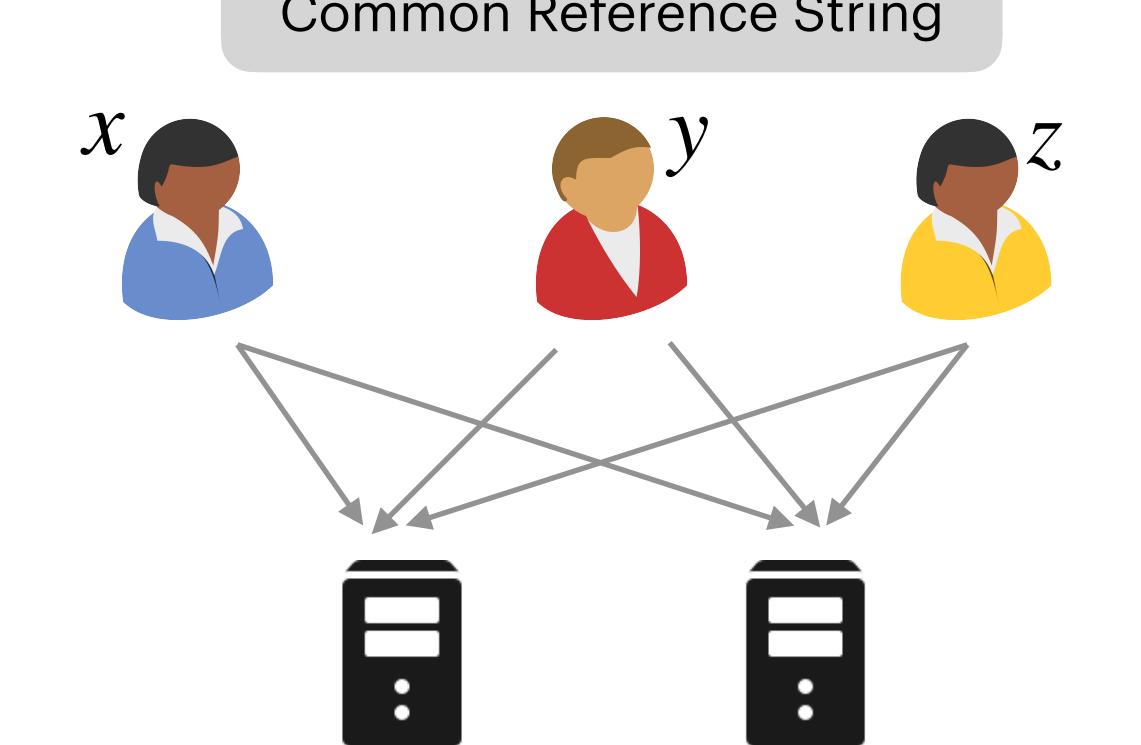
$[xy]_A$ $[xy]_B$

$[C(x, y, z)]_A$ $[C(x, y, z)]_B$

HSS for Multiplication is All You Need



$[xy]_A$ $[xy]_B$



$[C(x, y, z)]_A$ $[C(x, y, z)]_B$

Towards Evaluating RMS Programs

Multiplying **inputs** with **intermediate values** of the computation suffices to evaluate **RMS programs**

NIM can be used to multiply inputs with intermediate values

Restricted Multiplication Straight-line (RMS) Programs

[Boyle-Gilboa-Ishai'16]

RMS Programs

Inputs

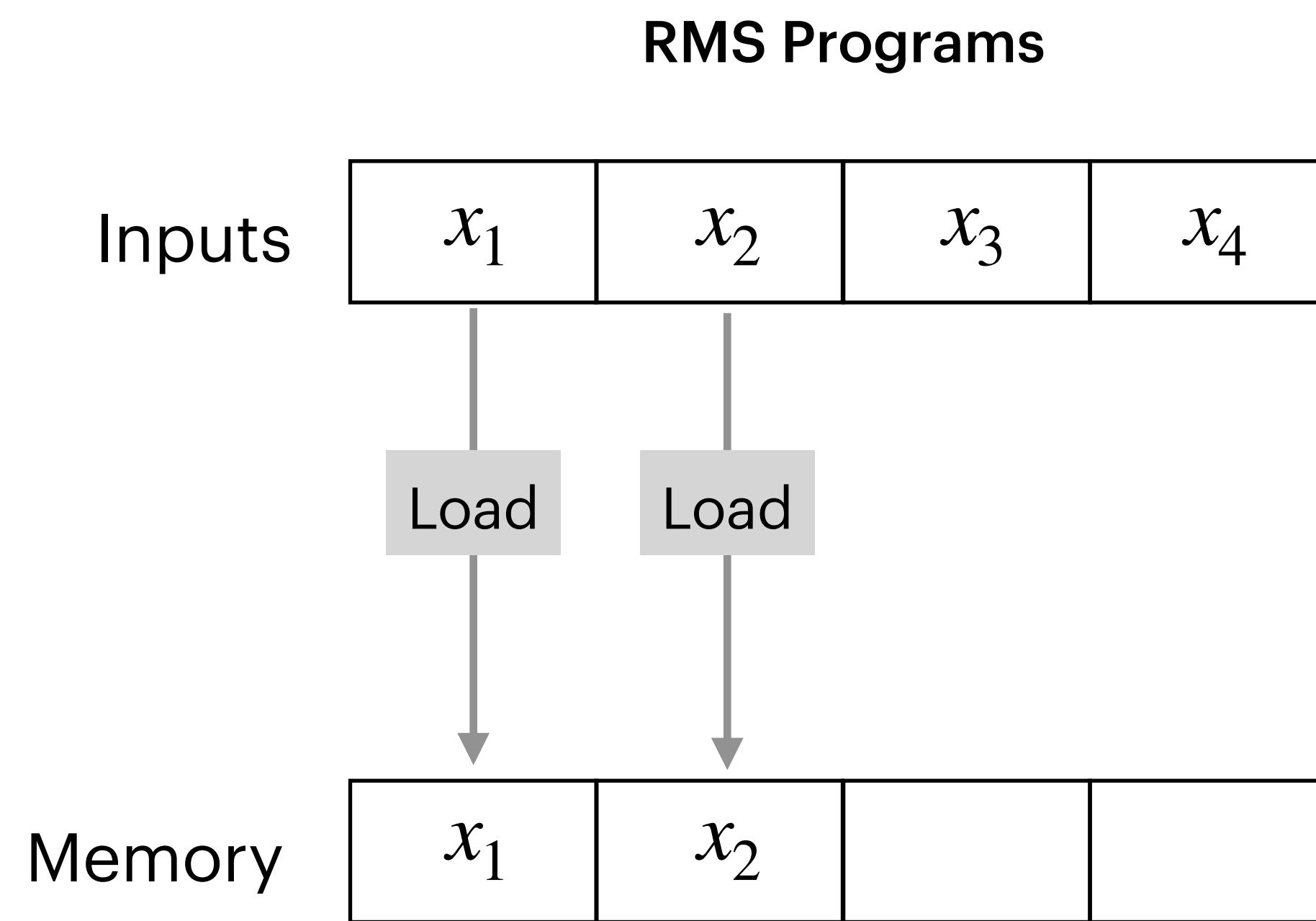
x_1	x_2	x_3	x_4
-------	-------	-------	-------

Memory

--	--	--	--

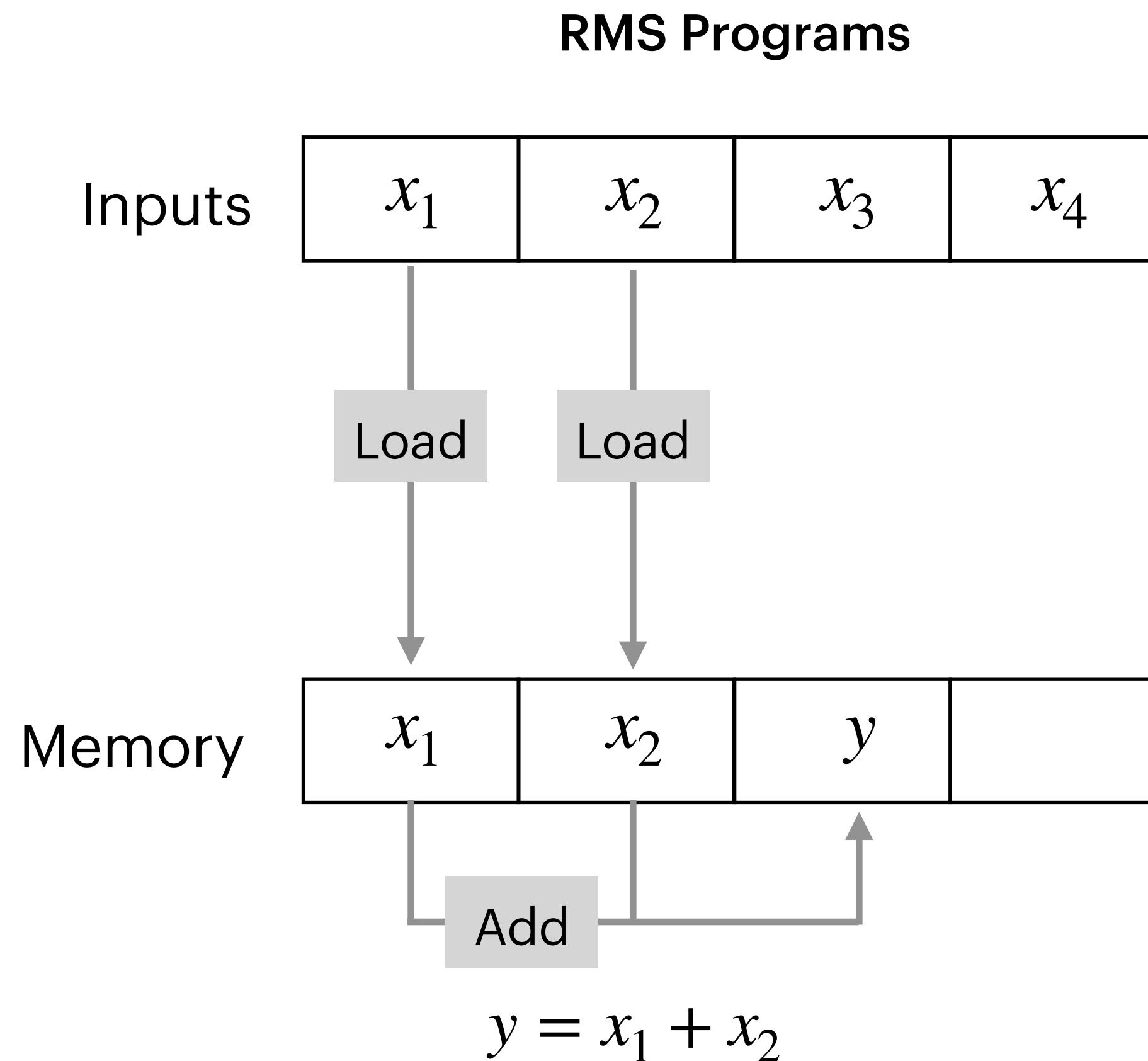
Restricted Multiplication Straight-line (RMS) Programs

[Boyle-Gilboa-Ishai'16]



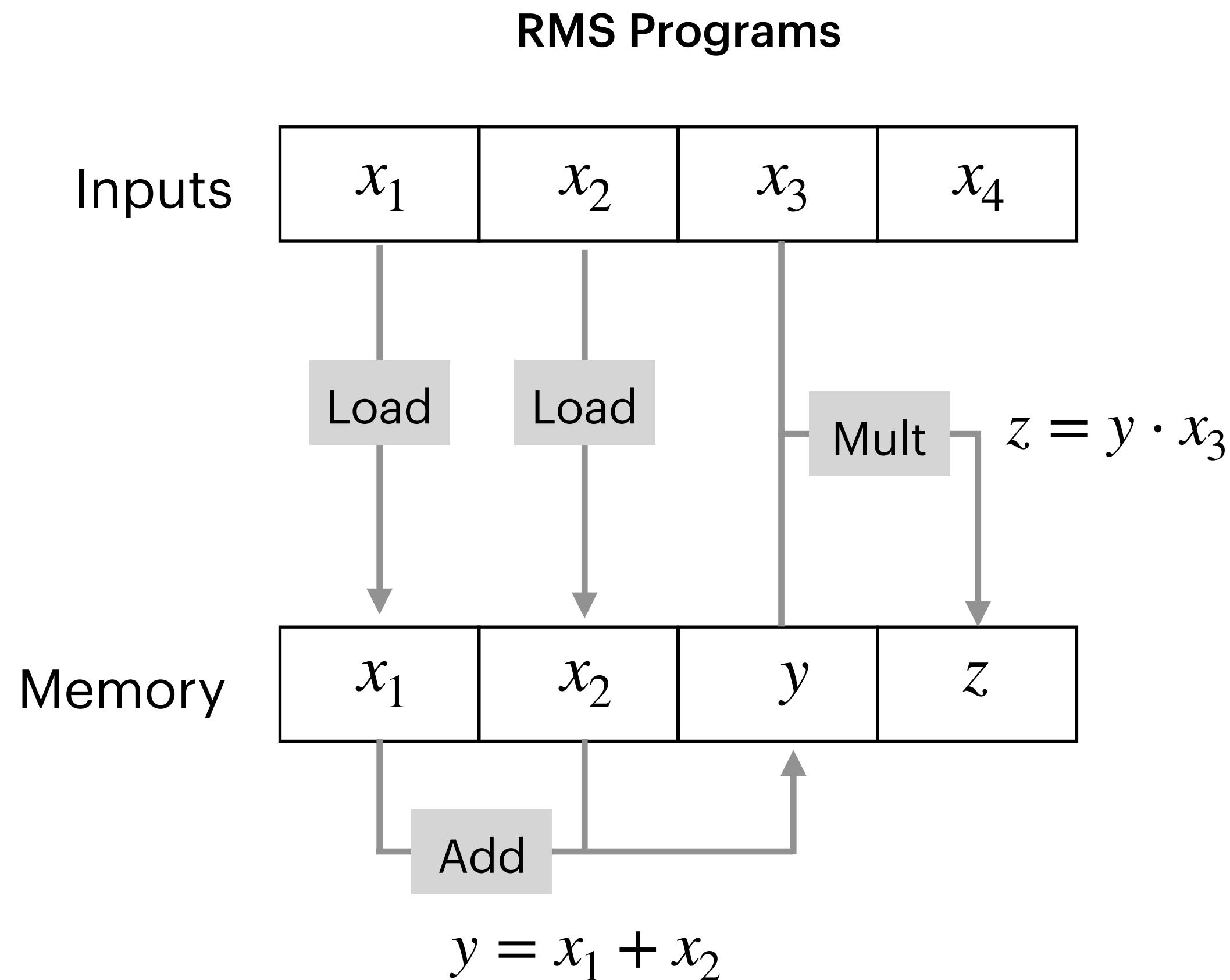
Restricted Multiplication Straight-line (RMS) Programs

[Boyle-Gilboa-Ishai'16]



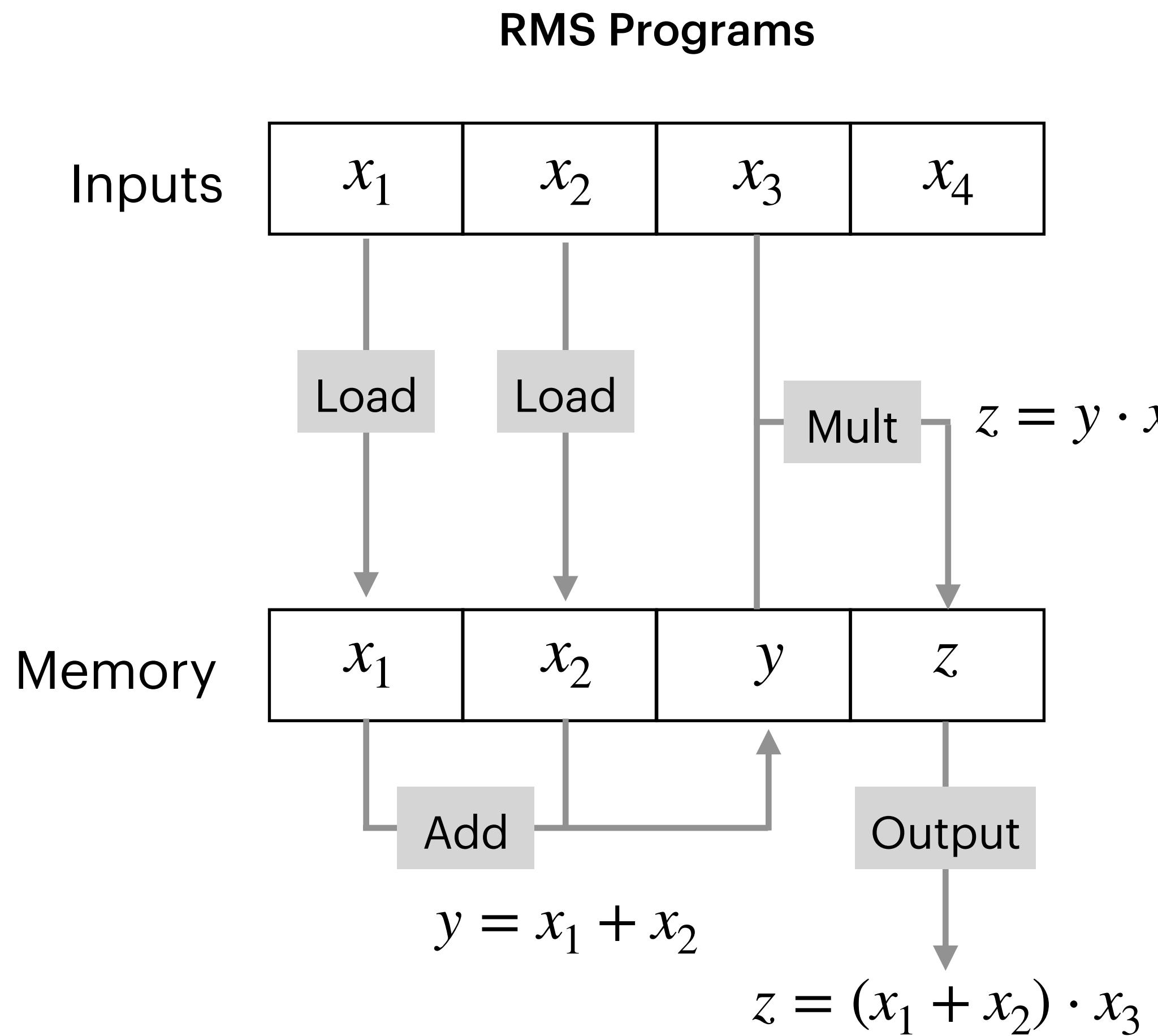
Restricted Multiplication Straight-line (RMS) Programs

[Boyle-Gilboa-Ishai'16]



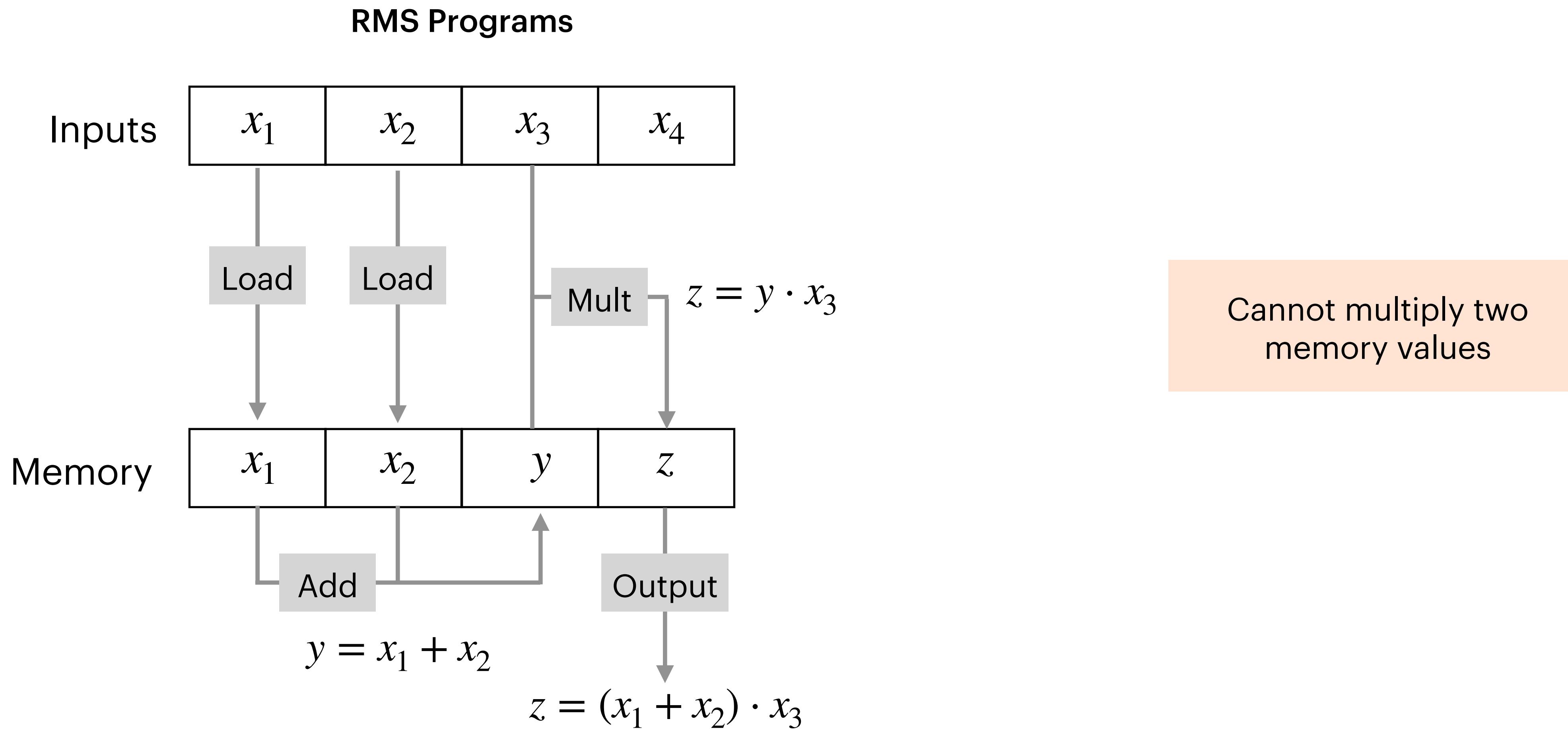
Restricted Multiplication Straight-line (RMS) Programs

[Boyle-Gilboa-Ishai'16]



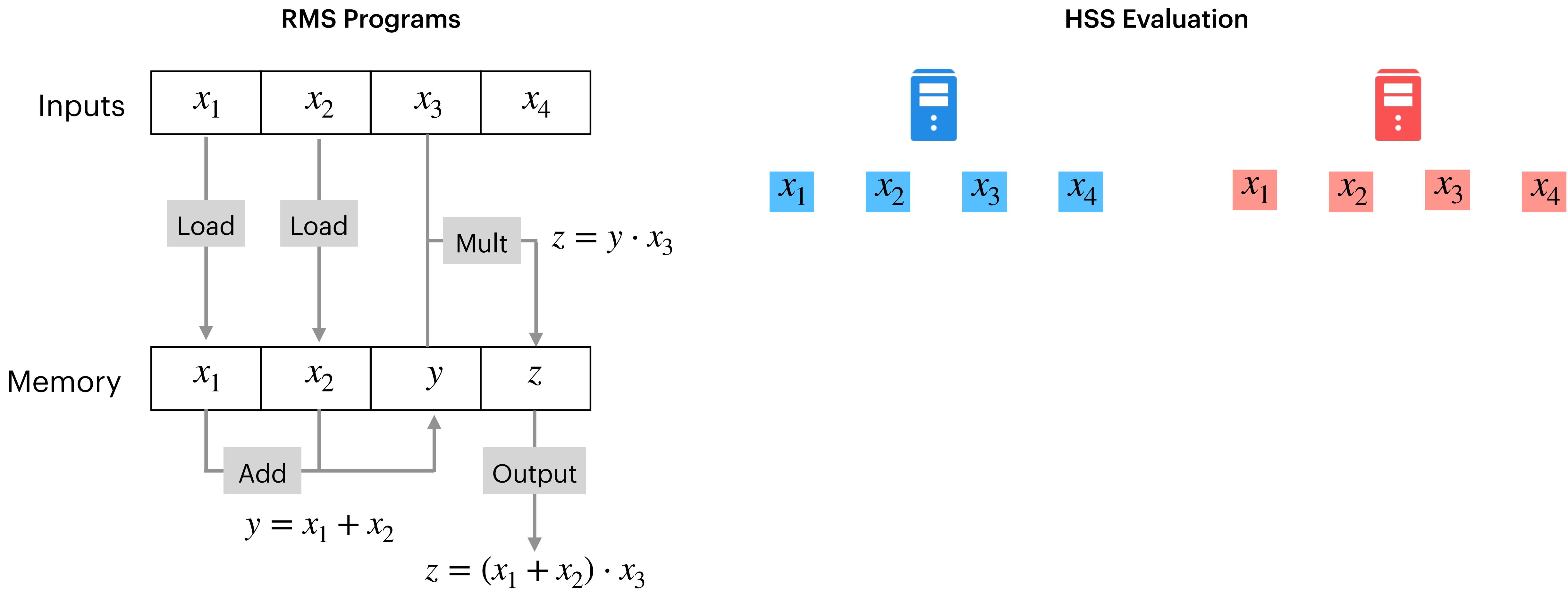
Restricted Multiplication Straight-line (RMS) Programs

[Boyle-Gilboa-Ishai'16]



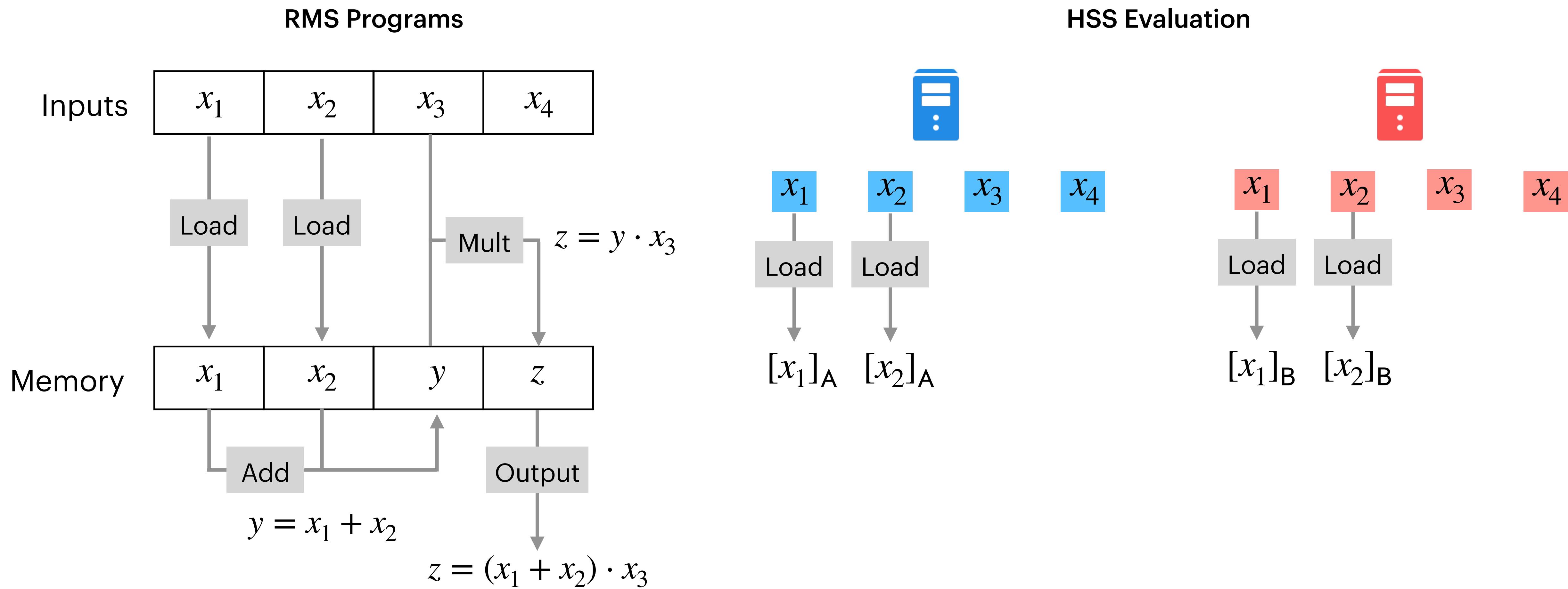
Distributed Evaluation of RMS Programs

[Boyle-Gilboa-Ishai'16]



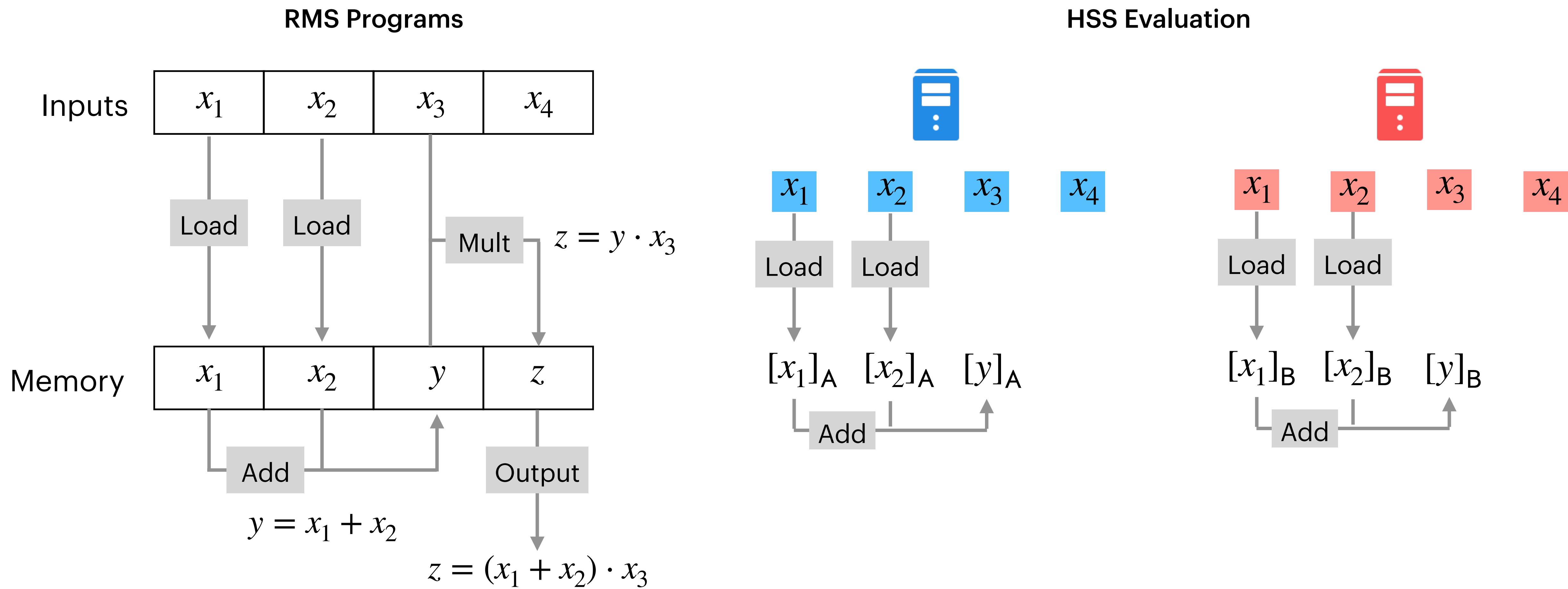
Distributed Evaluation of RMS Programs

[Boyle-Gilboa-Ishai'16]



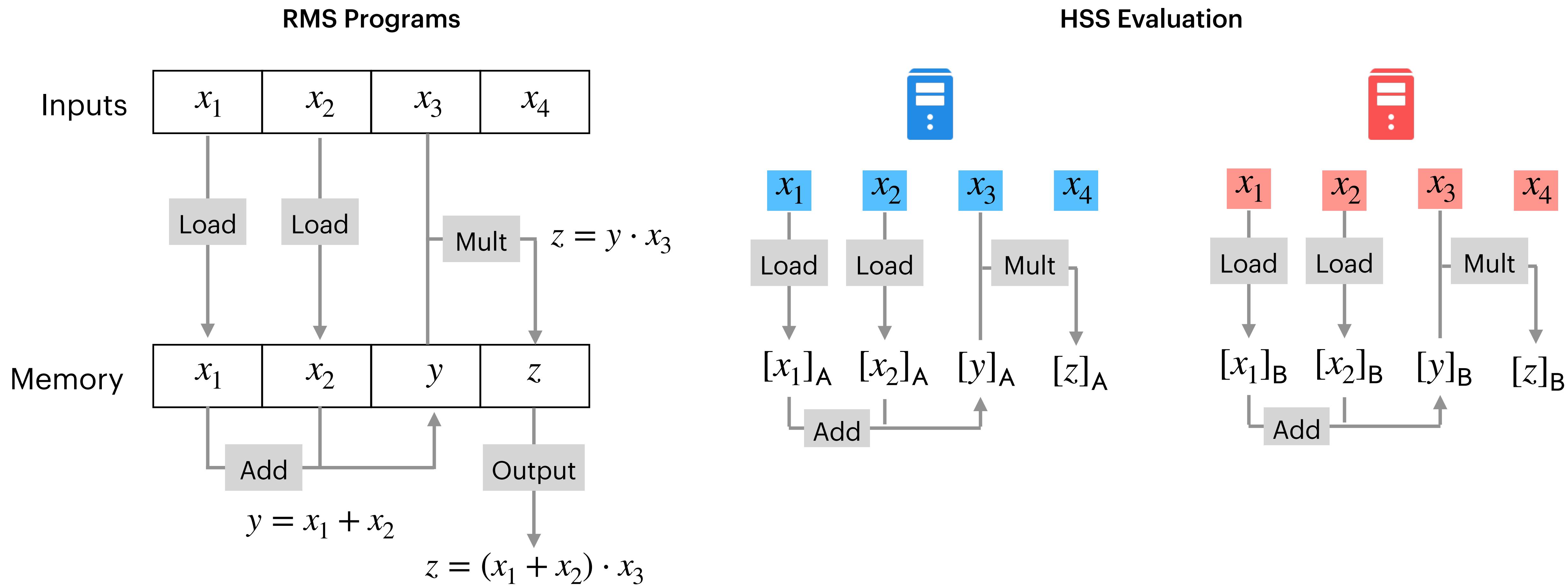
Distributed Evaluation of RMS Programs

[Boyle-Gilboa-Ishai'16]



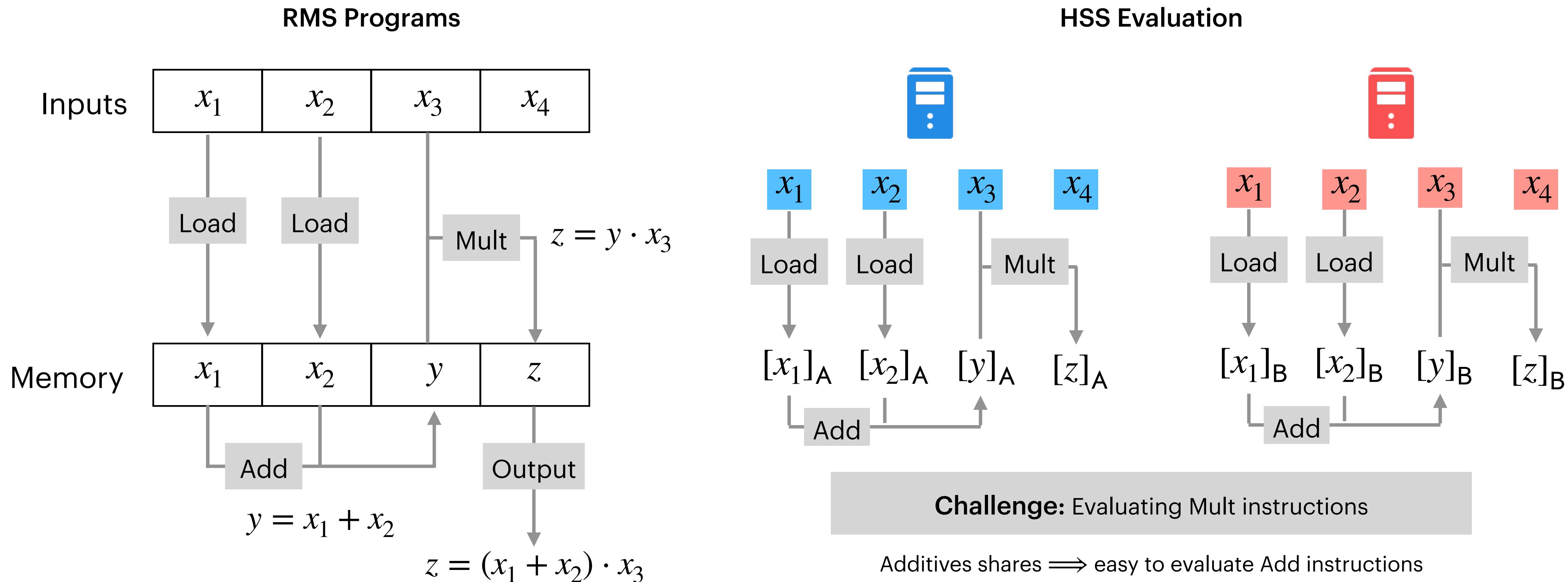
Distributed Evaluation of RMS Programs

[Boyle-Gilboa-Ishai'16]



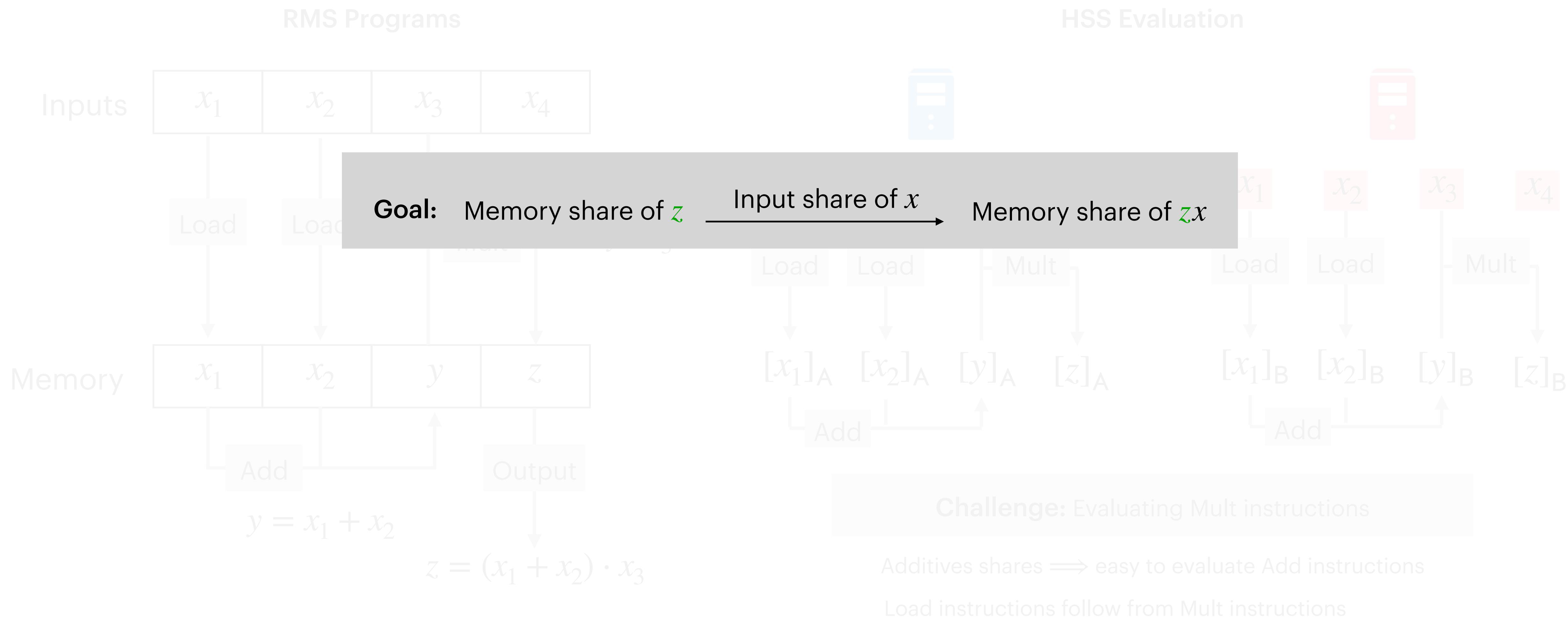
Distributed Evaluation of RMS Programs

[Boyle-Gilboa-Ishai'16]

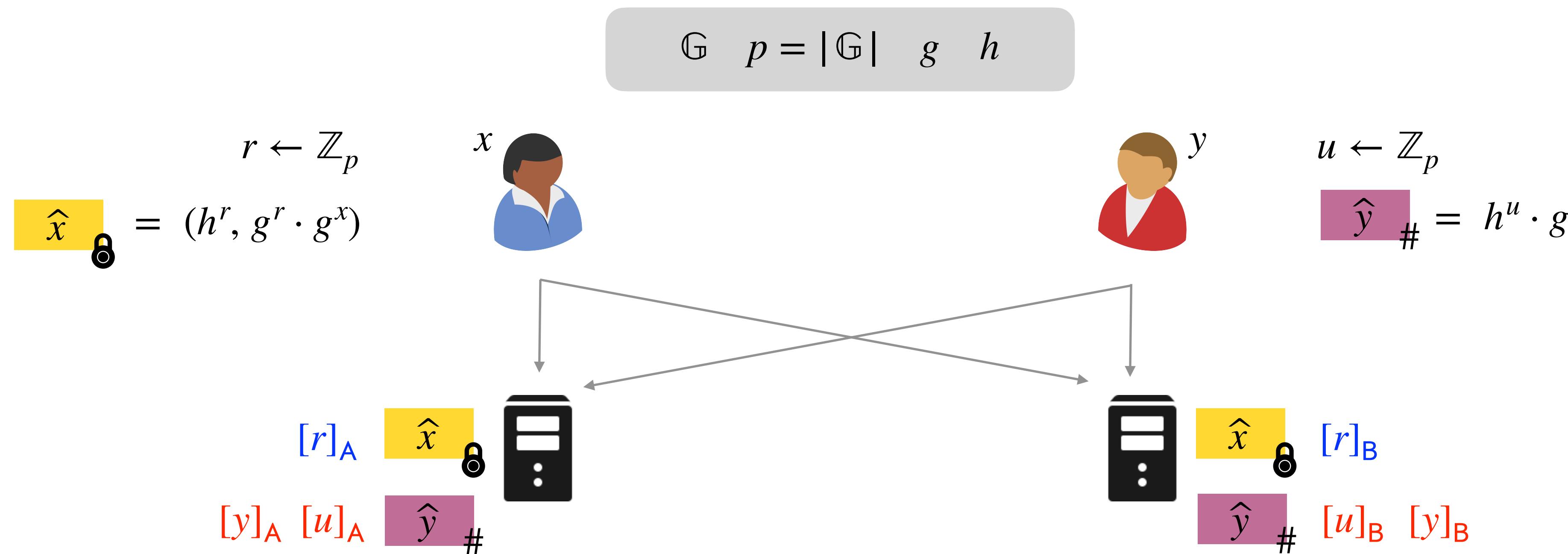


Distributed Evaluation of RMS Programs

[Boyle-Gilboa-Ishai'16]



Delegatable Non-Interactive Multiplication



$$\begin{aligned}
 [xy]_A &\xleftarrow{\text{DDLog}} g^{-[xy]_A} = \frac{(h^u \cdot g^y)^{[r]_A}}{(h^r)^{[u]_A} \cdot (g^r \cdot g^x)^{[y]_A}} & \frac{g^{[xy]_B}}{g^{-[xy]_A}} &= g^{xy} & \frac{(h^r)^{[u]_B} \cdot (g^r \cdot g^x)^{[y]_B}}{(h^u \cdot g^y)^{[r]_B}} &= g^{[xy]_B} &\xrightarrow{\text{DDLog}} [xy]_B
 \end{aligned}$$

Extending Delegatable NIM

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User A}$$
$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad \text{User B}$$
$$u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[z \cdot r]_A \quad \hat{x} \otimes \quad \text{Verifier}$$
$$[z \cdot y]_A \quad [z \cdot u]_A \quad \hat{y} \#$$

$$\text{Verifier} \quad \hat{x} \otimes \quad [z \cdot r]_B$$
$$\hat{y} \# \quad [z \cdot u]_B \quad [z \cdot y]_B$$

Extending Delegatable NIM

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User A}$$

$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad \text{User B}$$

$$u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[z \cdot r]_A \quad \hat{x} \otimes \quad \text{Calculator}$$

$$[z \cdot y]_A \quad [z \cdot u]_A \quad \hat{y} \#$$

$$\text{Calculator} \quad \hat{x} \otimes [z \cdot r]_B$$

$$\hat{y} \# [z \cdot u]_B \quad [z \cdot y]_B$$

$$g^{-[z \cdot xy]_A} = \frac{(h^u \cdot g^y)^{[z \cdot r]_A}}{(h^r)^{[z \cdot u]_A} \cdot (g^r \cdot g^x)^{[z \cdot y]_A}}$$

Extending Delegatable NIM

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User}$$

$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[z \cdot r]_A \quad \hat{x} \otimes \quad \text{Calculator}$$

$$[z \cdot y]_A \quad [z \cdot u]_A \quad \hat{y} \#$$

$$\text{Calculator} \quad \hat{x} \otimes [z \cdot r]_B$$

$$\hat{y} \# [z \cdot u]_B \quad [z \cdot y]_B$$

$$g^{-[z \cdot xy]_A} = \frac{(h^u \cdot g^y)^{[z \cdot r]_A}}{(h^r)^{[z \cdot u]_A} \cdot (g^r \cdot g^x)^{[z \cdot y]_A}}$$

$$\frac{(h^r)^{[z \cdot u]_B} \cdot (g^r \cdot g^x)^{[z \cdot y]_B}}{(h^u \cdot g^y)^{[z \cdot r]_B}} = g^{[z \cdot xy]_B}$$

Extending Delegatable NIM

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$r \leftarrow \mathbb{Z}_p \quad x \quad \text{User A}$$

$$\hat{x} \otimes = (h^r, g^r \cdot g^x)$$

$$y \quad \text{User B}$$

$$u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[\mathbb{Z} \cdot r]_{\mathbb{A}} \quad \hat{x} \otimes \quad \text{Verifier}$$

$$[\mathbb{Z} \cdot y]_{\mathbb{A}} \quad [\mathbb{Z} \cdot u]_{\mathbb{A}} \quad \hat{y} \#$$

$$[\mathbb{Z} \cdot r]_{\mathbb{B}} \quad \hat{x} \otimes \quad [\mathbb{Z} \cdot y]_{\mathbb{B}}$$

$$[\mathbb{Z} \cdot u]_{\mathbb{B}} \quad [\mathbb{Z} \cdot y]_{\mathbb{B}}$$

$$[\mathbb{Z} \cdot xy]_{\mathbb{A}} \xleftarrow{\text{DDLog}} g^{-[\mathbb{Z} \cdot xy]_{\mathbb{A}}} = \frac{(h^u \cdot g^y)^{[\mathbb{Z} \cdot r]_{\mathbb{A}}}}{(h^r)^{[\mathbb{Z} \cdot u]_{\mathbb{A}}} \cdot (g^r \cdot g^x)^{[\mathbb{Z} \cdot y]_{\mathbb{A}}}}$$

$$\frac{(h^r)^{[\mathbb{Z} \cdot u]_{\mathbb{B}}} \cdot (g^r \cdot g^x)^{[\mathbb{Z} \cdot y]_{\mathbb{B}}}}{(h^u \cdot g^y)^{[\mathbb{Z} \cdot r]_{\mathbb{B}}}} = g^{[\mathbb{Z} \cdot xy]_{\mathbb{B}}} \xrightarrow{\text{DDLog}} [\mathbb{Z} \cdot xy]_{\mathbb{B}}$$

Extending Delegatable NIM

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$

$$\hat{x} \otimes r \leftarrow \text{Encode}(x)$$

$$y \quad u \leftarrow \mathbb{Z}_p \quad \hat{y} \# = h^u \cdot g^y$$

$$[\mathbb{Z} \cdot r]_A \quad \hat{x} \otimes \vdots$$

$$[\mathbb{Z} \cdot y]_A \quad [\mathbb{Z} \cdot u]_A \quad \hat{y} \#$$

$$\vdots \quad \hat{x} \otimes [\mathbb{Z} \cdot r]_B$$

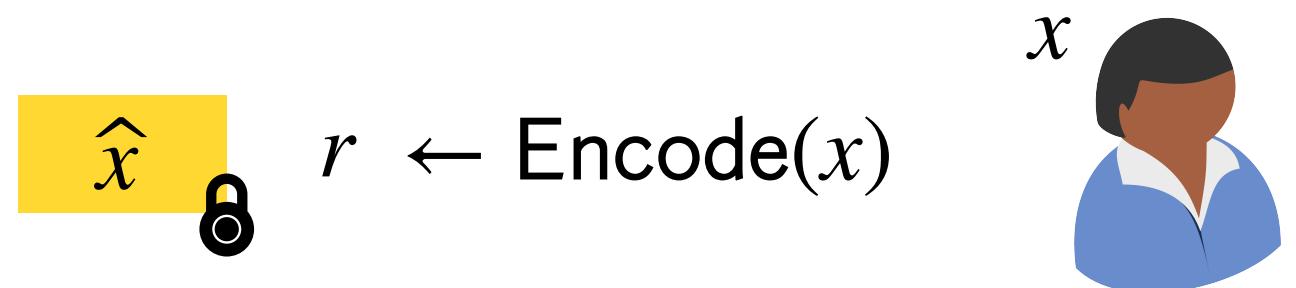
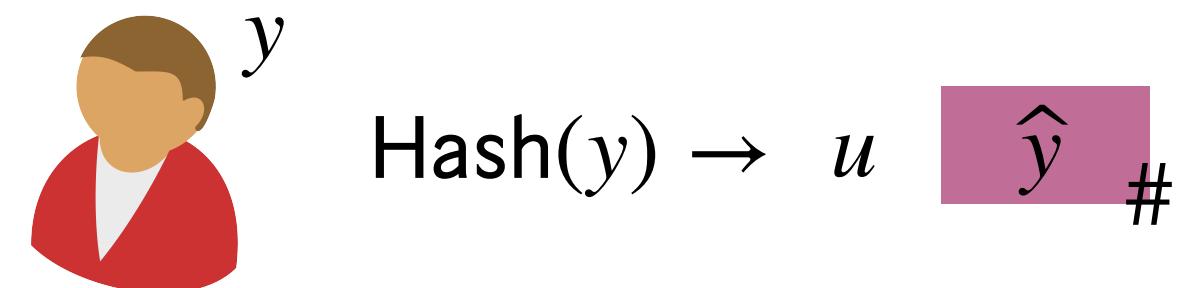
$$\hat{y} \# \quad [\mathbb{Z} \cdot u]_B \quad [\mathbb{Z} \cdot y]_B$$

$$[\mathbb{Z} \cdot xy]_A \xleftarrow{\text{DDLog}} g^{-[\mathbb{Z} \cdot xy]_A} = \frac{(h^u \cdot g^y)^{[\mathbb{Z} \cdot r]_A}}{(h^r)^{[\mathbb{Z} \cdot u]_A} \cdot (g^r \cdot g^x)^{[\mathbb{Z} \cdot y]_A}}$$

$$\frac{(h^r)^{[\mathbb{Z} \cdot u]_B} \cdot (g^r \cdot g^x)^{[\mathbb{Z} \cdot y]_B}}{(h^u \cdot g^y)^{[\mathbb{Z} \cdot r]_B}} = g^{[\mathbb{Z} \cdot xy]_B} \xrightarrow{\text{DDLog}} [\mathbb{Z} \cdot xy]_B$$

Extending Delegatable NIM

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g \quad h$$



$$[\mathbb{Z} \cdot r]_{\mathbb{A}} \quad \hat{x} \otimes \begin{matrix} \text{;} \\ \vdots \end{matrix}$$

$$[\mathbb{Z} \cdot y]_{\mathbb{A}} \quad [\mathbb{Z} \cdot u]_{\mathbb{A}} \quad \hat{y} \#$$

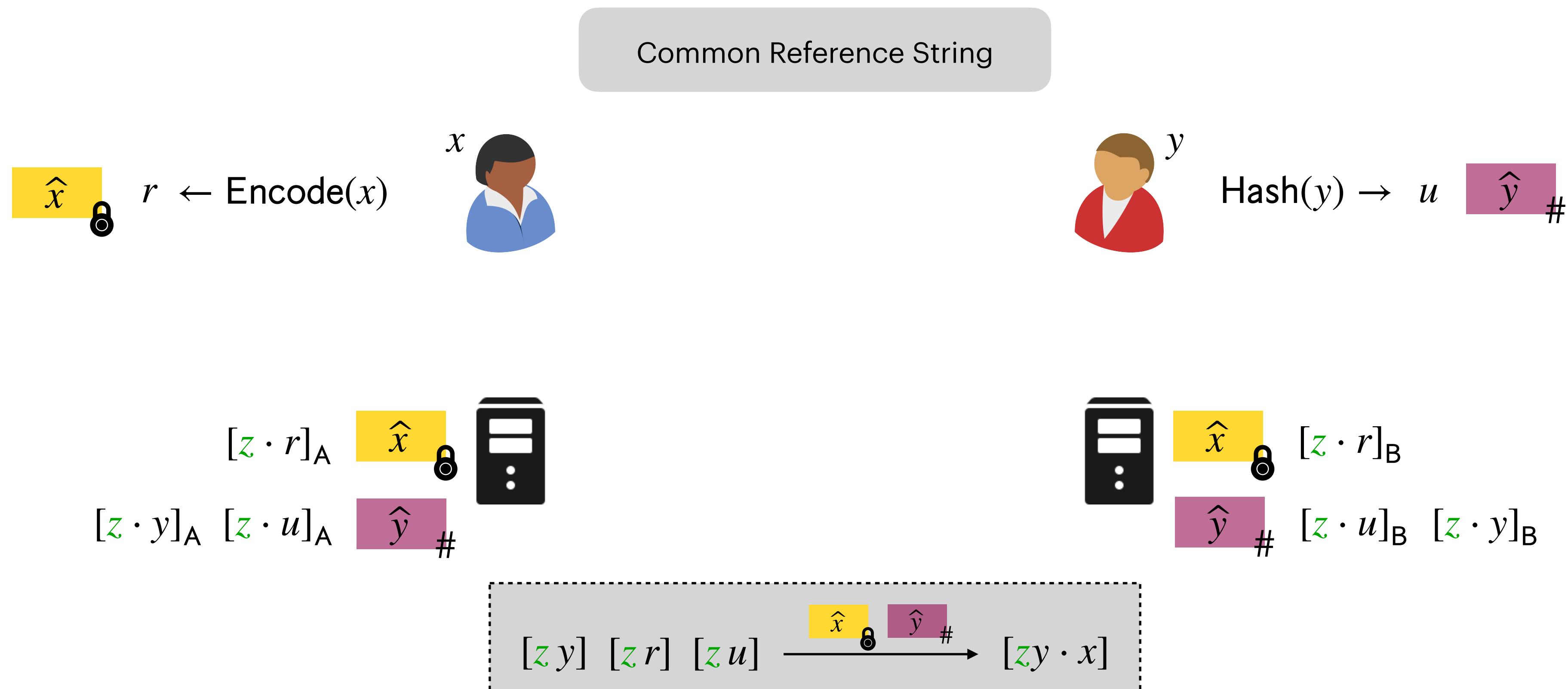
$$\begin{matrix} \text{;} \\ \vdots \end{matrix} \quad \hat{x} \otimes [\mathbb{Z} \cdot r]_{\mathbb{B}}$$

$$\hat{y} \# \quad [\mathbb{Z} \cdot u]_{\mathbb{B}} \quad [\mathbb{Z} \cdot y]_{\mathbb{B}}$$

$$[\mathbb{Z} \cdot xy]_{\mathbb{A}} \xleftarrow{\text{DDLog}} g^{-[\mathbb{Z} \cdot xy]_{\mathbb{A}}} = \frac{(h^u \cdot g^y)^{[\mathbb{Z} \cdot r]_{\mathbb{A}}}}{(h^r)^{[\mathbb{Z} \cdot u]_{\mathbb{A}}} \cdot (g^r \cdot g^x)^{[\mathbb{Z} \cdot y]_{\mathbb{A}}}}$$

$$\frac{(h^r)^{[\mathbb{Z} \cdot u]_{\mathbb{B}}} \cdot (g^r \cdot g^x)^{[\mathbb{Z} \cdot y]_{\mathbb{B}}}}{(h^u \cdot g^y)^{[\mathbb{Z} \cdot r]_{\mathbb{B}}}} = g^{[\mathbb{Z} \cdot xy]_{\mathbb{B}}} \xrightarrow{\text{DDLog}} [\mathbb{Z} \cdot xy]_{\mathbb{B}}$$

Extending Delegatable NIM



$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\textcolor{green}{z} y \cdot x]$$

Extending Delegatable NIM

Common Reference String

$\hat{x} \otimes r \leftarrow \text{Encode}(x)$

y
 $\text{Hash}(y) \rightarrow u \ \hat{y} \ #$

$[\textcolor{green}{z} \cdot r]_A \ \hat{x} \otimes \text{[calculator icon]}$
 $[\textcolor{green}{z} \cdot y]_A \ [\textcolor{green}{z} \cdot u]_A \ \hat{y} \ #$

$\text{[calculator icon]} \ \hat{x} \otimes [\textcolor{green}{z} \cdot r]_B$
 $\hat{y} \ # \ [\textcolor{green}{z} \cdot u]_B \ [\textcolor{green}{z} \cdot y]_B$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\textcolor{green}{z} y \cdot x]$$

$$[\textcolor{violet}{z} y] \ [\textcolor{violet}{z} r] \ [\textcolor{violet}{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\textcolor{violet}{z} y \cdot x]$$

Extending Delegatable NIM

Common Reference String

$\hat{x} \otimes r \leftarrow \text{Encode}(x)$

$y = 1$
 $\text{Hash}(1) \rightarrow u \ \hat{1} \ #$

$[\textcolor{violet}{z} \cdot r]_A \ \hat{x} \otimes$
 $[\textcolor{violet}{z} \cdot y]_A \ [\textcolor{violet}{z} \cdot u]_A \ \hat{y} \ #$

$[\textcolor{violet}{z} \cdot r]_B \ \hat{x} \otimes$
 $[\textcolor{violet}{z} \cdot u]_B \ [\textcolor{violet}{z} \cdot y]_B \ \hat{y} \ #$

$$[\textcolor{violet}{z}] \ [\textcolor{violet}{z} r] \ [\textcolor{violet}{z} u] \xrightarrow{\hat{x} \otimes \hat{1} \ #} [\textcolor{violet}{z} \cdot x]$$

$$[\textcolor{violet}{z} y] \ [\textcolor{violet}{z} r] \ [\textcolor{violet}{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\textcolor{violet}{z} y \cdot x]$$

Extending Delegatable NIM

Common Reference String

$\hat{x} \otimes r \leftarrow \text{Encode}(x)$

$y = 1$
 $\text{Hash}(1) \rightarrow u \ \hat{1} \ #$

$[\textcolor{violet}{z} \cdot r]_A \ \hat{x} \otimes$
 $[\textcolor{violet}{z} \cdot y]_A \ [\textcolor{violet}{z} \cdot u]_A \ \hat{y} \ #$

$[\textcolor{violet}{z} \cdot r]_B \ \hat{x} \otimes$
 $[\textcolor{violet}{z} \cdot u]_B \ [\textcolor{violet}{z} \cdot y]_B$

$$[\textcolor{violet}{z}] \xrightarrow{\hat{x} \otimes \hat{1} \ #} [\textcolor{violet}{z} \cdot x]$$

$$[\mathbf{z} y] \ [\mathbf{z} r] \ [\mathbf{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\mathbf{z} y \cdot x]$$

Extending Delegatable NIM

Common Reference String

$\hat{x} \otimes r \leftarrow \text{Encode}(x)$

$y = 1$
 $\text{Hash}(1) \rightarrow u \ \hat{1} \ #$

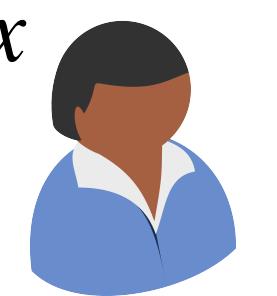
$$[\mathbf{z}] \xrightarrow{\hat{x} \otimes \hat{1} \ #} [\mathbf{z} \cdot x]$$

Goal: Memory share of \mathbf{z} $\xrightarrow{\text{Input share of } x}$ Memory share of $\mathbf{z}x$

$$[\text{z } y] \ [\text{z } r] \ [\text{z } u] \xrightarrow{\hat{x} \text{ } \textcolor{black}{\circ} \text{ } \hat{y} \text{ } \#} [\text{z } y \cdot x]$$

Attempt at Evaluating RMS Programs

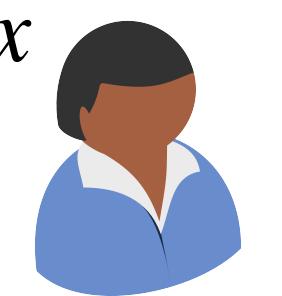
Common Reference String



$$[\textcolor{blue}{z} y] \ [\textcolor{blue}{z} r] \ [\textcolor{blue}{z} u] \xrightarrow[\textcolor{blue}{z}]{\hat{x} \textcolor{blue}{\otimes} \hat{y} \#} [\textcolor{blue}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String



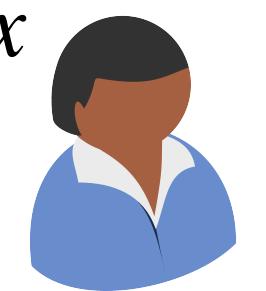
Defined in CRS

Hash(1) \rightarrow $u \ \ \hat{1} \ \ #$

$$[\textcolor{blue}{z} y] \ [\textcolor{blue}{z} r] \ [\textcolor{blue}{z} u] \xrightarrow{\hat{x} \textcolor{blue}{\otimes} \hat{y} \#} [\textcolor{blue}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String



$u \ \ \hat{1} \ \# \ \vdots$

$\vdots \ \hat{1} \ \# \ u$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow[\textcolor{black}{\#}]{\hat{x} \textcolor{black}{\otimes} \hat{y}} [\textcolor{green}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$

u $\hat{1}$ $\#$

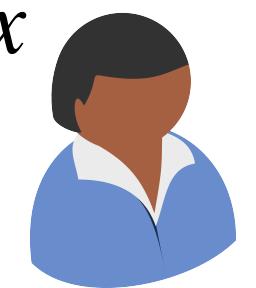
 $\hat{1}$ $\#$ u

$$[\textcolor{blue}{z} y] \ [\textcolor{blue}{z} r] \ [\textcolor{blue}{z} u] \xrightarrow[\textcolor{blue}{z} y \cdot x]{\hat{x} \textcolor{blue}{\otimes} \hat{y} \#}$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$



$u \ \ \ \hat{1} \ \# \ \ \ \text{[server icon]}$

$\text{[server icon]} \ \ \ \hat{1} \ \# \ \ u$

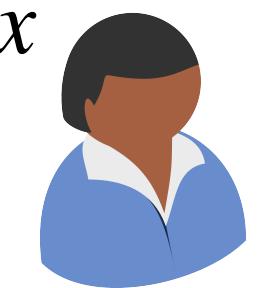
Memory share of $\textcolor{blue}{z}$: $[\textcolor{blue}{z}] \quad [\textcolor{blue}{z} \cdot r]$

$$[\mathbb{z} y] \ [\mathbb{z} r] \ [\mathbb{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\mathbb{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$



$u \ \ \hat{1} \ \# \ \ \text{[server icon]}$

$\text{[server icon]} \ \ \hat{1} \ \# \ u$

Memory share of \mathbb{z} : $[\mathbb{z}] \quad [\mathbb{z} \cdot r]$

$$[\mathbb{z}] \ [\mathbb{z} r] \ [\mathbb{z} u] \xrightarrow{\hat{x} \otimes \hat{1} \#} [\mathbb{z} \cdot x]$$

$$[\mathbb{z} y] \ [\mathbb{z} r] \ [\mathbb{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\mathbb{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$

x

$u \ \ \hat{1} \ \# \ \ \vdots$

$\vdots \ \ \hat{1} \ \# \ u$

Memory share of \mathbb{z} : $[\mathbb{z}] \quad [\mathbb{z} \cdot r]$

$$[\mathbb{z}] \ [\mathbb{z} r] \ [\mathbb{z} u] \xrightarrow{\hat{x} \otimes \hat{1} \#} [\mathbb{z} \cdot x]$$

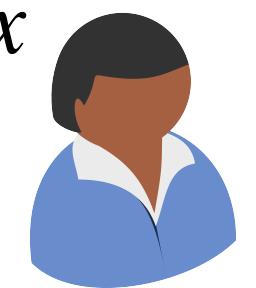
$u \cdot [\mathbb{z}] = [\mathbb{z} u]$

$$[\mathbb{z} y] \ [\mathbb{z} r] \ [\mathbb{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\mathbb{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$



$u \ \ \hat{1} \ \# \ \ \text{server icon}$

$\text{server icon} \ \ \hat{1} \ \# \ u$

Memory share of \mathbb{z} : $[\mathbb{z}] \quad [\mathbb{z} \cdot r]$

Memory share of $\mathbb{z}x$: $[\mathbb{z}x]$

$$[\mathbb{z}] \ [\mathbb{z}r] \ [\mathbb{z}u] \xrightarrow{\hat{x} \otimes \hat{1} \#} [\mathbb{z} \cdot x]$$

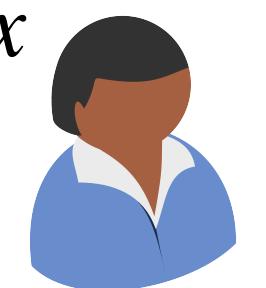
$u \cdot [\mathbb{z}] = [\mathbb{z}u]$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow[\textcolor{black}{\#}]{\hat{x} \textcolor{black}{\otimes} \hat{y}} [\textcolor{green}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$



$u \ \ \ \hat{1} \ \ \# \ \ \ \text{[server icon]}$

$\text{[server icon]} \ \ \hat{1} \ \ \# \ \ \ u$

Memory share of $\textcolor{green}{z}$: $[\textcolor{green}{z}] \quad [\textcolor{green}{z} \cdot r]$

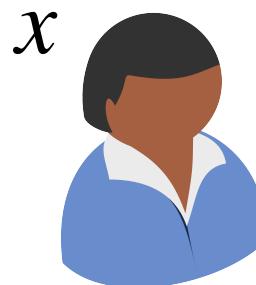
Memory share of $\textcolor{green}{z}x$: $[\textcolor{green}{z}x] \quad [\textcolor{red}{zx} \cdot r]$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow{\hat{x} \textcolor{blue}{\otimes} \textcolor{violet}{\hat{y}} \textcolor{brown}{\#}} [\textcolor{green}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$



$u \ \ \ \hat{1} \ \ \# \ \ \ \text{server icon}$

$\text{server icon} \ \ \hat{1} \ \ \# \ \ u$

Memory share of $\textcolor{green}{z}$: $[\textcolor{green}{z}] \quad [\textcolor{green}{z} \cdot r]$

Memory share of $\textcolor{green}{z}x$: $[\textcolor{green}{z}x] \quad [\textcolor{red}{zx} \cdot r]$

Need $[\textcolor{green}{z}x \cdot r]$ for subsequent multiplications

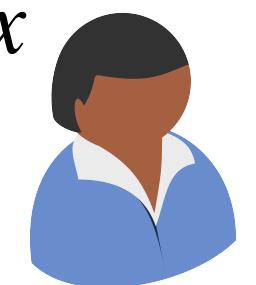
$$[\textcolor{green}{z}x] \ [\textcolor{red}{zx} \cdot r] \ [\textcolor{green}{z}x \cdot u] \xrightarrow{\hat{x} \textcolor{blue}{\otimes} \textcolor{violet}{\hat{1}} \textcolor{brown}{\#}} [\textcolor{green}{z}x \cdot x]$$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow[\textcolor{black}{\#}]{\hat{x} \textcolor{black}{\otimes} \hat{y}} [\textcolor{green}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$



$u \ \ \hat{1} \ \# \ \text{[server icon]}$

$\text{[server icon]} \ \hat{1} \ \# \ u$

Memory share of $\textcolor{green}{z}$: $[\textcolor{green}{z}] \quad [\textcolor{green}{z} \cdot r]$

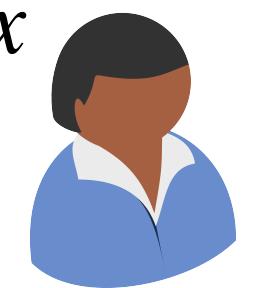
Memory share of $\textcolor{green}{z}x$: $[\textcolor{green}{z}x] \quad [\textcolor{red}{zx} \cdot r]$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow[\textcolor{black}{\#}]{\hat{x} \textcolor{black}{\otimes} \hat{y}} [\textcolor{green}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$
 \hat{r} $s \leftarrow \text{Hash}(r)$



u $\hat{1}$

 $\hat{1}$ u

Memory share of $\textcolor{green}{z}$: $[\textcolor{green}{z}]$ $[\textcolor{green}{z} \cdot r]$

Memory share of $\textcolor{green}{z}x$: $[\textcolor{green}{z}x]$ $[\textcolor{red}{zx} \cdot r]$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\textcolor{green}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$

\hat{r} $s \leftarrow \text{Hash}(r)$

x

u

$\hat{1}$ s

u

$\hat{1}$ u

Memory share of $\textcolor{green}{z}$: $[\textcolor{green}{z}]$ $[\textcolor{green}{z} \cdot r]$

Memory share of $\textcolor{green}{z}x$: $[\textcolor{green}{z}x]$ $[\textcolor{red}{zx} \cdot r]$

$$[\textcolor{green}{z} r] \ [\textcolor{green}{z} r] \ [\textcolor{red}{z} s] \xrightarrow{\hat{x} \otimes \hat{r} \#} [\textcolor{green}{z} r \cdot x]$$

$$[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \ [\textcolor{green}{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\textcolor{green}{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$

\hat{r} $s \leftarrow \text{Hash}(r)$

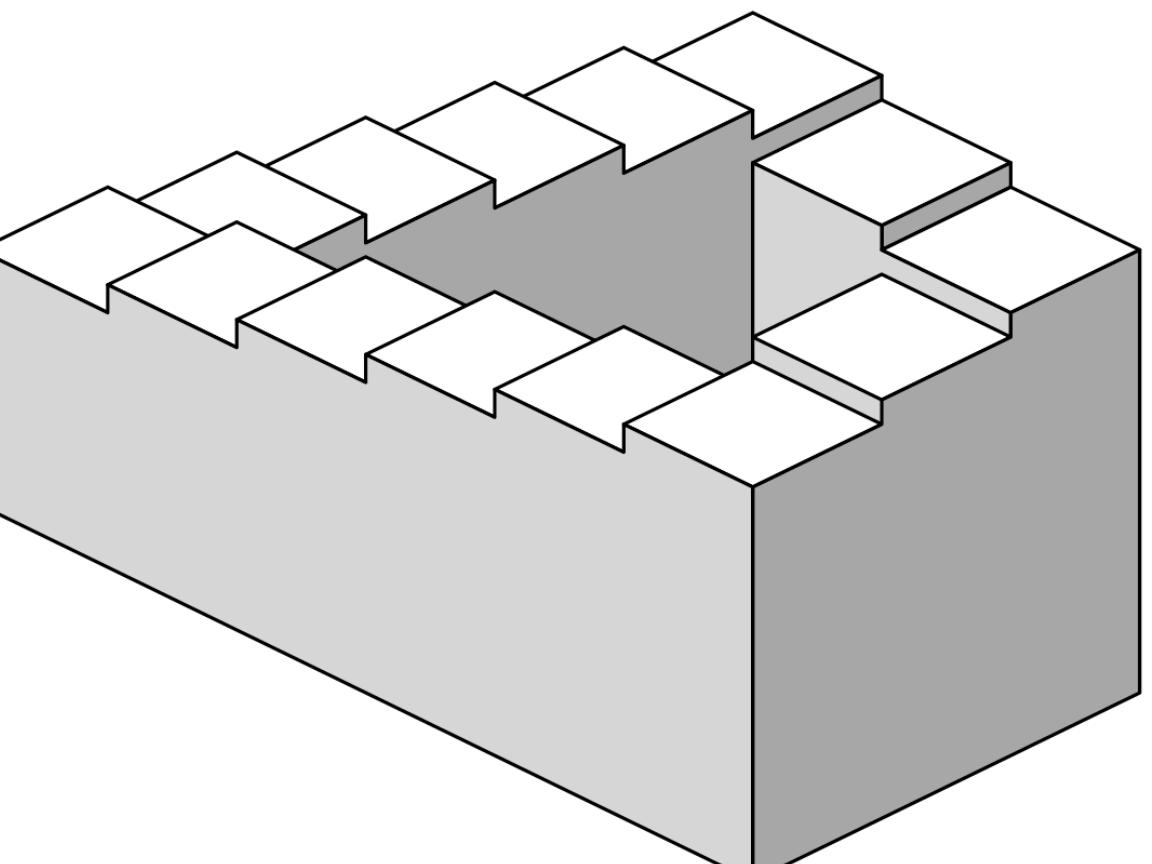
u

 $\hat{1}$ u

Memory share of $\textcolor{green}{z}$: $[\textcolor{green}{z}]$ $[\textcolor{green}{z} \cdot r]$

Memory share of $\textcolor{green}{z}x$: $[\textcolor{green}{z}x]$ $[\textcolor{red}{zx} \cdot r]$

$$[\textcolor{green}{z} r] \ [\textcolor{green}{z} r] \ [\textcolor{red}{z} s] \xrightarrow{\hat{x} \otimes \hat{r} \#} [\textcolor{green}{z} r \cdot x]$$



$$[\mathbb{z} y] \ [\mathbb{z} r] \ [\mathbb{z} u] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\mathbb{z} y \cdot x]$$

Attempt at Evaluating RMS Programs

Common Reference String

\hat{x} $r \leftarrow \text{Encode}(x)$
 \hat{r} $s \leftarrow \text{Hash}(r)$

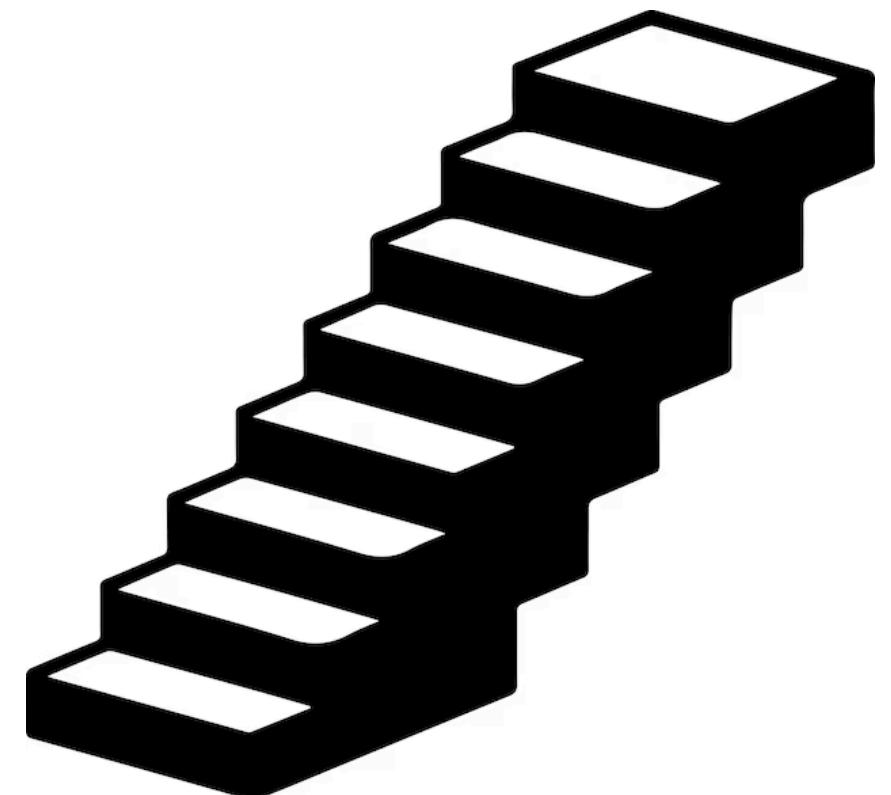
u $\hat{1}$ $\#$

\vdots $\hat{1}$ $\#$ u

Memory share of \mathbb{z} : $[\mathbb{z}]$ $[\mathbb{z} \cdot r]$

Memory share of $\mathbb{z}x$: $[\mathbb{z}x]$ $[\mathbb{z}x \cdot r]$

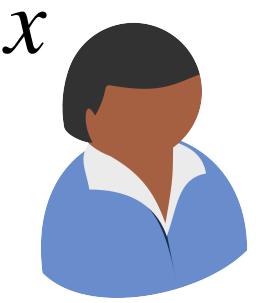
$$[\mathbb{z} r] \ [\mathbb{z} r] \ [\mathbb{z} s] \xrightarrow{\hat{x} \otimes \hat{r} \#} [\mathbb{z} r \cdot x]$$



Solution: Encryption scheme with linear decryption

Encryption with Linear Decryption

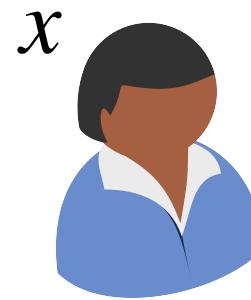
\mathbb{G} $p = |\mathbb{G}|$ g



Encryption with Linear Decryption

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g$$

$$\text{pk} = g^{-\text{sk}} \quad \text{sk} \leftarrow \mathbb{Z}_p$$

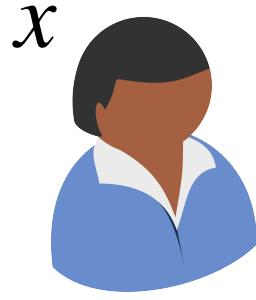


Encryption with Linear Decryption

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g$$

$$\text{pk} = g^{-\text{sk}}$$

$$\text{sk} \leftarrow \mathbb{Z}_p$$



$$\text{ct}_x = (g^r, \text{pk}^r \cdot g^x)$$

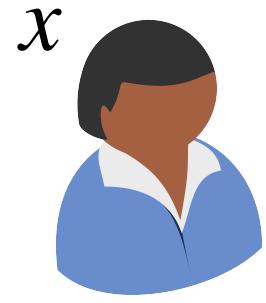
$$r \leftarrow \mathbb{Z}_p$$

Encryption with Linear Decryption

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g$$

$$\text{pk} = g^{-\text{sk}}$$

$$\text{sk} \leftarrow \mathbb{Z}_p$$



$$\text{ct}_x = (g^r, \text{pk}^r \cdot g^x) \quad r \leftarrow \mathbb{Z}_p$$

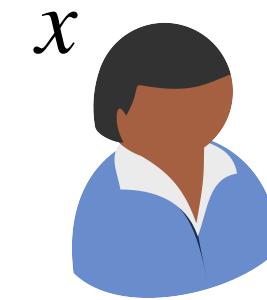
Decryption is “linear”: $(g^r)^{\text{sk}} \cdot \text{pk}^r \cdot g^x = g^{r \cdot \text{sk}} \cdot g^{-r \cdot \text{sk}} \cdot g^x = g^x$

Encryption with Linear Decryption

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g$$

$$\text{pk} = g^{-\text{sk}}$$

$$\text{sk} \leftarrow \mathbb{Z}_p$$



$$\text{ct}_x = (g^r, \text{pk}^r \cdot g^x) \quad r \leftarrow \mathbb{Z}_p$$

Decryption is “linear”: $(g^r)^{\text{sk}} \cdot \text{pk}^r \cdot g^x = g^{r \cdot \text{sk}} \cdot g^{-r \cdot \text{sk}} \cdot g^x = g^x$

 $[\text{z}]_A \quad [\text{z} \cdot \text{sk}]_A \quad \text{ct}_x$

 $\text{ct}_x \quad [\text{z} \cdot \text{sk}]_B \quad [\text{z}]_B$

Encryption with Linear Decryption

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g$$

$$\begin{aligned} \text{pk} &= g^{-\text{sk}} & \text{sk} &\leftarrow \mathbb{Z}_p & x & \text{ (User)} \\ \text{ct}_x &= (g^r, \text{pk}^r \cdot g^x) & r &\leftarrow \mathbb{Z}_p \end{aligned}$$

Decryption is “linear”: $(g^r)^{\text{sk}} \cdot \text{pk}^r \cdot g^x = g^{r \cdot \text{sk}} \cdot g^{-r \cdot \text{sk}} \cdot g^x = g^x$

$$[\text{z}]_A \quad [\text{z} \cdot \text{sk}]_A \quad \text{ct}_x \quad \text{ (User)}$$

$$\text{ct}_x \quad [\text{z} \cdot \text{sk}]_B \quad [\text{z}]_B \quad \text{ (User)}$$

$$g^{[\text{z} \cdot x]_A} = (g^r)^{[\text{z} \cdot \text{sk}]_A} \cdot (\text{pk}^r \cdot g^x)^{[\text{z}]_A}$$

Encryption with Linear Decryption

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g$$

$$\begin{aligned} \text{pk} &= g^{-\text{sk}} & \text{sk} &\leftarrow \mathbb{Z}_p & x & \text{ (User)} \\ \text{ct}_x &= (g^r, \text{pk}^r \cdot g^x) & r &\leftarrow \mathbb{Z}_p \end{aligned}$$

Decryption is “linear”: $(g^r)^{\text{sk}} \cdot \text{pk}^r \cdot g^x = g^{r \cdot \text{sk}} \cdot g^{-r \cdot \text{sk}} \cdot g^x = g^x$

$$[\text{z}]_A \quad [\text{z} \cdot \text{sk}]_A \quad \text{ct}_x \quad \text{ (Device)}$$

$$\text{ct}_x \quad [\text{z} \cdot \text{sk}]_B \quad [\text{z}]_B \quad \text{ (Device)}$$

$$g^{[\text{z} \cdot x]_A} = (g^r)^{[\text{z} \cdot \text{sk}]_A} \cdot (\text{pk}^r \cdot g^x)^{[\text{z}]_A}$$

$$(g^r)^{-[\text{z} \cdot \text{sk}]_B} \cdot (\text{pk}^r \cdot g^x)^{-[\text{z}]_B} = g^{-[\text{z} \cdot x]_B}$$

Encryption with Linear Decryption

$$\mathbb{G} \quad p = |\mathbb{G}| \quad g$$

$$\begin{aligned} \text{pk} &= g^{-\text{sk}} & \text{sk} &\leftarrow \mathbb{Z}_p & x & \text{ (User)} \\ \text{ct}_x &= (g^r, \text{pk}^r \cdot g^x) & r &\leftarrow \mathbb{Z}_p \end{aligned}$$

Decryption is “linear”: $(g^r)^{\text{sk}} \cdot \text{pk}^r \cdot g^x = g^{r \cdot \text{sk}} \cdot g^{-r \cdot \text{sk}} \cdot g^x = g^x$

$$[\text{z}]_A \quad [\text{z} \cdot \text{sk}]_A \quad \text{ct}_x \quad \text{DB}$$

$$\text{DB} \quad \text{ct}_x \quad [\text{z} \cdot \text{sk}]_B \quad [\text{z}]_B$$

$$[\text{z} \cdot x]_A \xleftarrow{\text{DDLog}} g^{[\text{z} \cdot x]_A} = (g^r)^{[\text{z} \cdot \text{sk}]_A} \cdot (\text{pk}^r \cdot g^x)^{[\text{z}]_A}$$

$$(g^r)^{-[\text{z} \cdot \text{sk}]_B} \cdot (\text{pk}^r \cdot g^x)^{-[\text{z}]_B} = g^{-[\text{z} \cdot x]_B} \xrightarrow{\text{DDLog}} [\text{z} \cdot x]_B$$

Encryption with Linear Decryption

\mathbb{G} $p = |\mathbb{G}|$ g

$(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^\lambda)$

$\text{ct}_x \leftarrow \text{Encrypt}(\text{pk}, x)$

$[\text{z}]_A$ $[\text{z} \cdot \text{sk}]_A$ ct_x

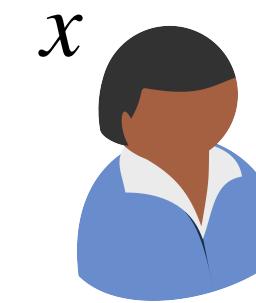
 ct_x $[\text{z} \cdot \text{sk}]_B$ $[\text{z}]_B$

$[\text{z}]$ $[\text{z} \text{ sk}]$ $\xrightarrow{\text{ct}_x}$ $[\text{z} x]$

Encryption with Linear Decryption

\mathbb{G} $p = |\mathbb{G}|$ g

$(\text{pk}, \text{sk}) \leftarrow \text{KeyGen}(1^\lambda)$



$\text{ct}_x \leftarrow \text{Encrypt}(\text{pk}, x)$

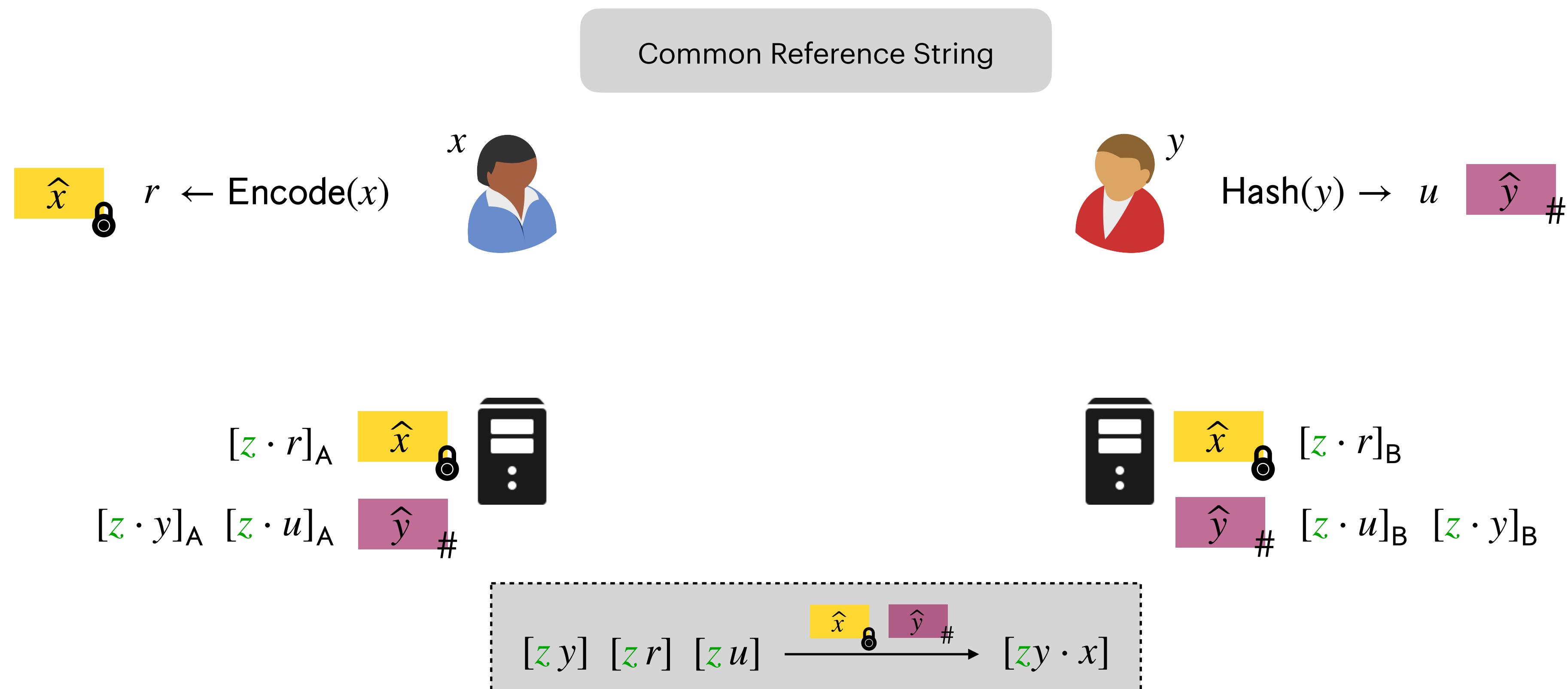
$[\text{z}]_A$ $[\text{z} \cdot \text{sk}]_A$ ct_x

 ct_x $[\text{z} \cdot \text{sk}]_B$ $[\text{z}]_B$

$[\text{z}]$ $[\text{z} \text{ sk}]$ $\xrightarrow{\text{ct}_x}$ $[\text{z} x]$

Switch from $[\text{z} \text{ sk}]$ to $[\text{z} x]$

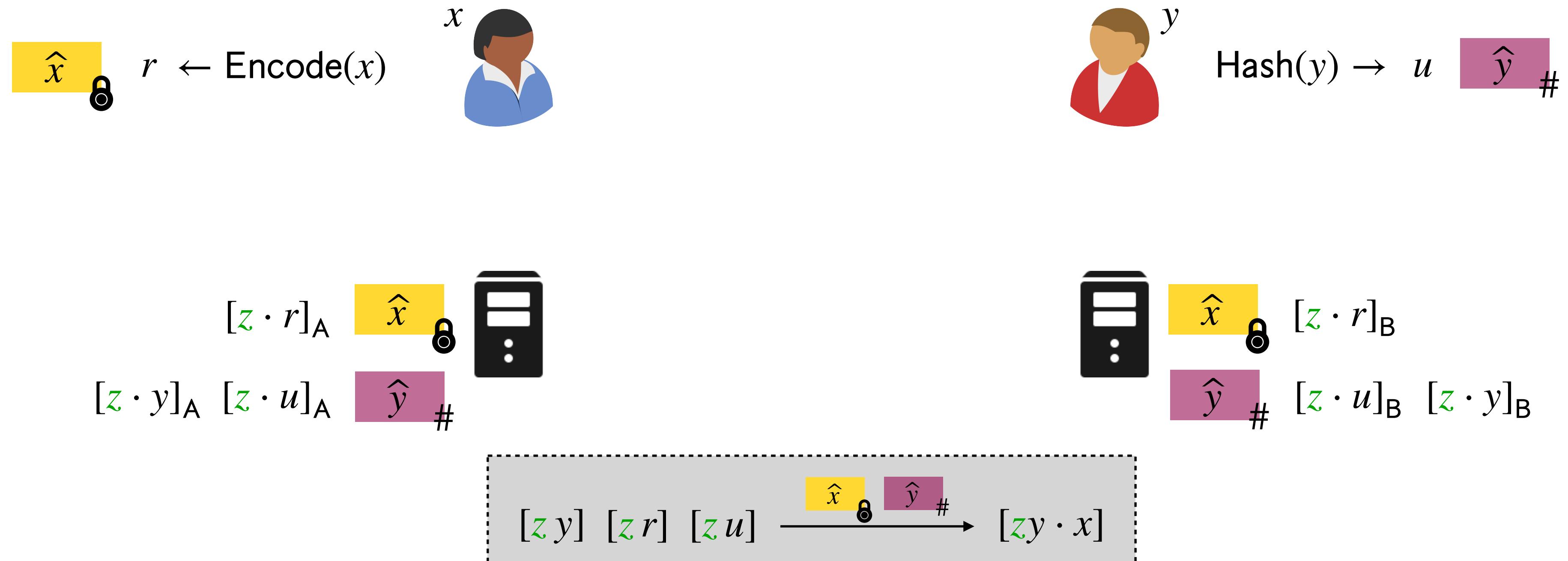
A Simplification of Delegatable NIM



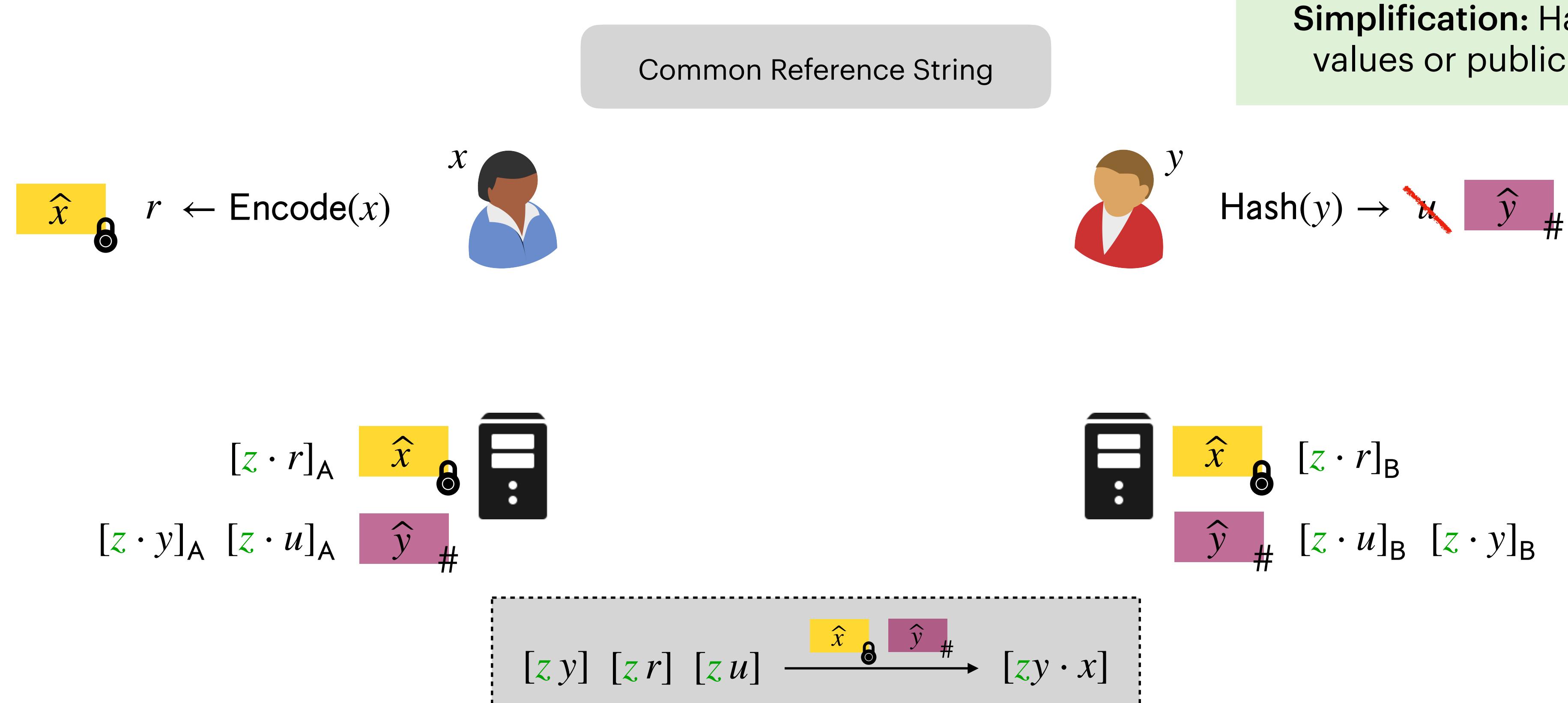
A Simplification of Delegatable NIM

Common Reference String

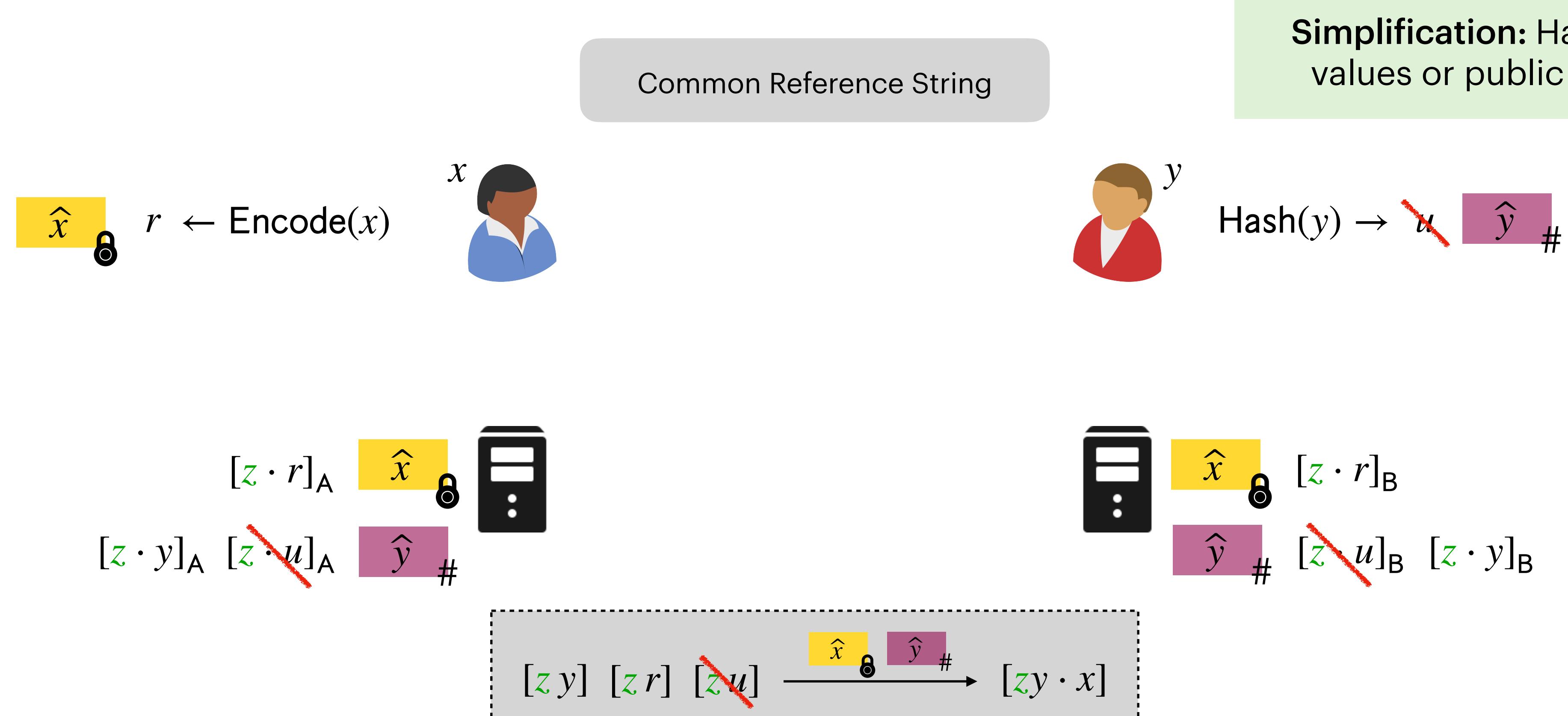
Simplification: Hash random values or public constants



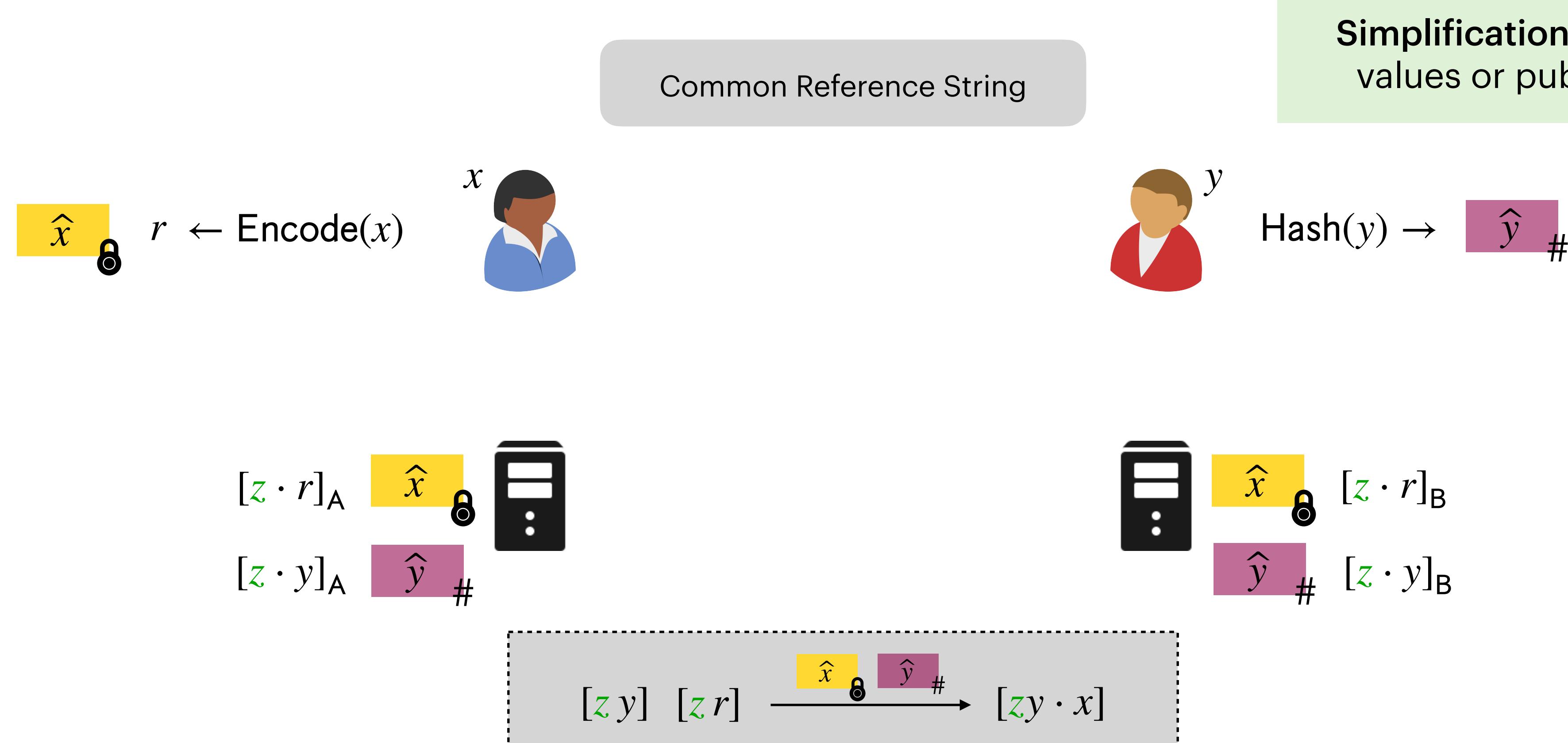
A Simplification of Delegatable NIM



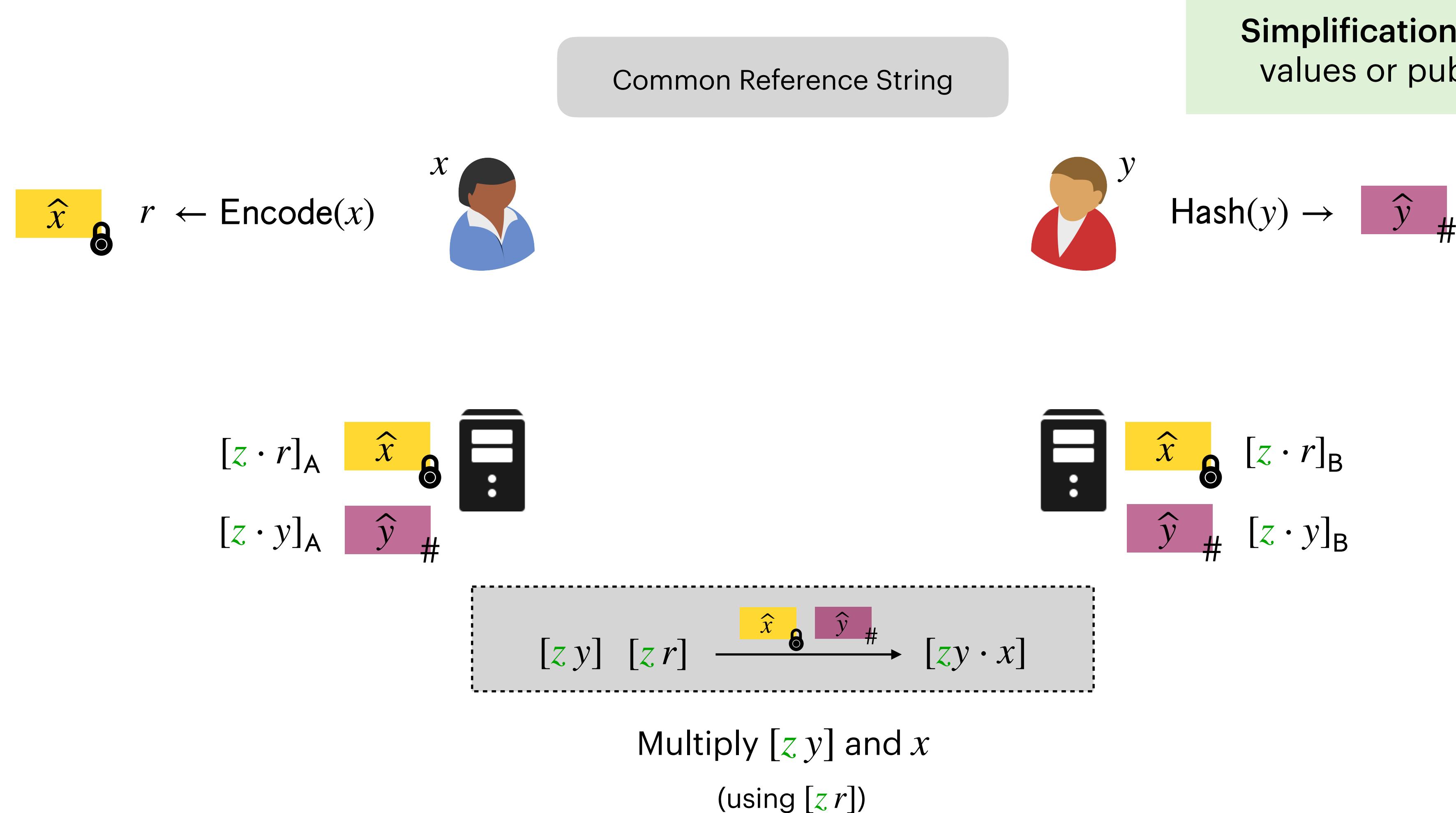
A Simplification of Delegatable NIM



A Simplification of Delegatable NIM



A Simplification of Delegatable NIM

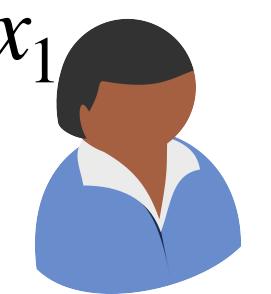
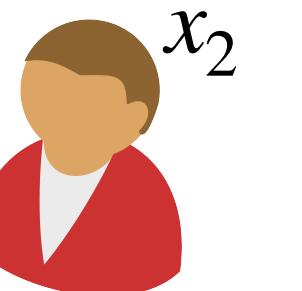


Evaluating RMS Programs

$$[\mathbb{z} y] \ [z r] \xrightarrow{\hat{x} \text{ } \textcolor{black}{\otimes} \text{ } \hat{y} \text{ } \#} [\mathbb{z} y \cdot x]$$

$$[\mathbb{z}] \ [z \text{ sk}] \xrightarrow{\text{ct}_x} [\mathbb{z} x]$$

Common Reference String

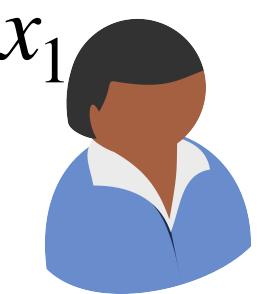
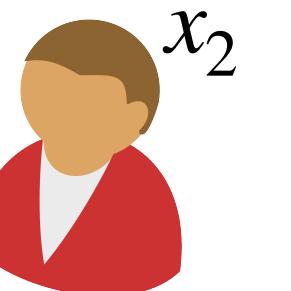
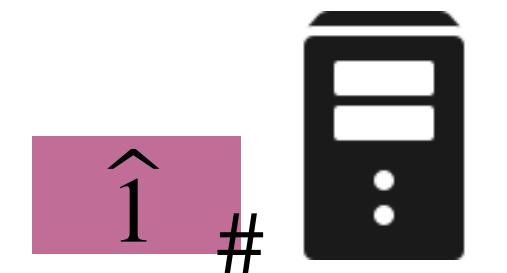
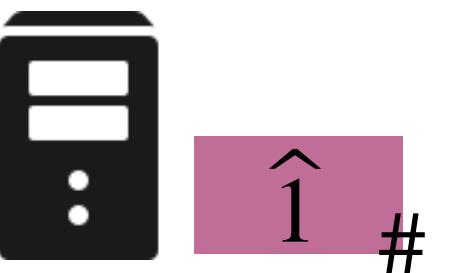


Evaluating RMS Programs

$$[\mathbb{z} y] \ [z r] \xrightarrow{\hat{x} \text{ } \textcolor{black}{\otimes} \text{ } \hat{y} \text{ } \#} [\mathbb{z} y \cdot x]$$

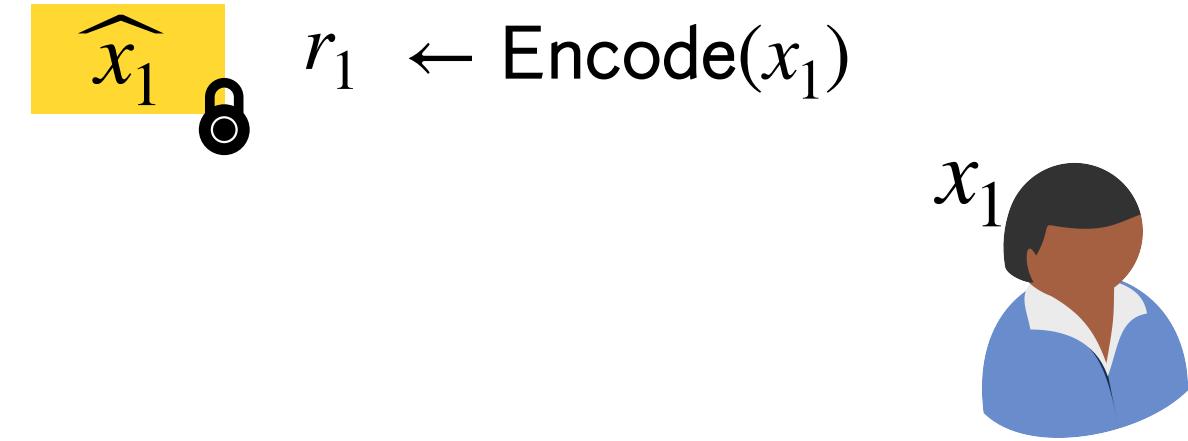
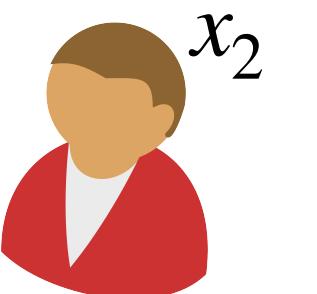
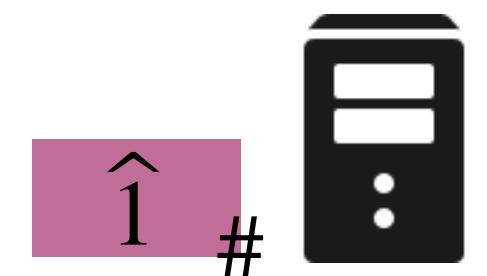
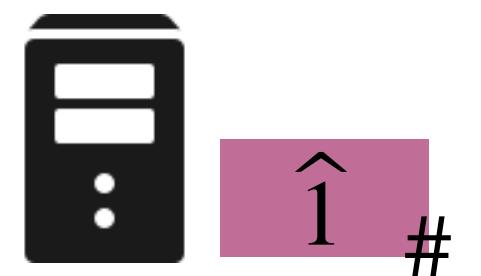
$$[\mathbb{z}] \ [z \text{ sk}] \xrightarrow{\text{ct}_x} [\mathbb{z} x]$$

Common Reference String



Evaluating RMS Programs

$$\begin{array}{c} [\textcolor{violet}{z} y] \ [\textcolor{violet}{z} r] \xrightarrow{\hat{x} \textcolor{violet}{\otimes} \hat{y} \#} [\textcolor{violet}{z} y \cdot x] \\ [\textcolor{violet}{z}] \ [\textcolor{violet}{z} \text{sk}] \xrightarrow{\text{ct}_x} [\textcolor{violet}{z} x] \end{array}$$



Evaluating RMS Programs

$$[\mathbb{Z} y] \ [\mathbb{Z} r] \xrightarrow{\hat{x} \otimes \hat{y} \#} [\mathbb{Z} y \cdot x]$$

$$[\mathbb{Z}] \ [\mathbb{Z} \text{sk}] \xrightarrow{\text{ct}_x} [\mathbb{Z} x]$$

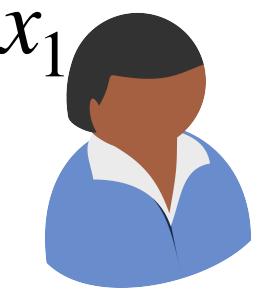
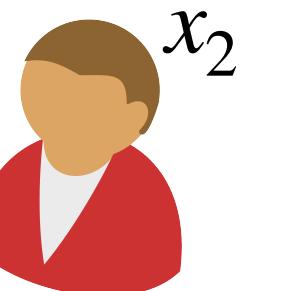
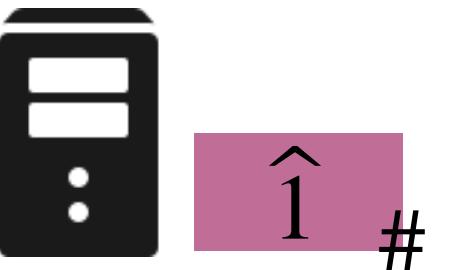
Common Reference String

$$\widehat{x_1} \otimes r_1 \leftarrow \text{Encode}(x_1)$$

$$(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$$

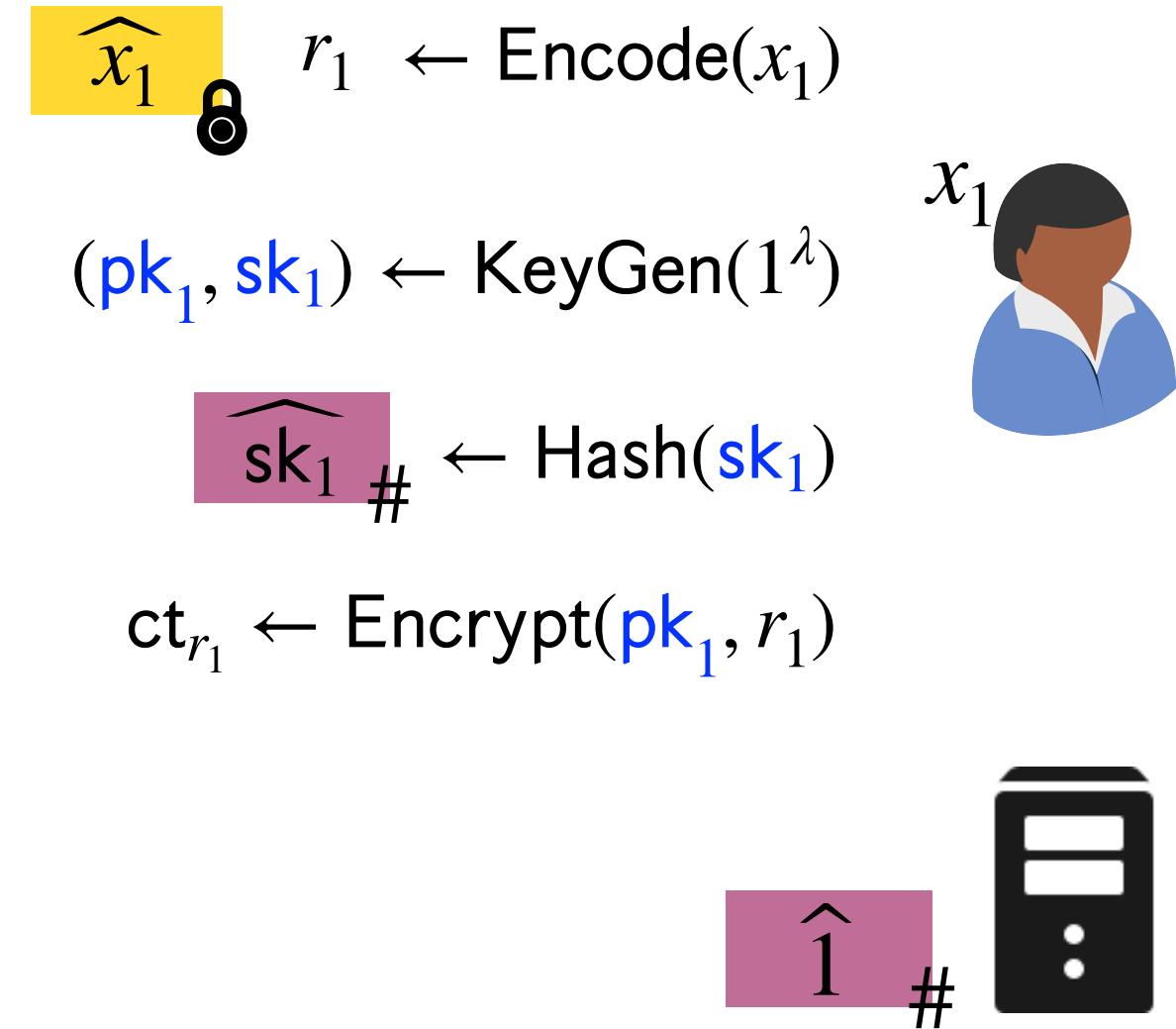
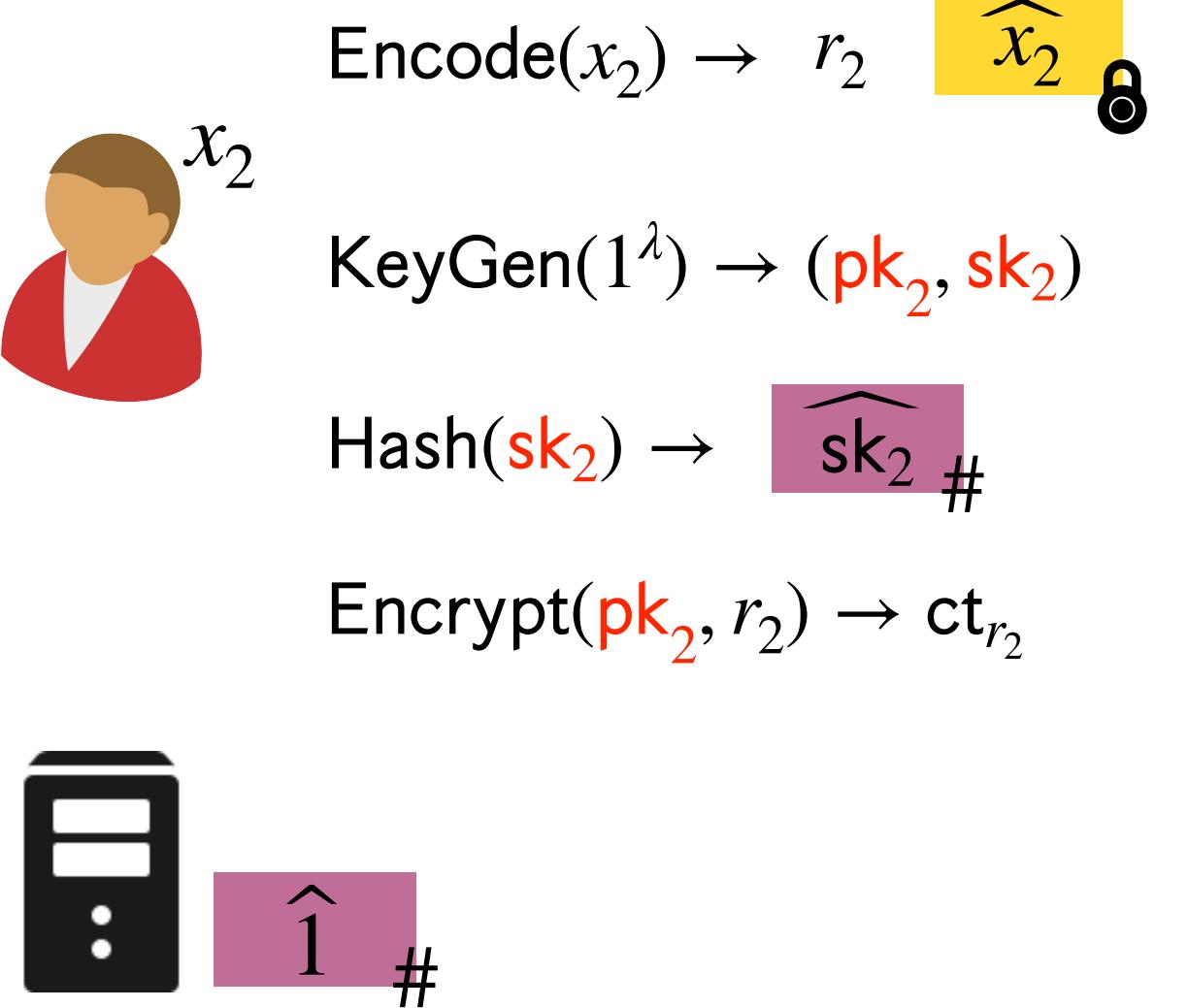
$$\widehat{\mathbf{sk}_1} \# \leftarrow \text{Hash}(\mathbf{sk}_1)$$

$$\text{ct}_{r_1} \leftarrow \text{Encrypt}(\mathbf{pk}_1, r_1)$$

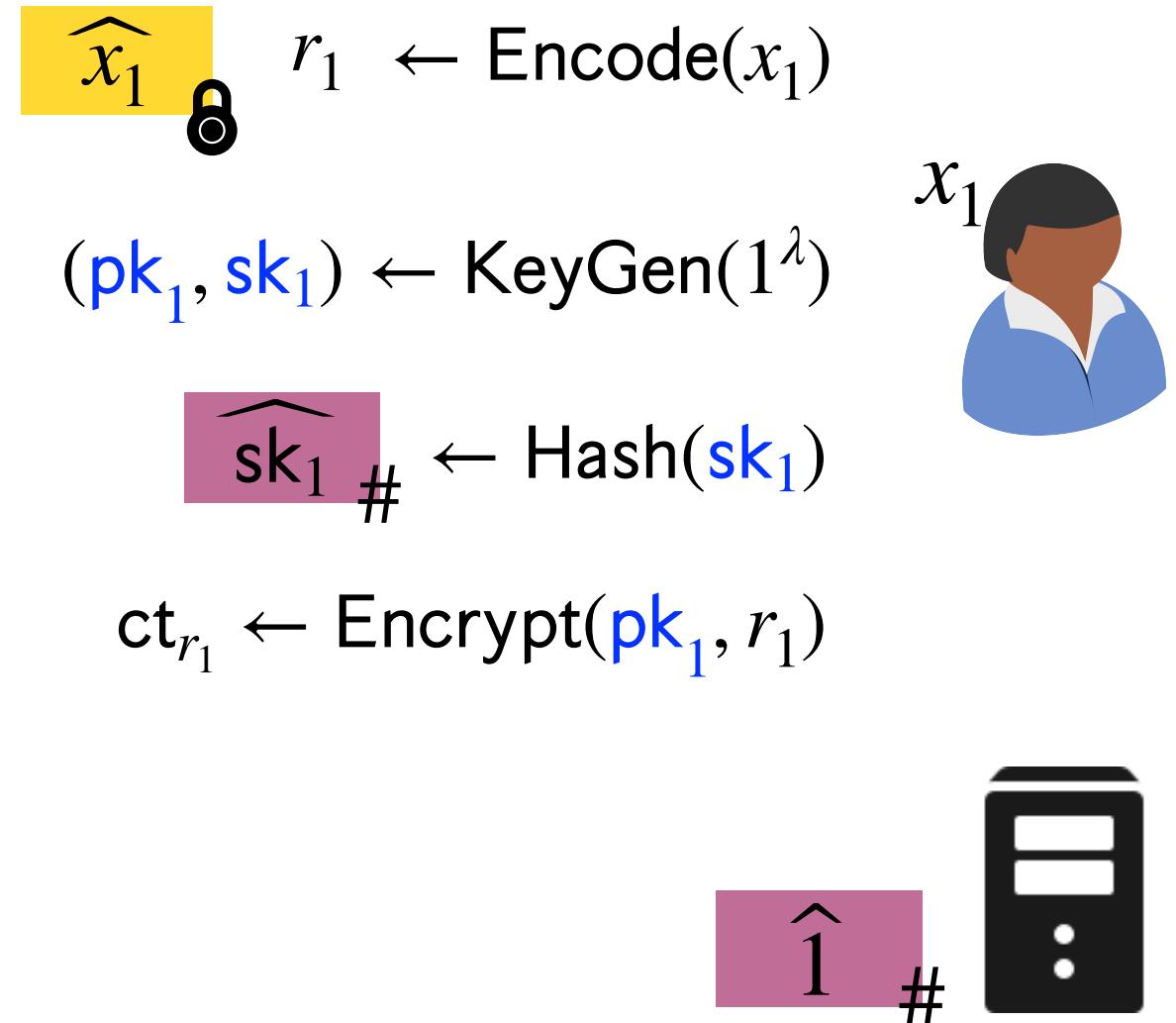
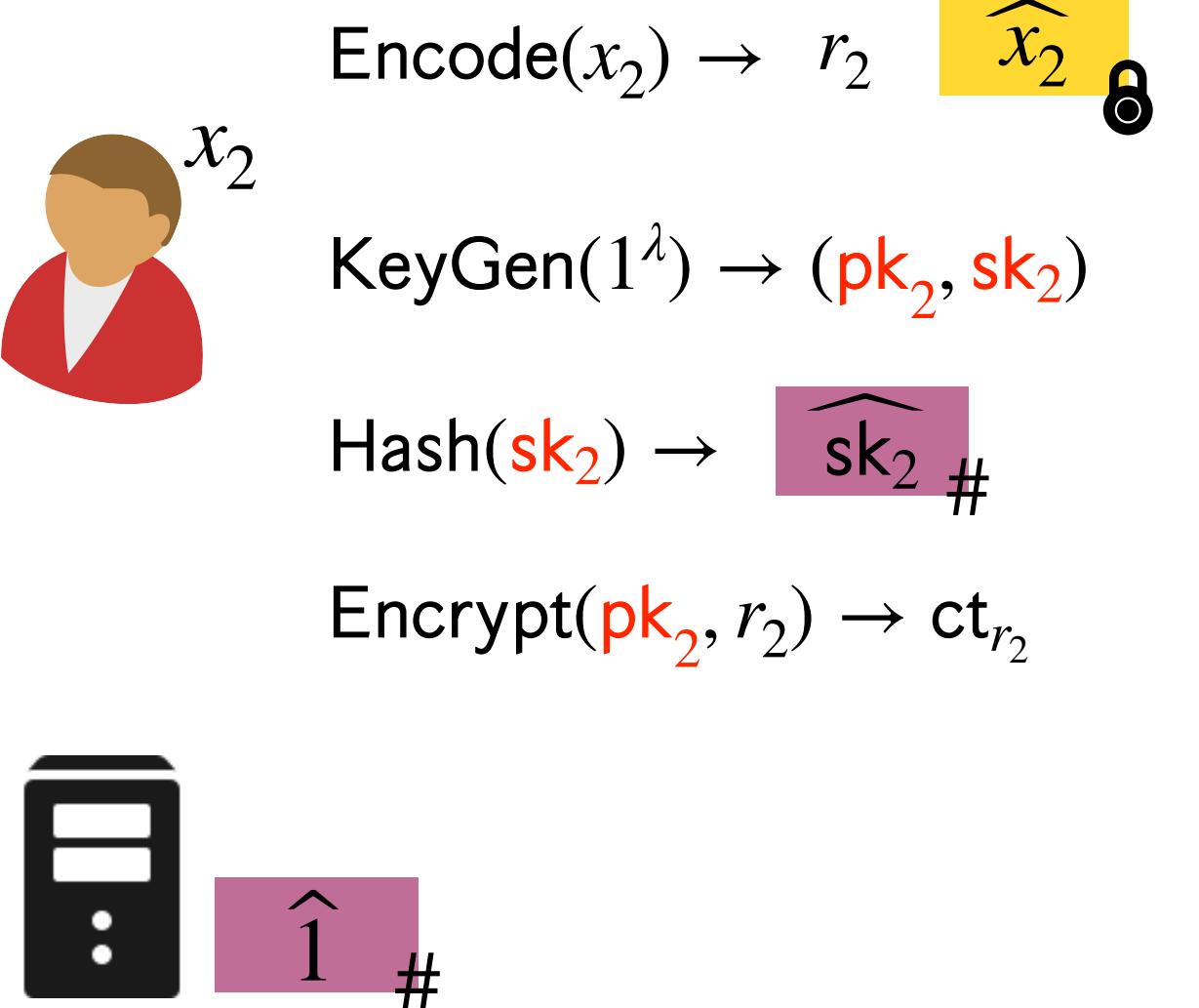


Evaluating RMS Programs

$$\begin{array}{c}
 \boxed{[\mathbb{Z} y] \ [z r] \xrightarrow{\widehat{x} \otimes \widehat{y} \#} [\mathbb{Z} y \cdot x]} \\
 \boxed{[\mathbb{Z}] \ [z \text{sk}] \xrightarrow{\text{ct}_x} [\mathbb{Z} x]}
 \end{array}$$

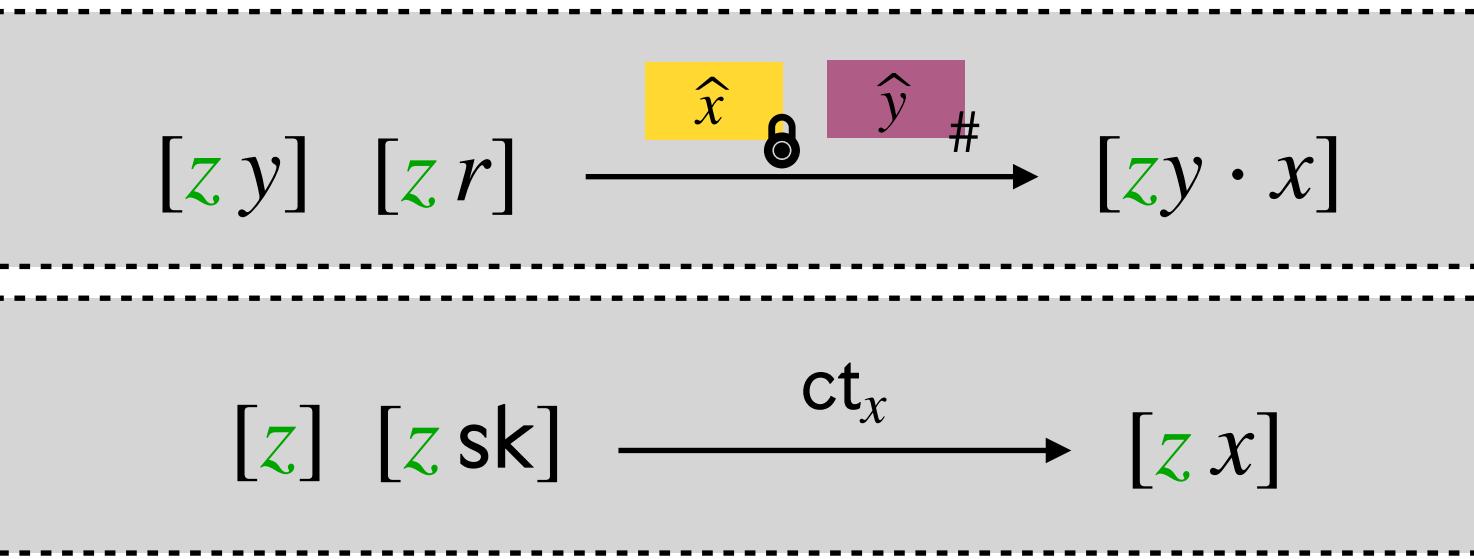
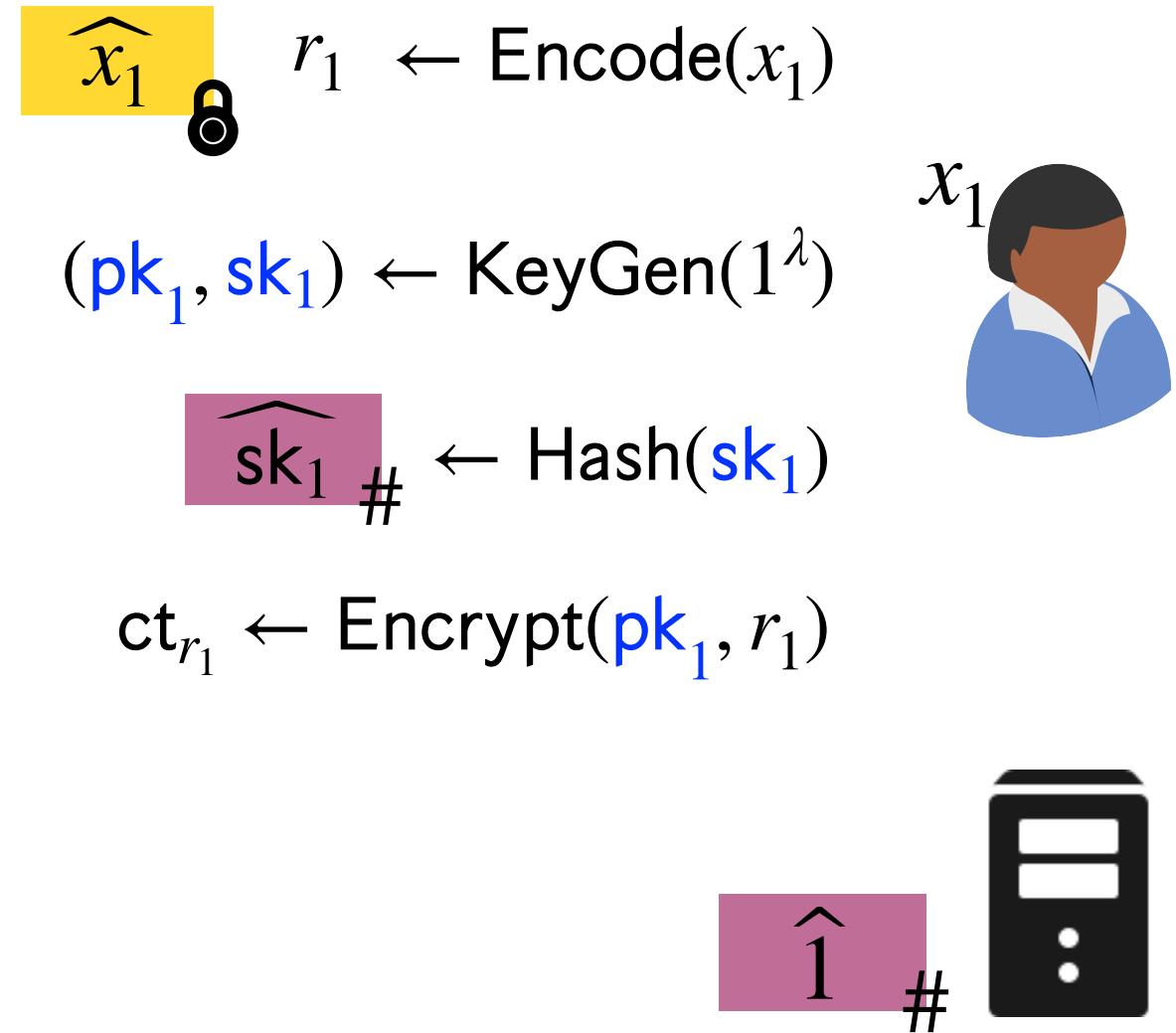
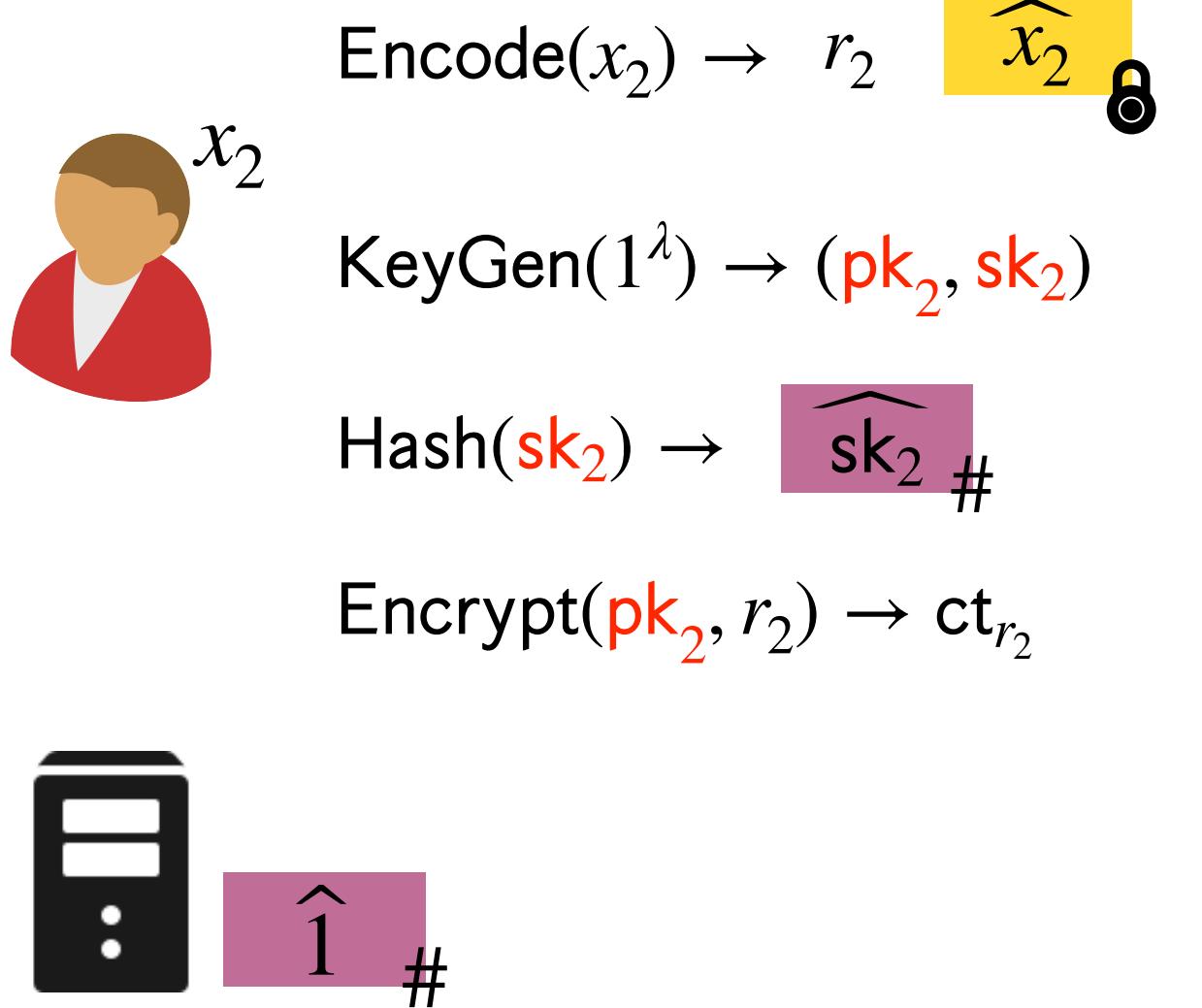


Evaluating RMS Programs



Memory share of \mathbf{z} : $[\mathbf{z}]$ $[\mathbf{z} \mathbf{sk}_1]$ $[\mathbf{z} \mathbf{sk}_2]$

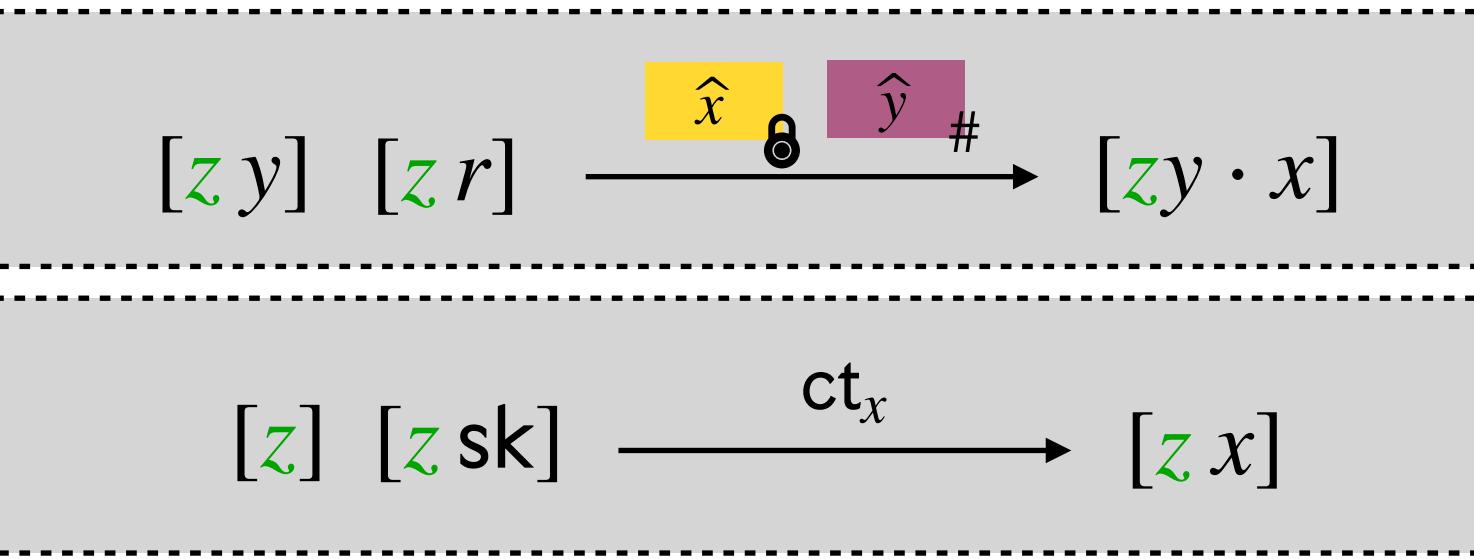
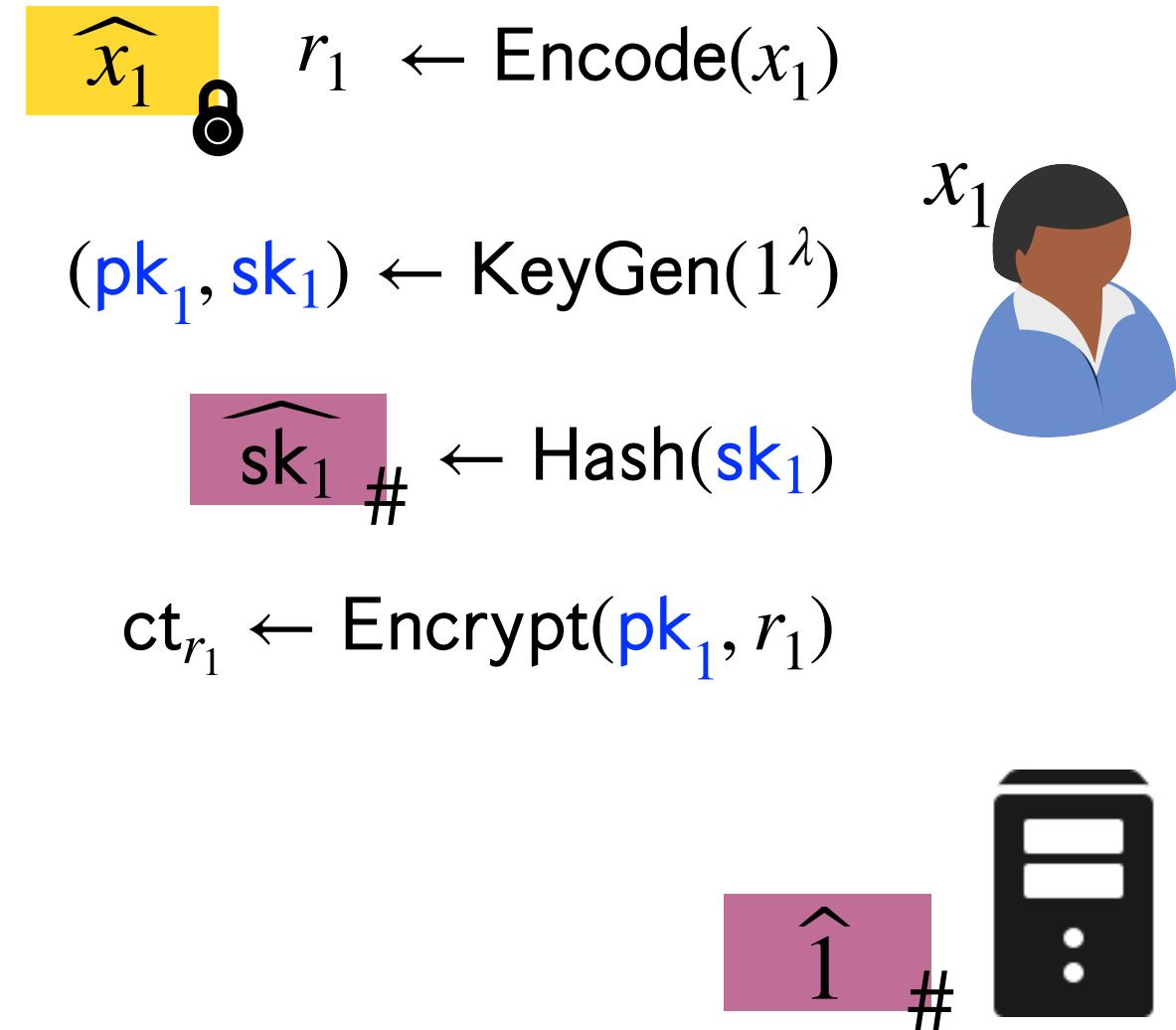
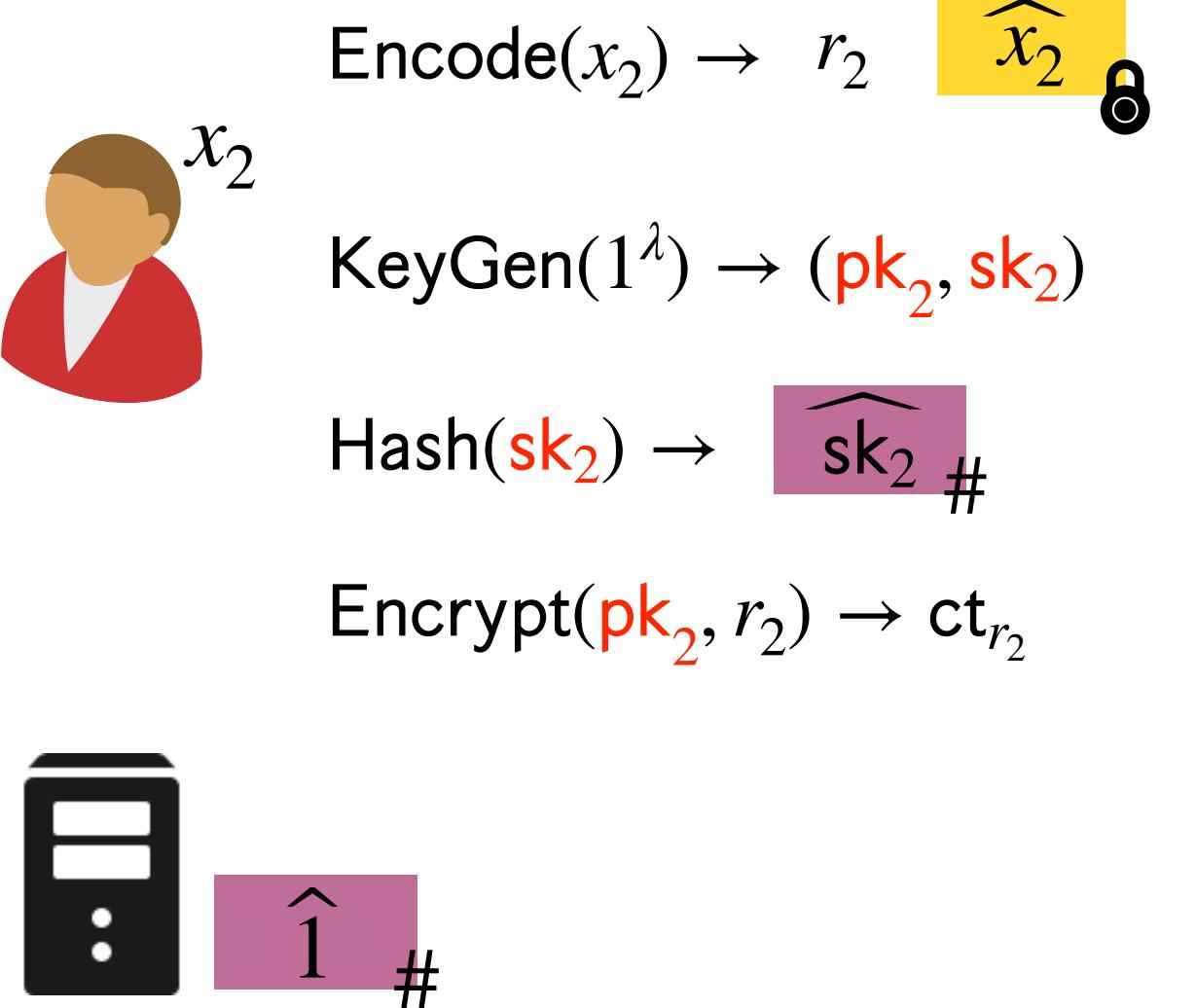
Evaluating RMS Programs



Memory share of \mathbf{z} : $[\mathbf{z}]$ $[\mathbf{z} \mathbf{sk}_1]$ $[\mathbf{z} \mathbf{sk}_2]$

Memory share of $\mathbf{z} x_1$:

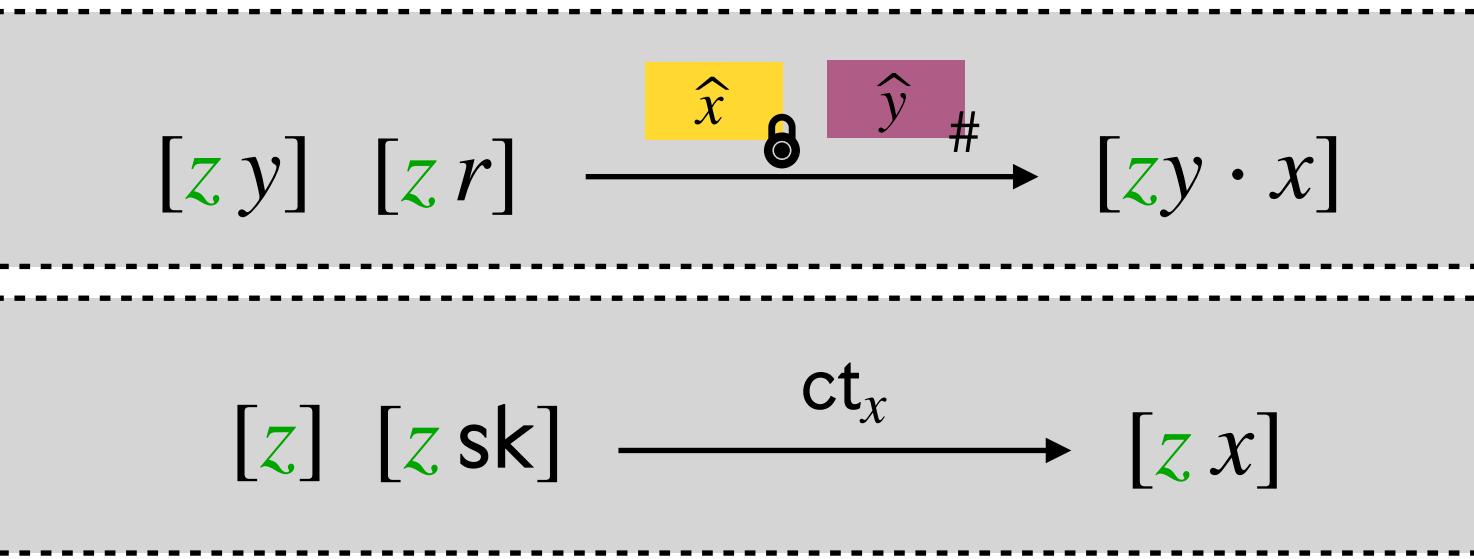
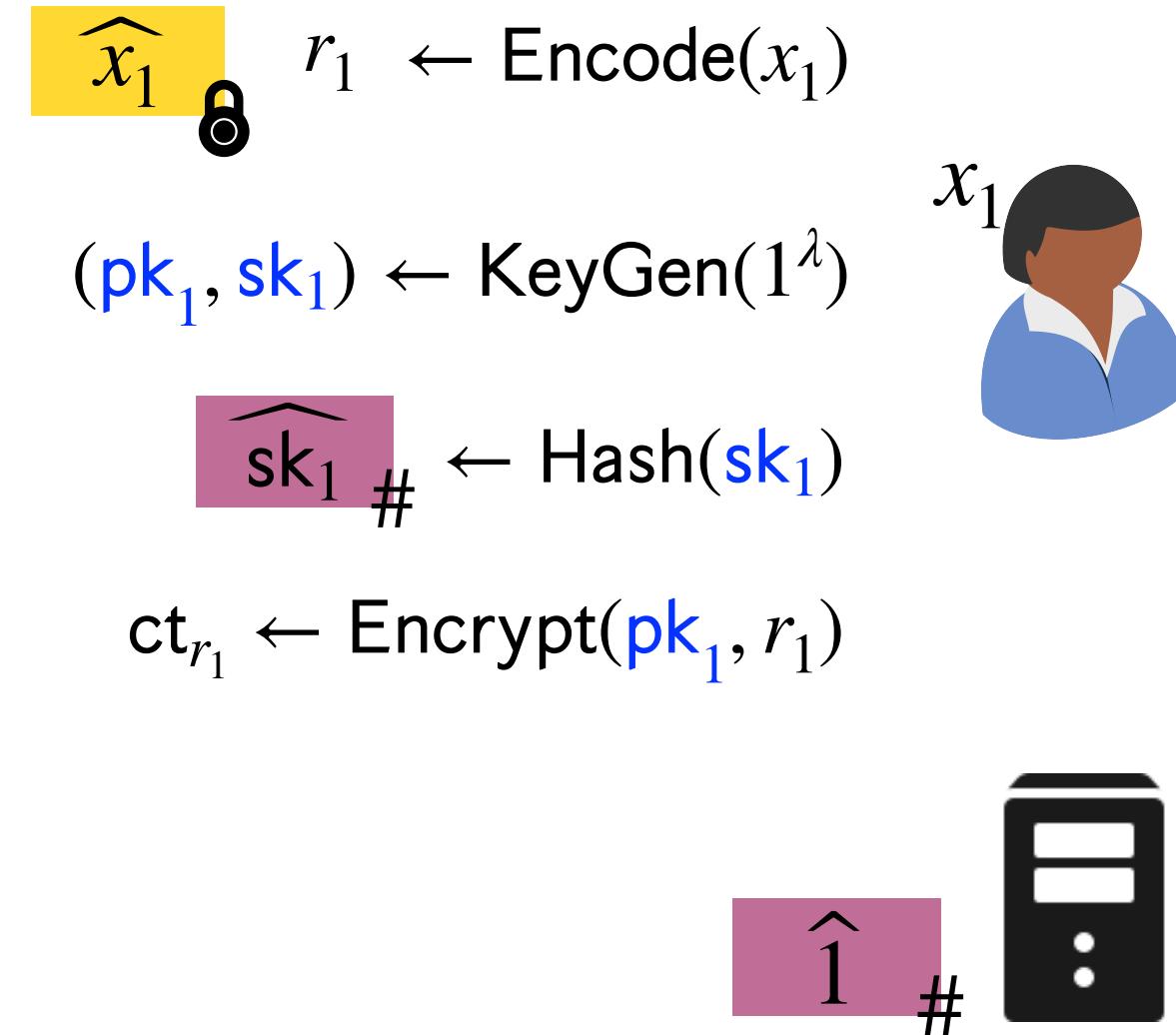
Evaluating RMS Programs



Memory share of \mathbf{z} : $[z]$ $[z \mathbf{sk}_1]$ $[z \mathbf{sk}_2]$
Memory share of $\mathbf{z} x_1$:

1) Switch to $[z r_1]$: $[z] [z \mathbf{sk}_1] \xrightarrow{\text{ct}_{r_1}} [z r_1]$

Evaluating RMS Programs



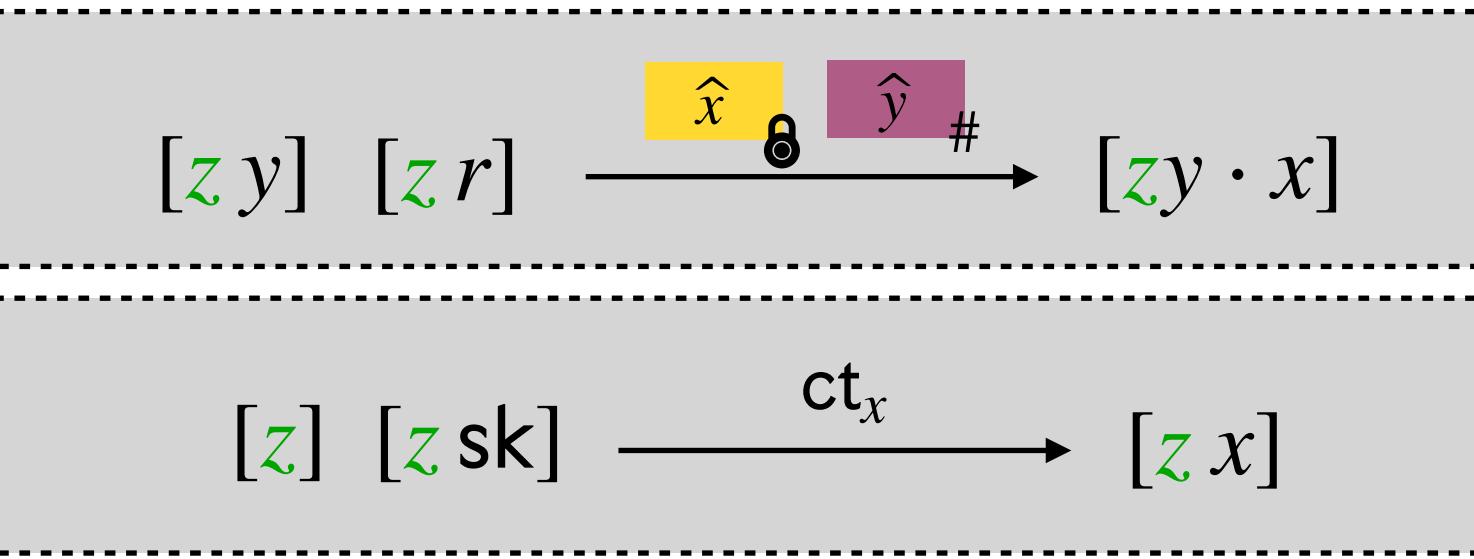
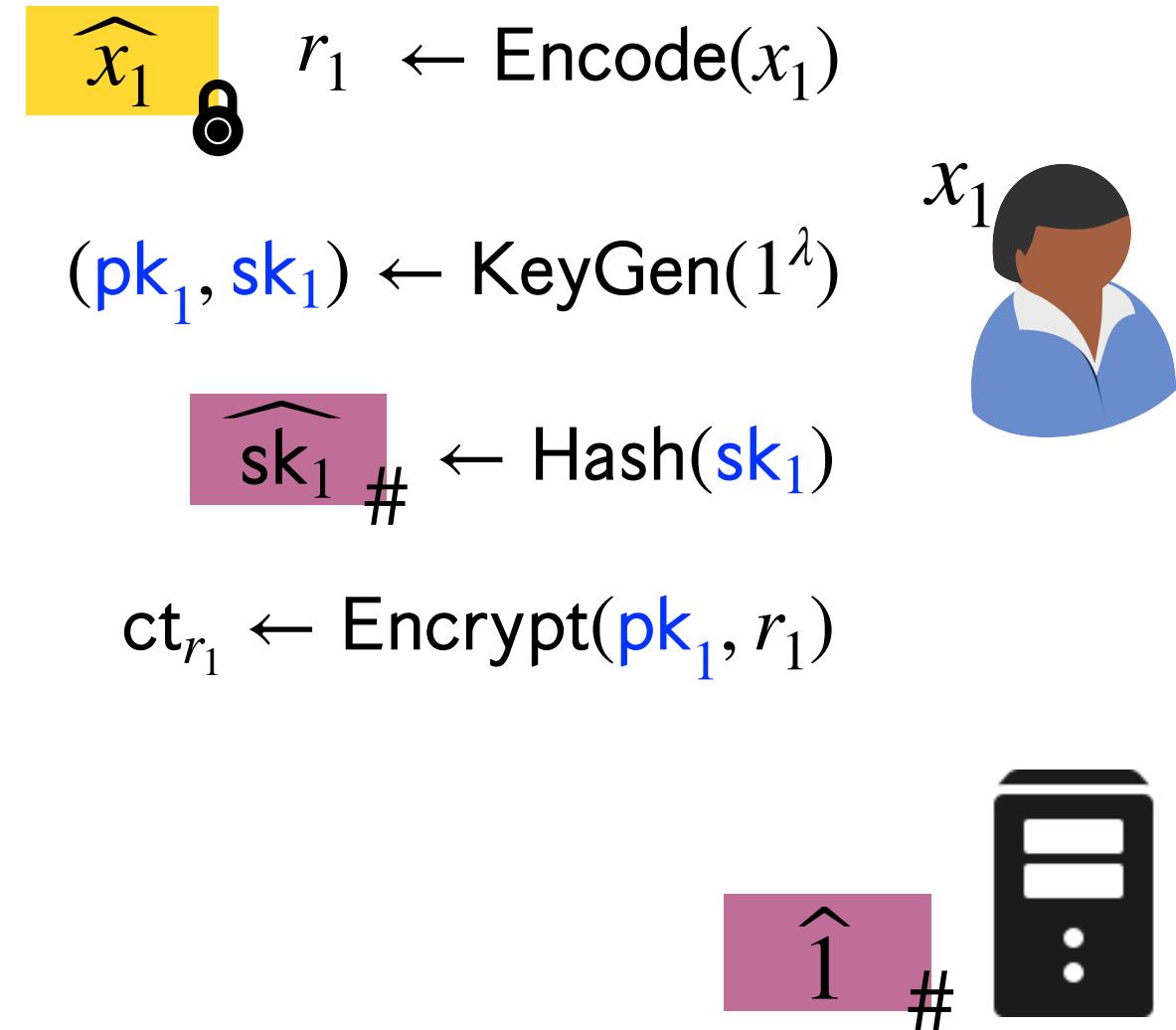
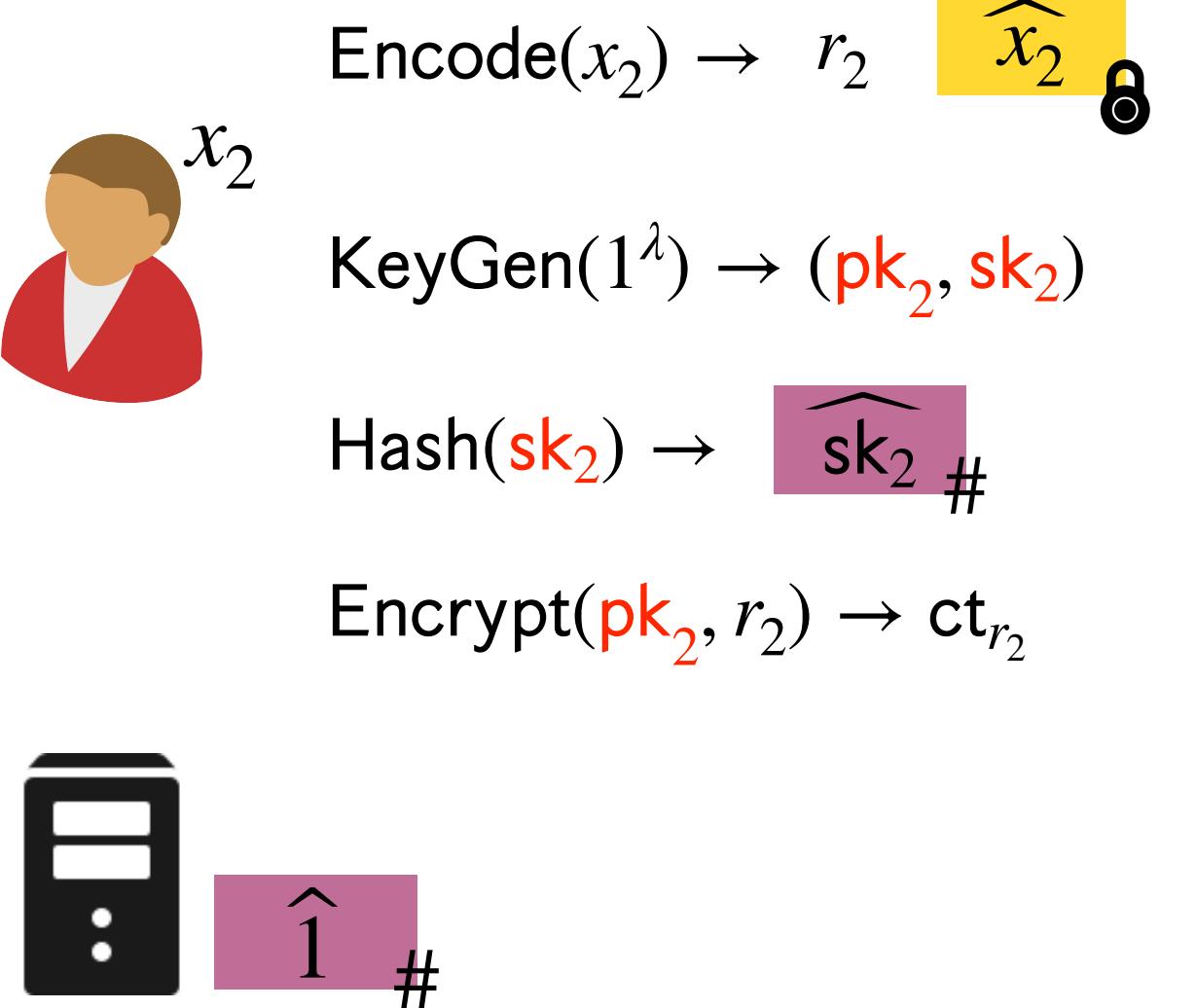
Memory share of \mathbf{z} : $[\mathbf{z}]$ $[\mathbf{z} \mathbf{sk}_1]$ $[\mathbf{z} \mathbf{sk}_2]$

Memory share of $\mathbf{z} x_1$: $[\mathbf{z} x_1]$

1) Switch to $[\mathbf{z} r_1]$: $[\mathbf{z}]$ $[\mathbf{z} \mathbf{sk}_1] \xrightarrow{\mathbf{ct}_{r_1}} [\mathbf{z} r_1]$

2) Multiply $[\mathbf{z}]$ with x_1 : $[\mathbf{z}]$ $[\mathbf{z} r_1] \xrightarrow{\widehat{x_1} \otimes \widehat{1} \#} [\mathbf{z} \cdot x_1]$

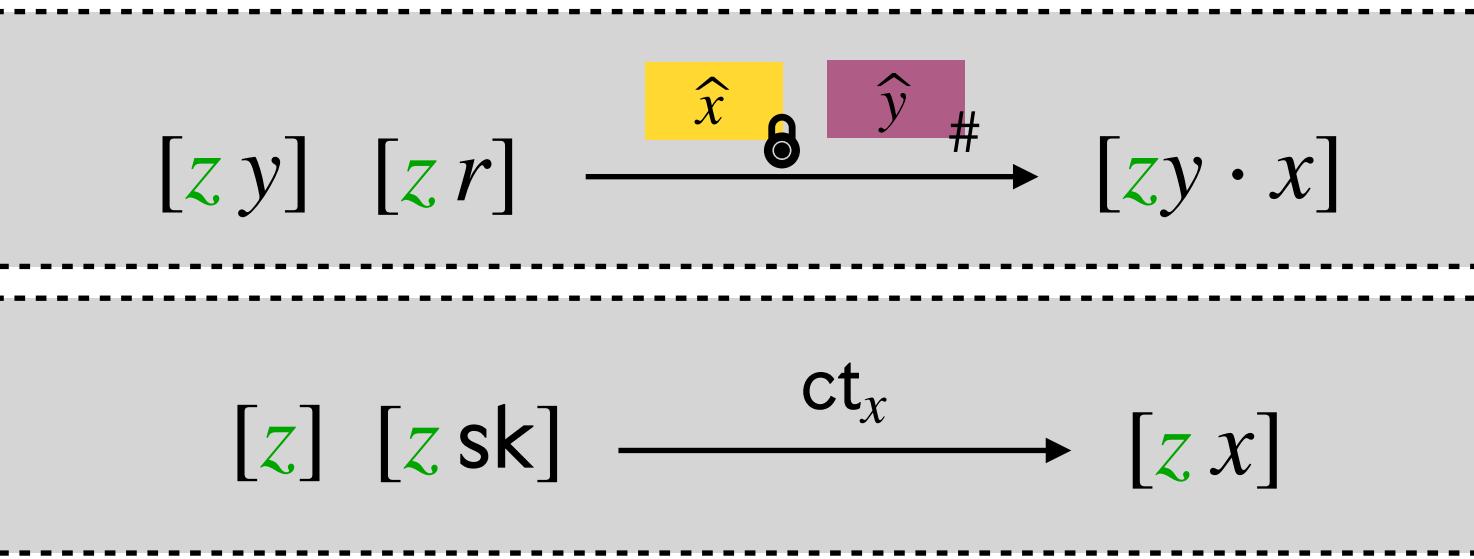
Evaluating RMS Programs



Memory share of \mathbf{z} : $[\mathbf{z}]$ $[\mathbf{z} \mathbf{sk}_1]$ $[\mathbf{z} \mathbf{sk}_2]$
Memory share of $\mathbf{z} x_1$: $[\mathbf{z} x_1]$

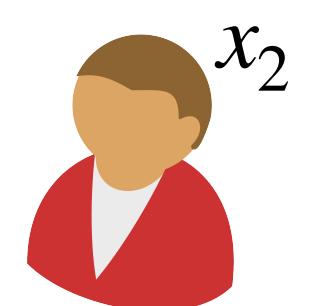
1) Switch to $[\mathbf{z} r_1]$: $[\mathbf{z}] [\mathbf{z} \mathbf{sk}_1] \xrightarrow{\mathbf{ct}_{r_1}} [\mathbf{z} r_1]$

Evaluating RMS Programs

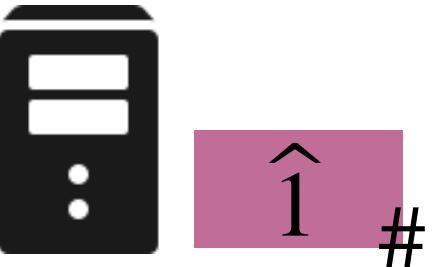


$\widehat{x_1} \otimes r_1 \leftarrow \text{Encode}(x_1)$
 $(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$
 $\widehat{\mathbf{sk}_1} \# \leftarrow \text{Hash}(\mathbf{sk}_1)$
 $\text{ct}_{r_1} \leftarrow \text{Encrypt}(\mathbf{pk}_1, r_1)$

Common Reference String



$\text{Encode}(x_2) \rightarrow r_2 \quad \widehat{x_2} \otimes$
 $\text{KeyGen}(1^\lambda) \rightarrow (\mathbf{pk}_2, \mathbf{sk}_2)$
 $\text{Hash}(\mathbf{sk}_2) \rightarrow \widehat{\mathbf{sk}_2} \#$
 $\text{Encrypt}(\mathbf{pk}_2, r_2) \rightarrow \text{ct}_{r_2}$



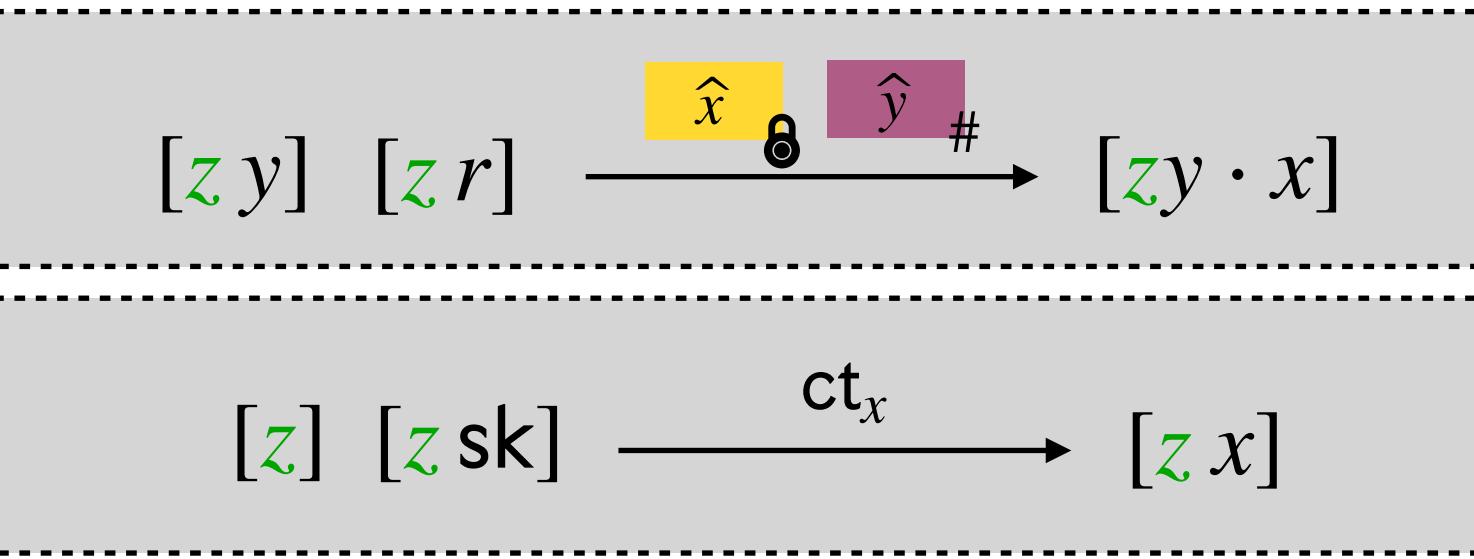
Memory share of \mathbf{z} : $[\mathbf{z}]$ $[\mathbf{z} \mathbf{sk}_1]$ $[\mathbf{z} \mathbf{sk}_2]$

Memory share of $\mathbf{z} x_1$: $[\mathbf{z} x_1]$ $[\mathbf{z} x_1 \mathbf{sk}_1]$

1) Switch to $[\mathbf{z} r_1]$: $[\mathbf{z}] [\mathbf{z} \mathbf{sk}_1] \xrightarrow{\text{ct}_{r_1}} [\mathbf{z} r_1]$

3) Multiply $[\mathbf{z} \mathbf{sk}_1]$ with x_1 : $[\mathbf{z} \mathbf{sk}_1] [\mathbf{z} r_1] \xrightarrow{\widehat{x_1} \otimes \widehat{\mathbf{sk}_1} \#} [\mathbf{z} \mathbf{sk}_1 \cdot x_1]$

Evaluating RMS Programs



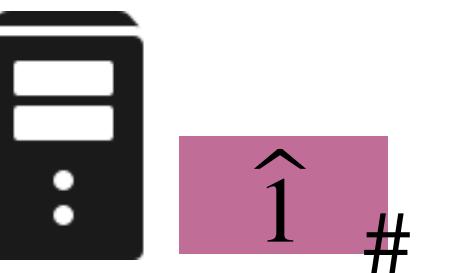
$\widehat{x_1} \otimes r_1 \leftarrow \text{Encode}(x_1)$
 $(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$
 $\widehat{\mathbf{sk}_1} \# \leftarrow \text{Hash}(\mathbf{sk}_1)$
 $\text{ct}_{r_1} \leftarrow \text{Encrypt}(\mathbf{pk}_1, r_1)$

Common Reference String

x_1

 x_2

$\text{Encode}(x_2) \rightarrow r_2 \quad \widehat{x_2} \otimes$
 $\text{KeyGen}(1^\lambda) \rightarrow (\mathbf{pk}_2, \mathbf{sk}_2)$
 $\text{Hash}(\mathbf{sk}_2) \rightarrow \widehat{\mathbf{sk}_2} \#$
 $\text{Encrypt}(\mathbf{pk}_2, r_2) \rightarrow \text{ct}_{r_2}$



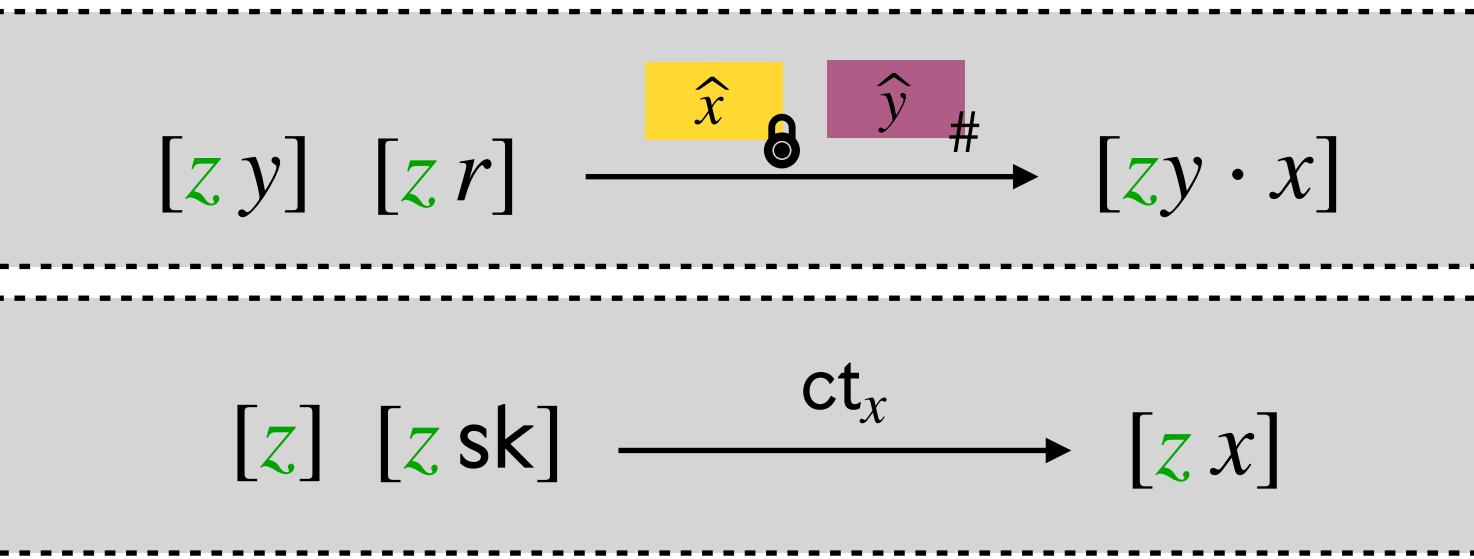
Memory share of \mathbf{z} : $[\mathbf{z}] \quad [\mathbf{z} \mathbf{sk}_1] \quad [\mathbf{z} \mathbf{sk}_2]$

Memory share of $\mathbf{z} x_1$: $[\mathbf{z} x_1] \quad [\mathbf{z} x_1 \mathbf{sk}_1]$

1) Switch to $[\mathbf{z} r_1]$:

$[\mathbf{z}] \quad [\mathbf{z} \mathbf{sk}_1] \xrightarrow{\text{ct}_{r_1}} [\mathbf{z} r_1]$

Evaluating RMS Programs



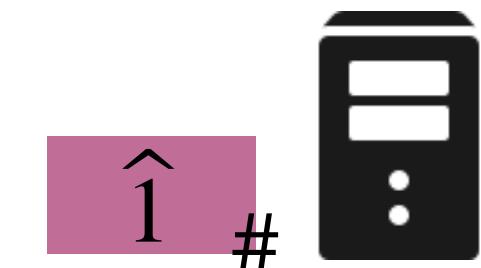
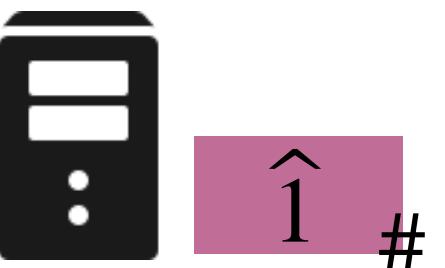
Common Reference String

$\widehat{x_1} \otimes r_1 \leftarrow \text{Encode}(x_1)$
 $(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$
 $\widehat{\mathbf{sk}_1} \# \leftarrow \text{Hash}(\mathbf{sk}_1)$
 $\text{ct}_{r_1} \leftarrow \text{Encrypt}(\mathbf{pk}_1, r_1)$

x_1

$\widehat{x_2} \otimes r_2 \leftarrow \text{Encode}(x_2)$
 $\text{KeyGen}(1^\lambda) \rightarrow (\mathbf{pk}_2, \mathbf{sk}_2)$
 $\widehat{\mathbf{sk}_2} \# \leftarrow \text{Hash}(\mathbf{sk}_2)$
 $\text{Encrypt}(\mathbf{pk}_2, r_2) \rightarrow \text{ct}_{r_2}$

x_2



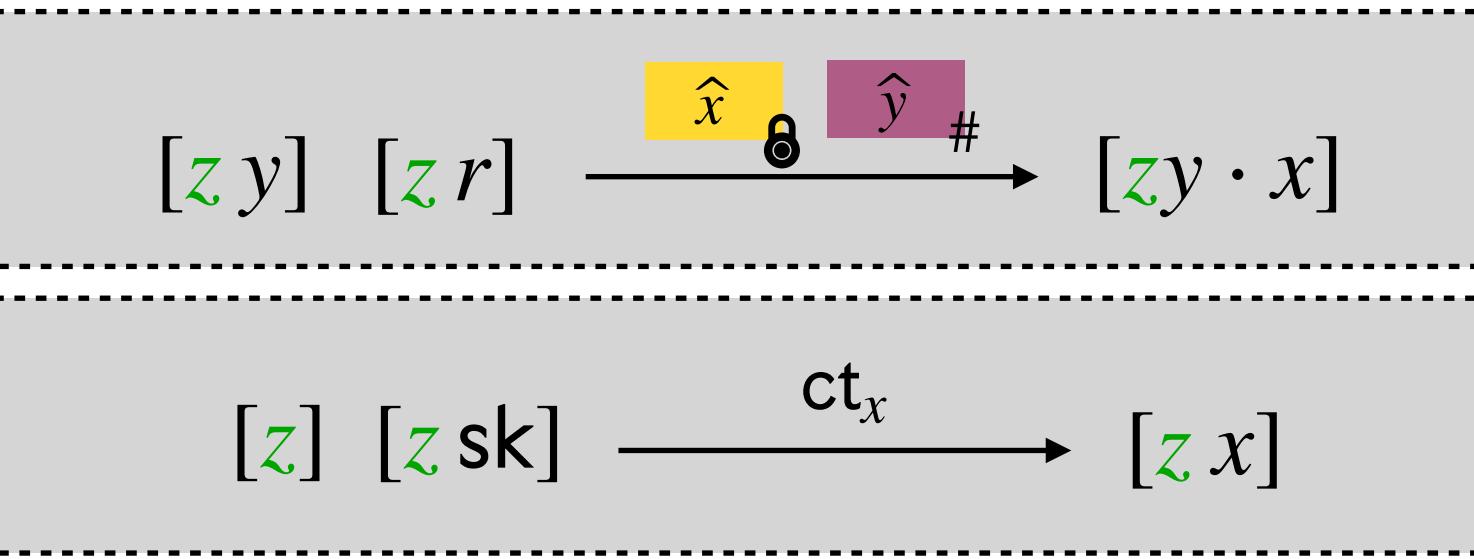
Memory share of \mathbf{z} : $[z]$ $[z \mathbf{sk}_1]$ $[z \mathbf{sk}_2]$

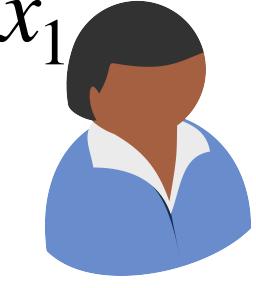
Memory share of $\mathbf{z} x_1$: $[z x_1]$ $[z x_1 \mathbf{sk}_1]$ $[z x_1 \mathbf{sk}_2]$

1) Switch to $[z r_1]$: $[z] [z \mathbf{sk}_1] \xrightarrow{\text{ct}_{r_1}} [z r_1]$

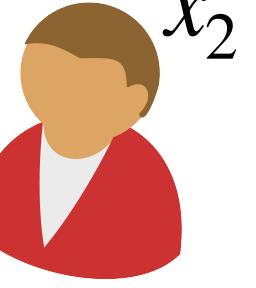
4) Multiply $[z \mathbf{sk}_2]$ with x_1 : $[z \mathbf{sk}_2] [z r_1] \xrightarrow{\widehat{x_1} \otimes \widehat{\mathbf{sk}_2} \#} [z \mathbf{sk}_2 \cdot x_1]$

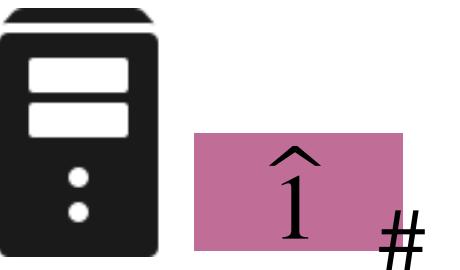
Evaluating RMS Programs



$\widehat{x_1} \otimes r_1 \leftarrow \text{Encode}(x_1)$

 $(\mathbf{pk}_1, \mathbf{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$
 $\widehat{\mathbf{sk}_1} \# \leftarrow \text{Hash}(\mathbf{sk}_1)$
 $\text{ct}_{r_1} \leftarrow \text{Encrypt}(\mathbf{pk}_1, r_1)$

Common Reference String

$\widehat{x_2} \otimes r_2 \leftarrow \text{Encode}(x_2)$

 $(\mathbf{pk}_2, \mathbf{sk}_2) \leftarrow \text{KeyGen}(1^\lambda)$
 $\widehat{\mathbf{sk}_2} \# \leftarrow \text{Hash}(\mathbf{sk}_2)$
 $\text{Encrypt}(\mathbf{pk}_2, r_2) \rightarrow \text{ct}_{r_2}$



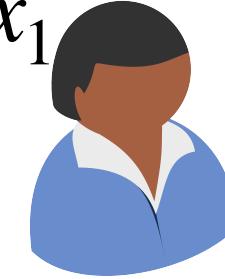
Memory share of \mathbf{z} : $[z]$ $[z \mathbf{sk}_1]$ $[z \mathbf{sk}_2]$

Memory share of $\mathbf{z} x_1$: $[z x_1]$ $[z x_1 \mathbf{sk}_1]$ $[z x_1 \mathbf{sk}_2]$

Invariant preserved!

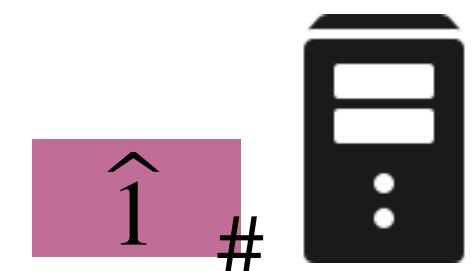
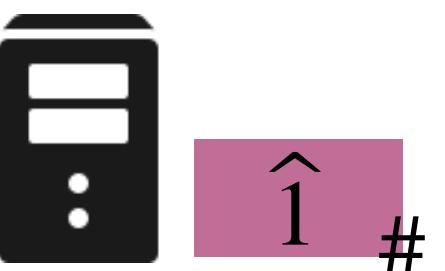
Evaluating RMS Programs

$$\begin{array}{c}
 \boxed{[\textcolor{green}{z} y] \ [\textcolor{green}{z} r] \xrightarrow{\widehat{x} \textcolor{yellow}{\otimes} \widehat{y} \textcolor{violet}{\#}} [\textcolor{green}{z} y \cdot x]} \\
 \boxed{[\textcolor{green}{z}] \ [\textcolor{green}{z} \text{sk}] \xrightarrow{\text{ct}_x} [\textcolor{green}{z} x]}
 \end{array}$$

$\widehat{x_1} \textcolor{yellow}{\otimes} r_1 \leftarrow \text{Encode}(x_1)$

 $(\text{pk}_1, \text{sk}_1) \leftarrow \text{KeyGen}(1^\lambda)$
 $\widehat{\text{sk}_1} \textcolor{violet}{\#} \leftarrow \text{Hash}(\text{sk}_1)$
 $\text{ct}_{r_1} \leftarrow \text{Encrypt}(\text{pk}_1, r_1)$

Common Reference String

$\text{Encode}(x_2) \rightarrow r_2 \quad \widehat{x_2} \textcolor{yellow}{\otimes}$
 $\text{KeyGen}(1^\lambda) \rightarrow (\text{pk}_2, \text{sk}_2)$
 $\text{Hash}(\text{sk}_2) \rightarrow \widehat{\text{sk}_2} \textcolor{violet}{\#}$
 $\text{Encrypt}(\text{pk}_2, r_2) \rightarrow \text{ct}_{r_2}$



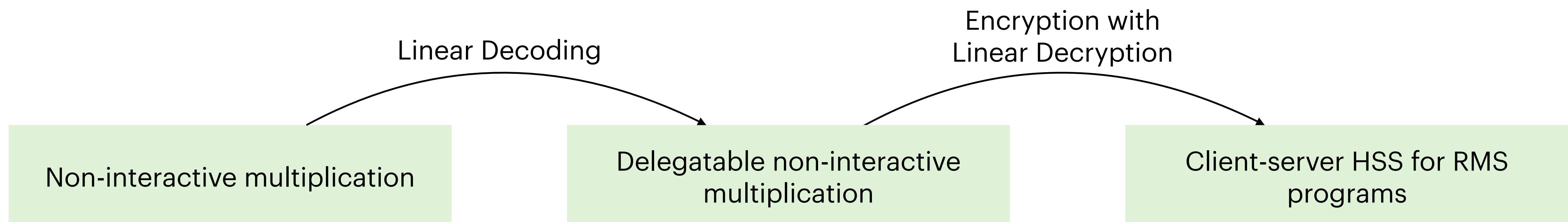
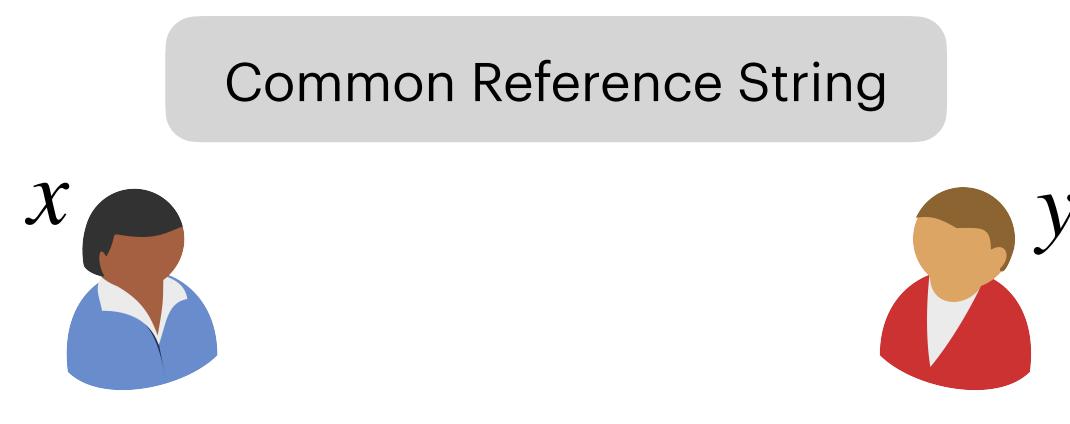
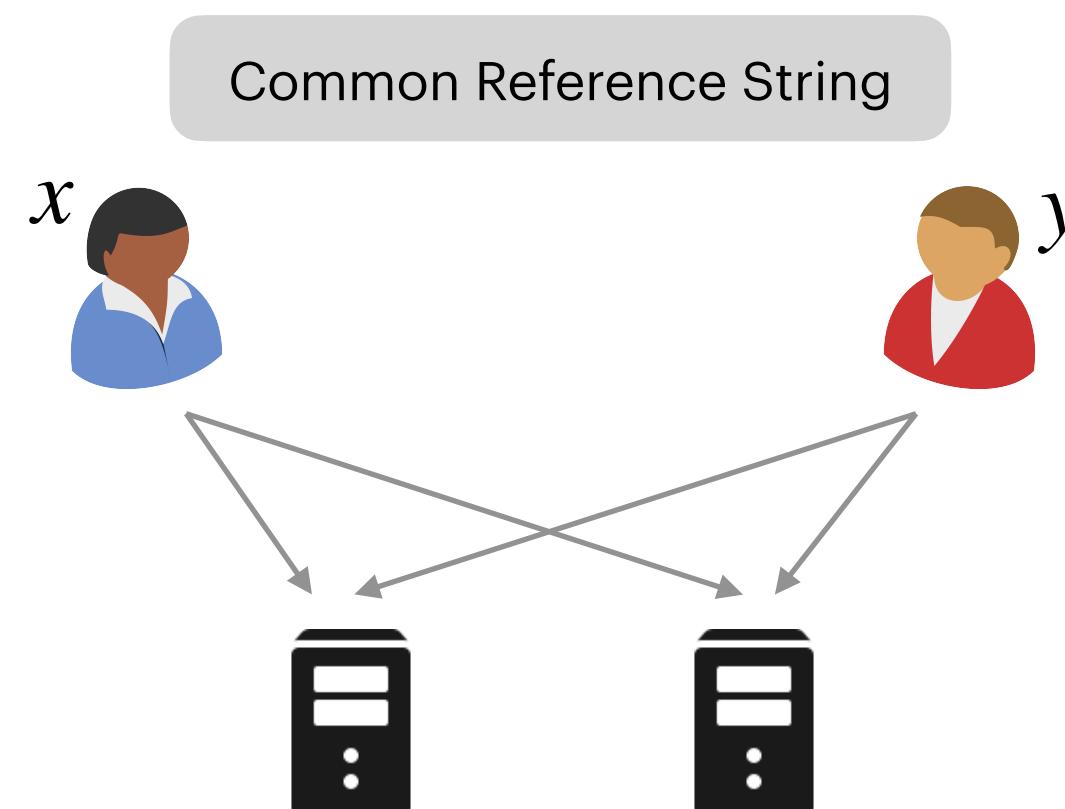
Memory share of z : $[\textcolor{green}{z}]$ $[\textcolor{green}{z} \text{sk}_1]$ $[\textcolor{green}{z} \text{sk}_2]$

Memory share of $\text{z} x_1$: $[\textcolor{green}{z} x_1]$ $[\textcolor{green}{z} x_1 \text{sk}_1]$ $[\textcolor{green}{z} x_1 \text{sk}_2]$

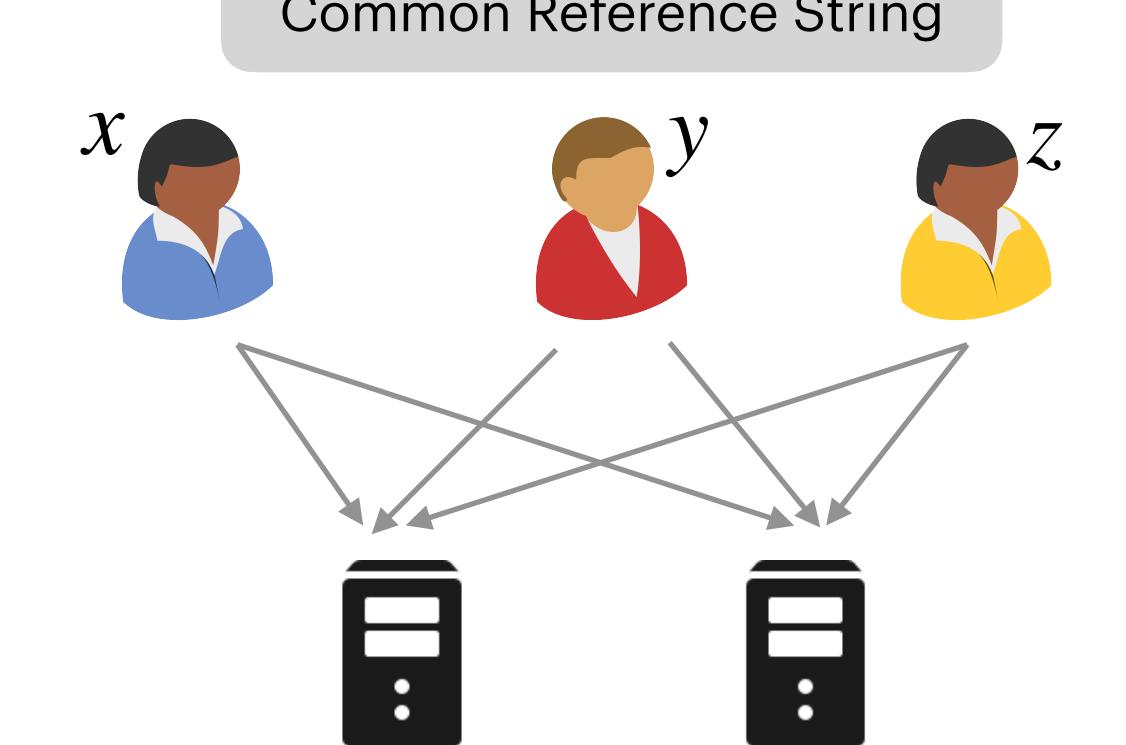
Invariant preserved!

- Similar approach to multiply with x_2
- Extends naturally to arbitrary number of clients

HSS for Multiplication is All You Need

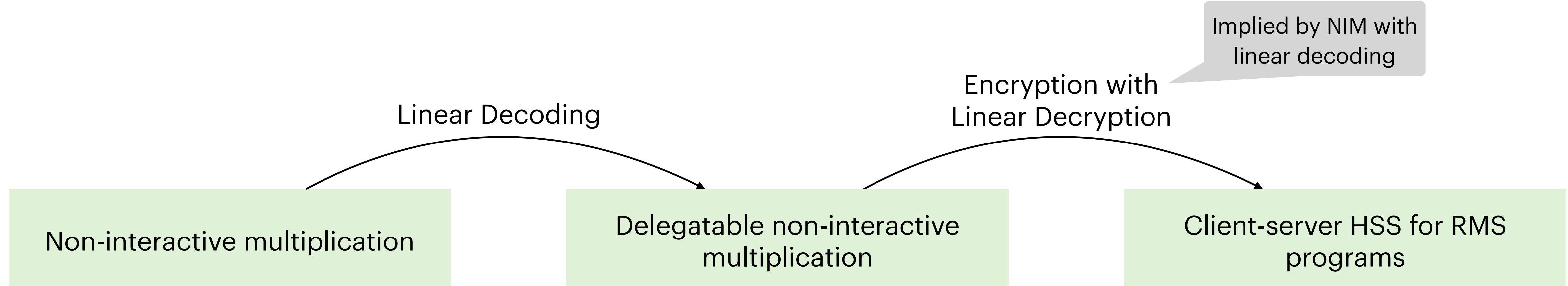
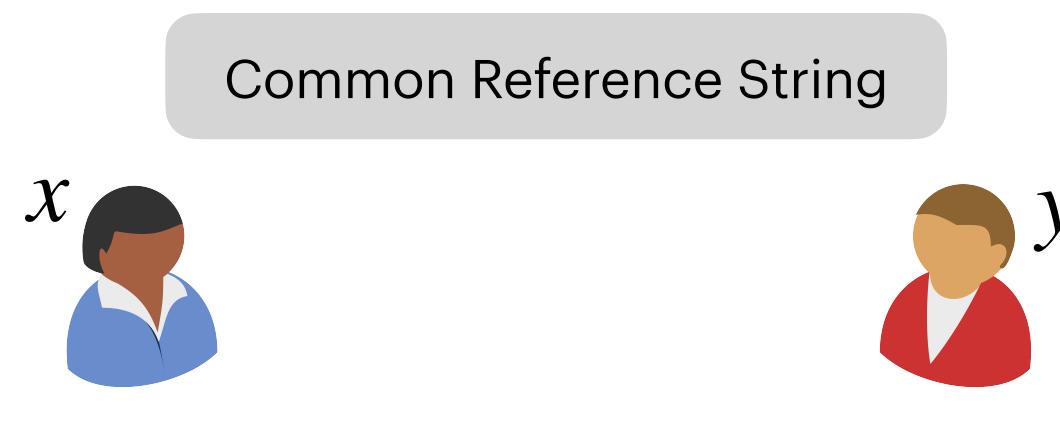
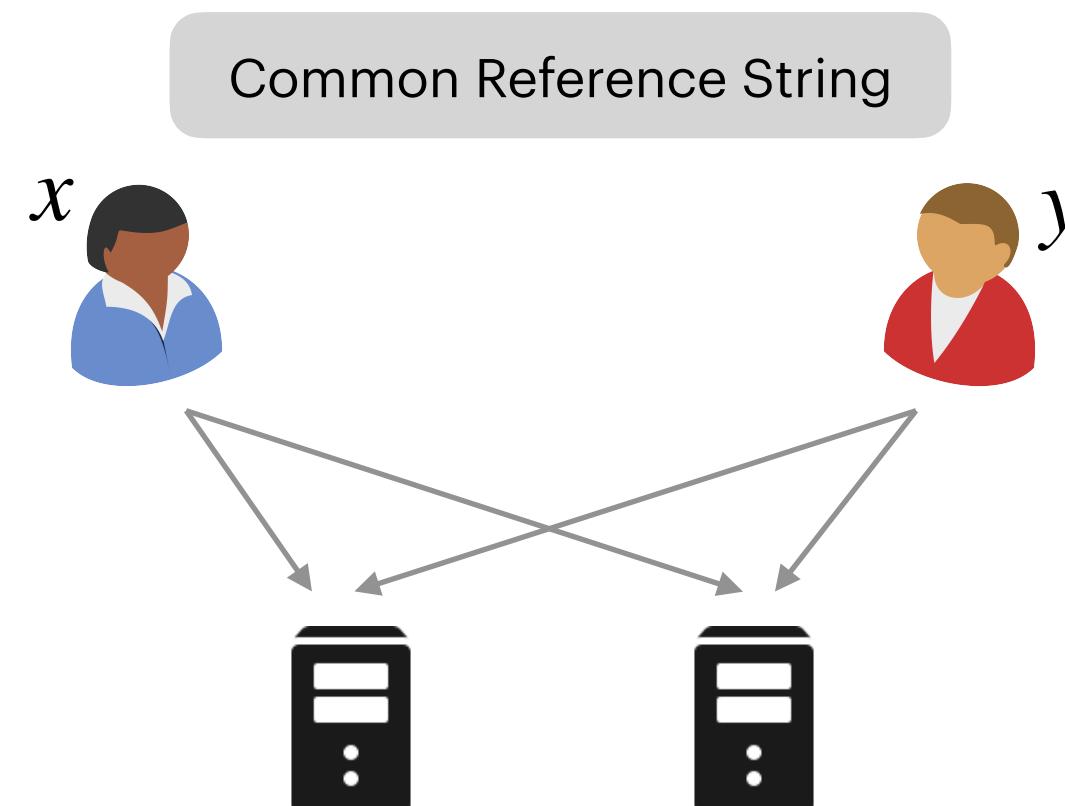


$[xy]_A$ $[xy]_B$



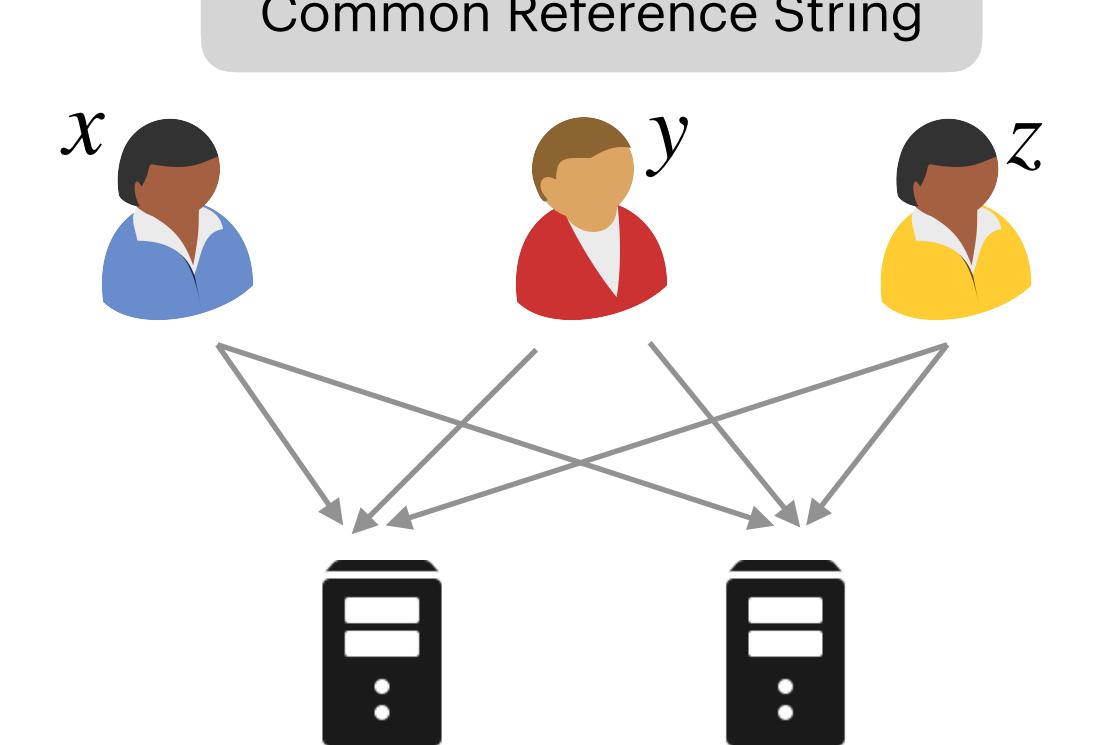
$[C(x, y, z)]_A$ $[C(x, y, z)]_B$

HSS for Multiplication is All You Need



$[xy]_A$

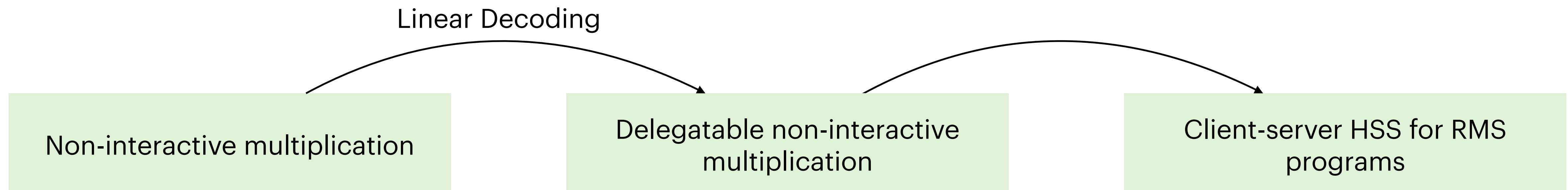
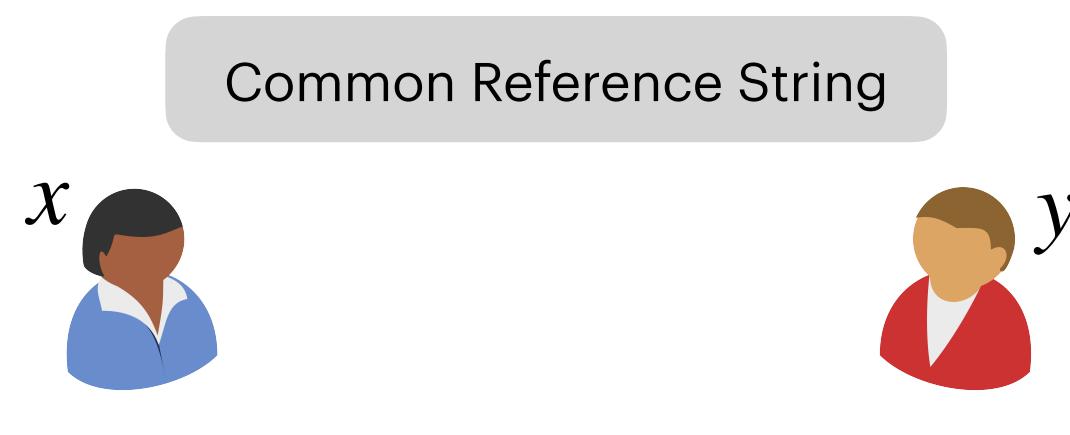
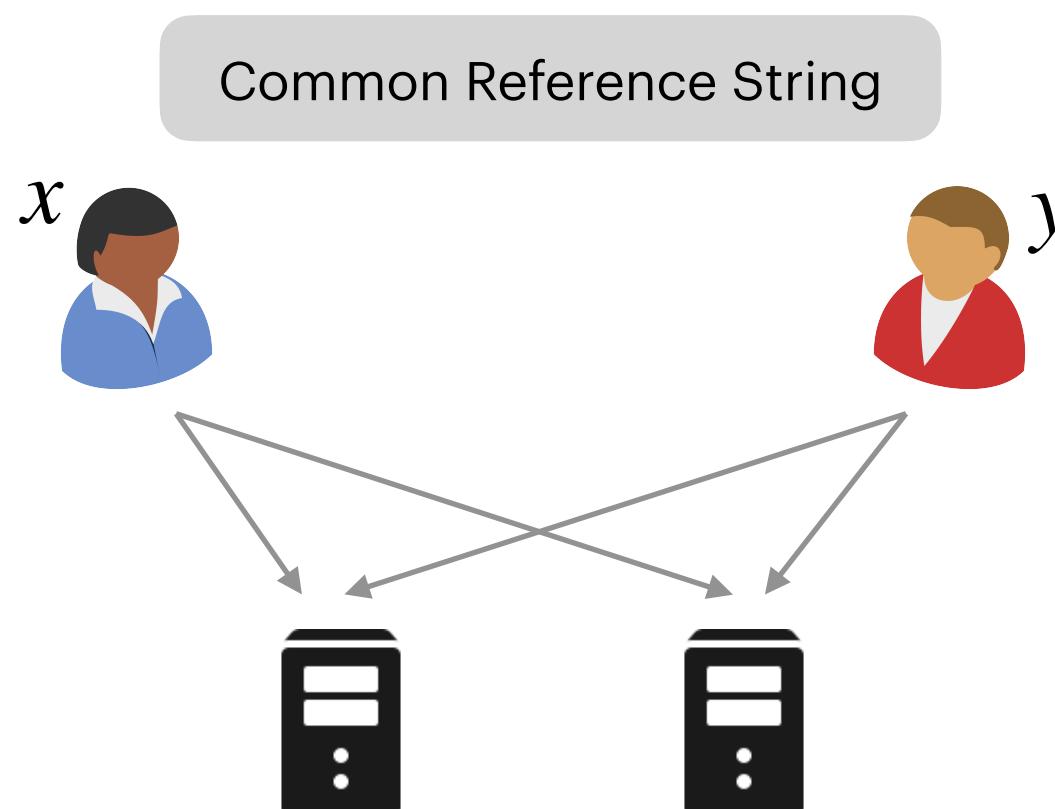
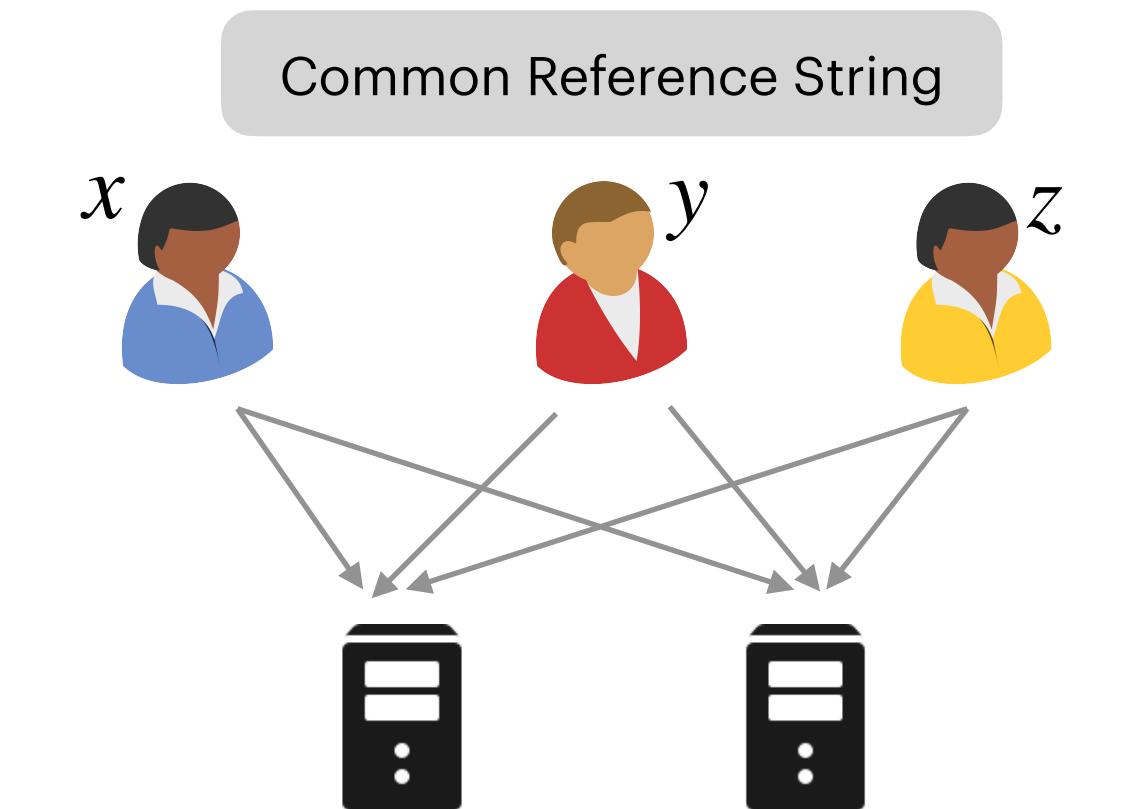
$[xy]_B$



$[C(x, y, z)]_A$

$[C(x, y, z)]_B$

NIM with Linear Decoding is All You Need



Outline

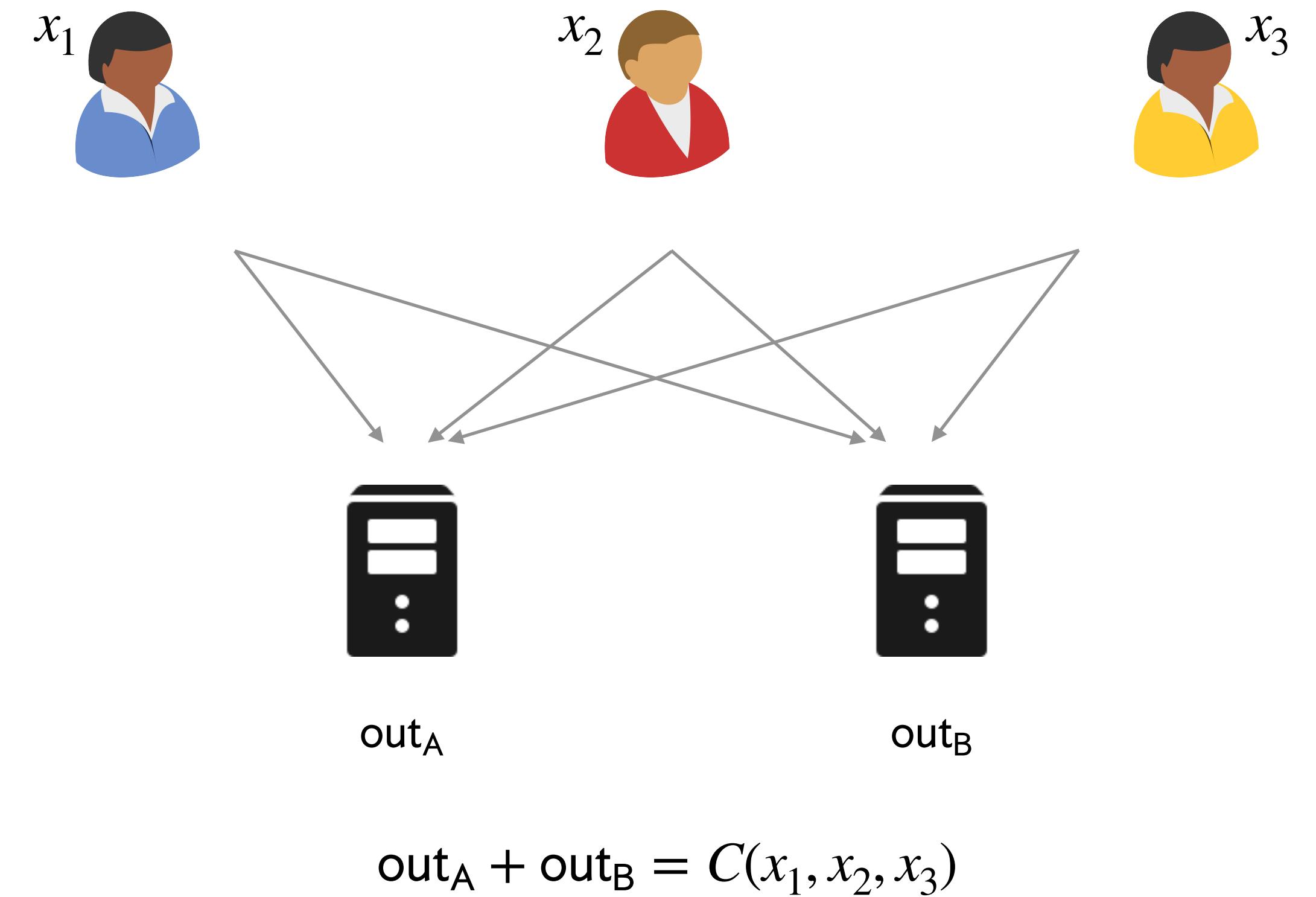
Barriers to Removing Correlated Setup

Our Approach

Extensions

Succinct Client-Server HSS

Common Reference String



Succinct Client-Server HSS

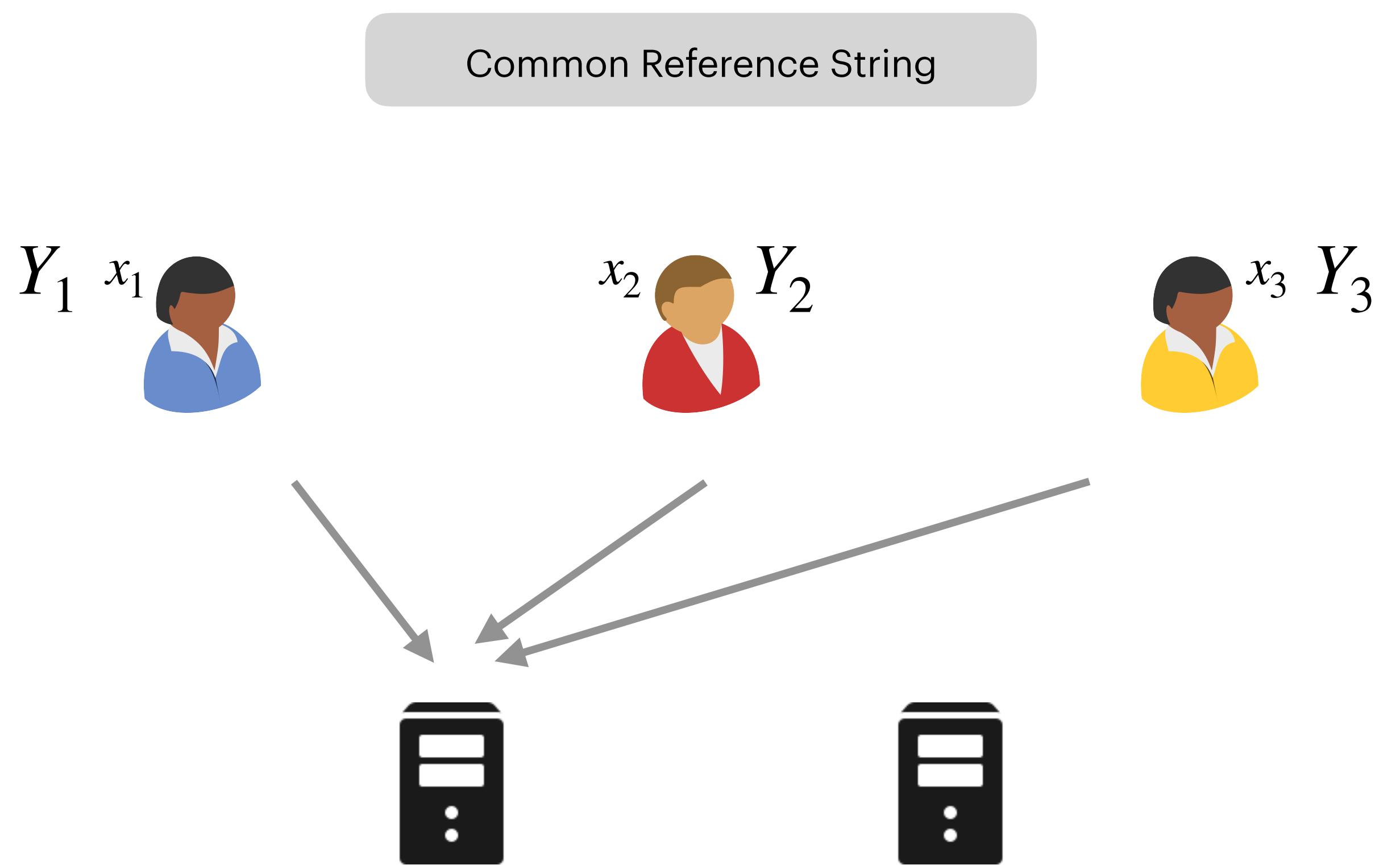
Common Reference String

Y_1 x_1

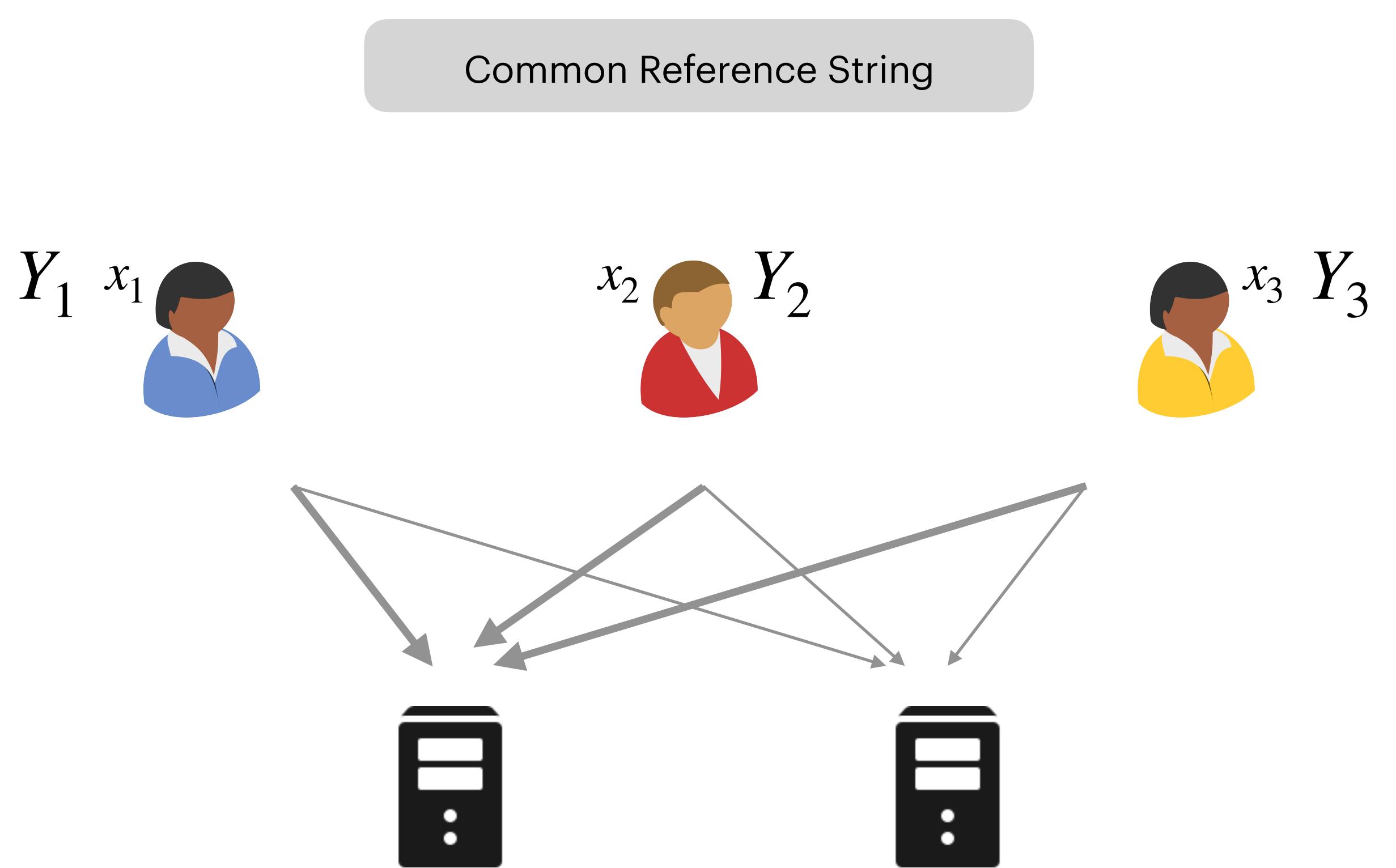
x_2 Y_2

x_3 Y_3

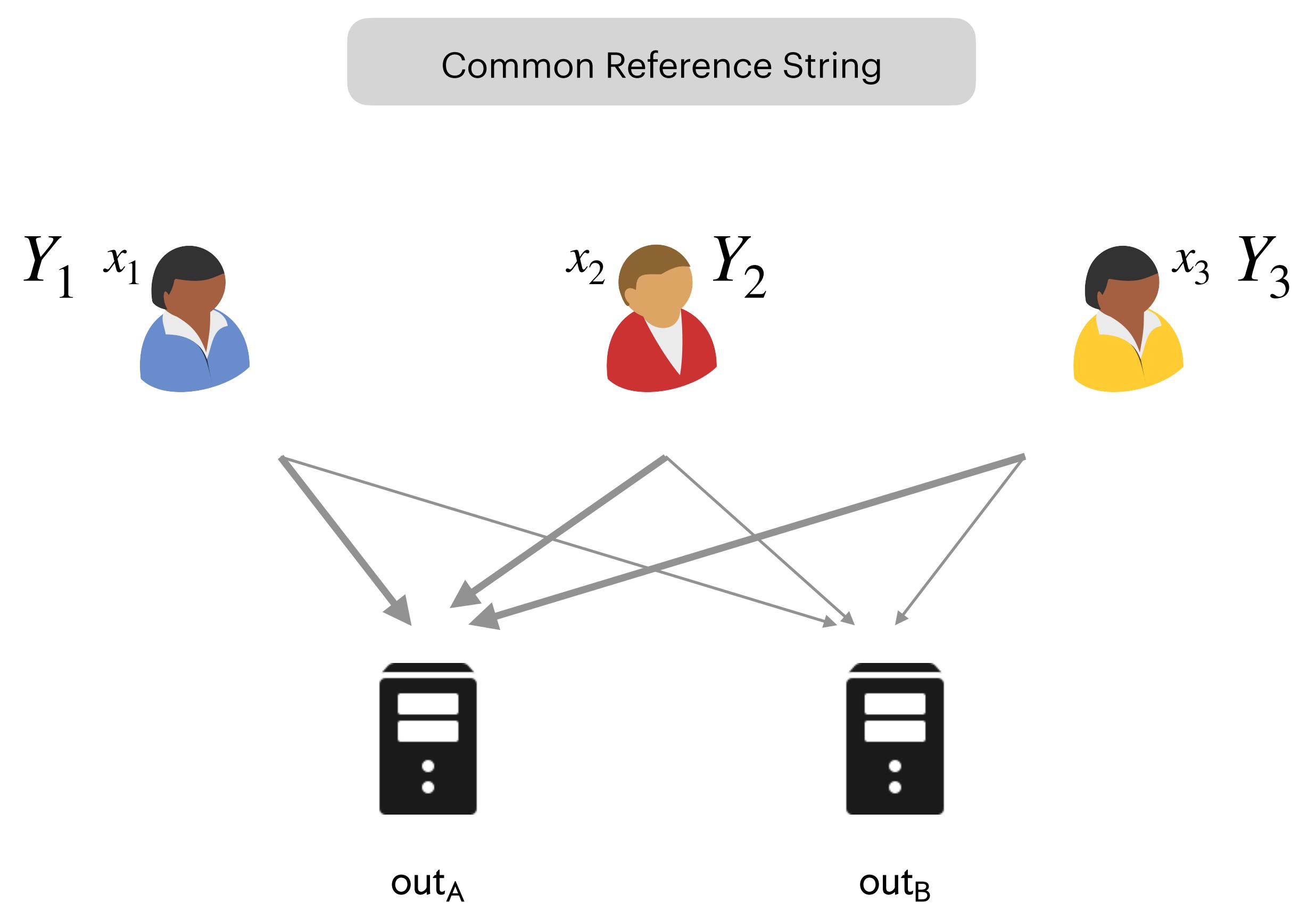
Succinct Client-Server HSS



Succinct Client-Server HSS



Succinct Client-Server HSS

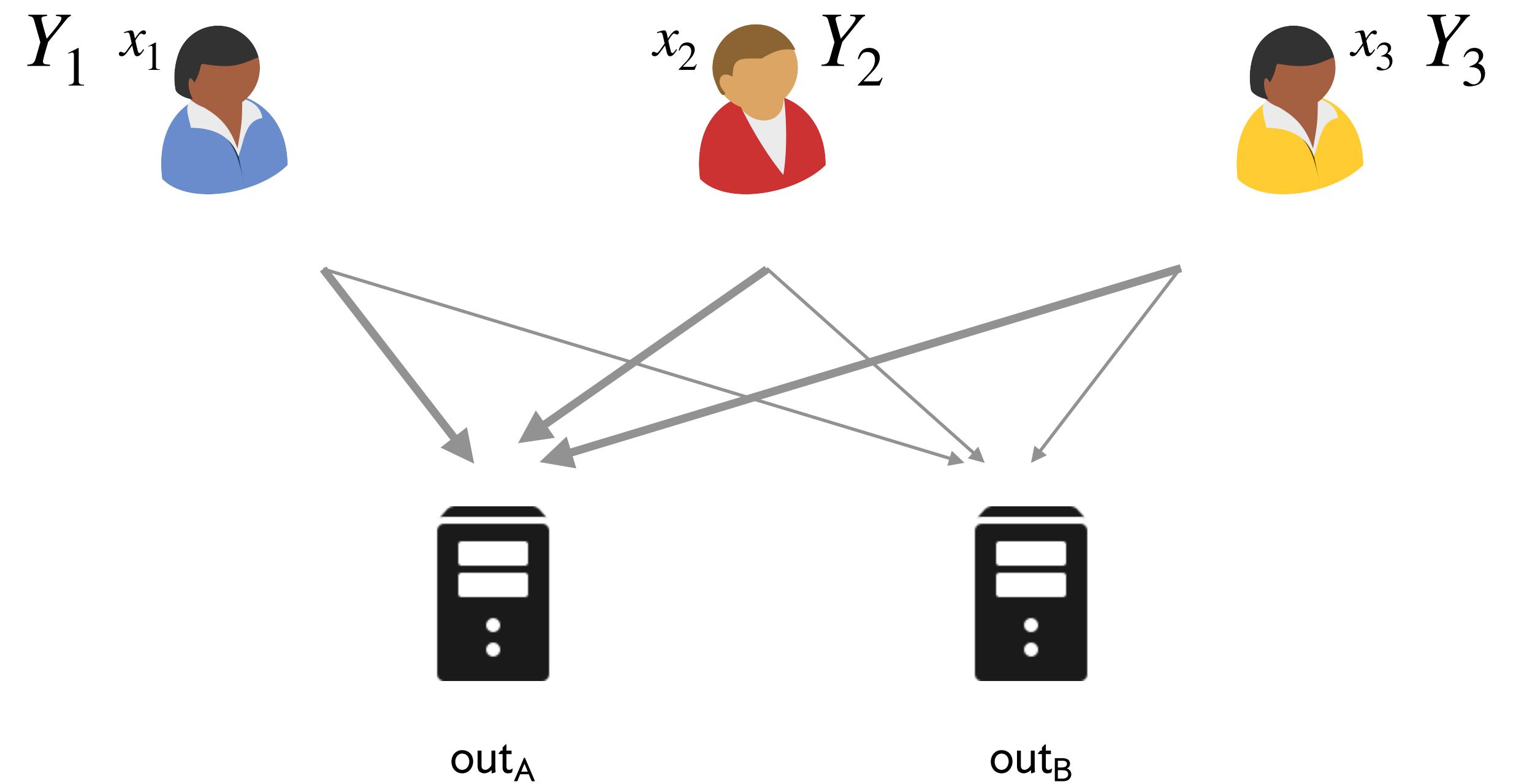


$$out_A + out_B = C(x_1, x_2, x_3, Y_1, Y_2, Y_3)$$

Succinct Client-Server HSS

Succinct multi-client **two**-server HSS in the [CRS](#) model for [RMS](#) programs

Common Reference String

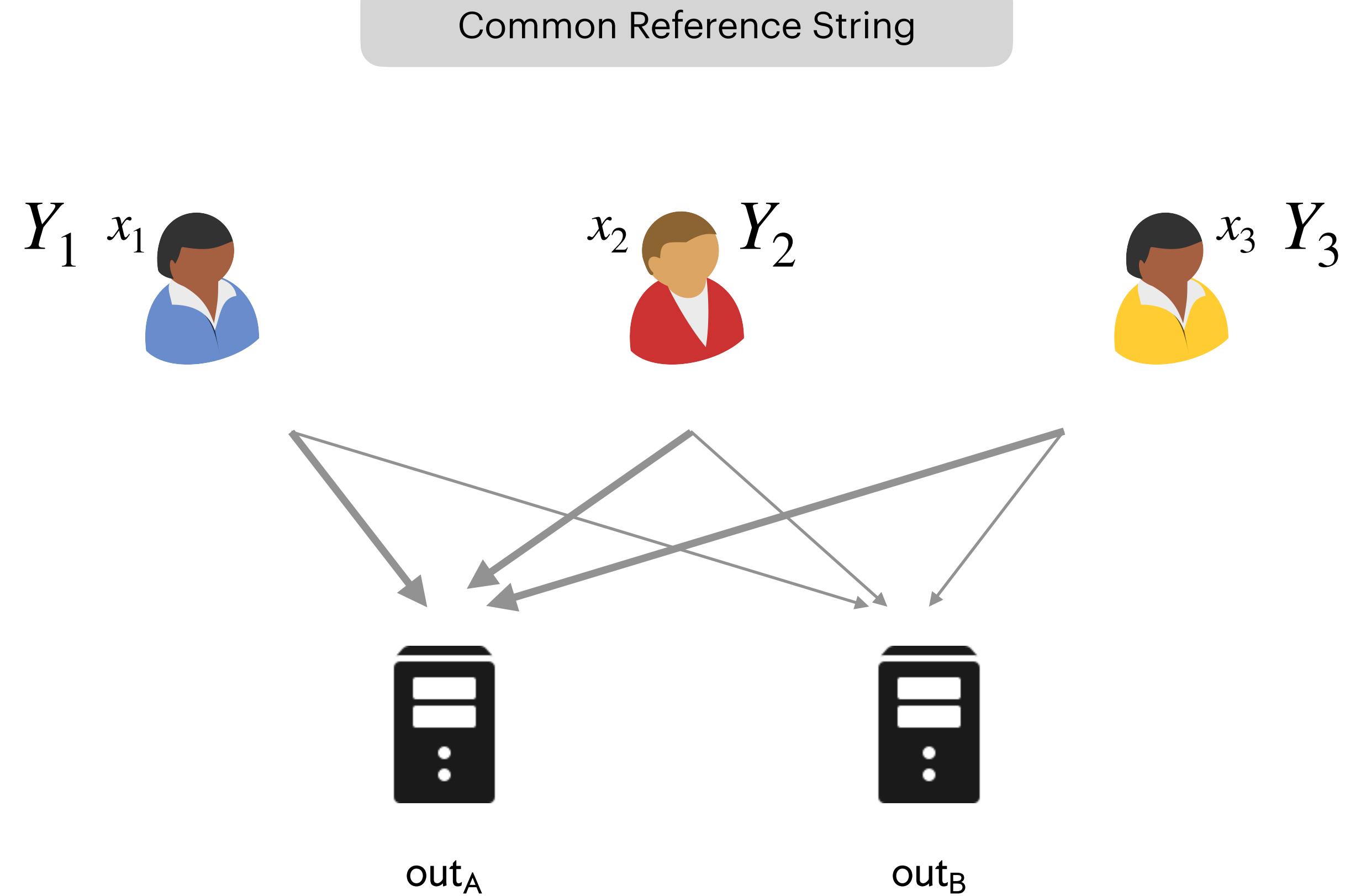


$$out_A + out_B = C(x_1, x_2, x_3, Y_1, Y_2, Y_3)$$

Succinct Client-Server HSS

Succinct multi-client **two**-server HSS in the [CRS](#) model for [RMS](#) programs

DDH, DCR, and class groups



$$out_A + out_B = C(x_1, x_2, x_3, Y_1, Y_2, Y_3)$$

Succinct Client-Server HSS

Succinct multi-client **two**-server HSS in the [CRS](#) model for [RMS](#) programs

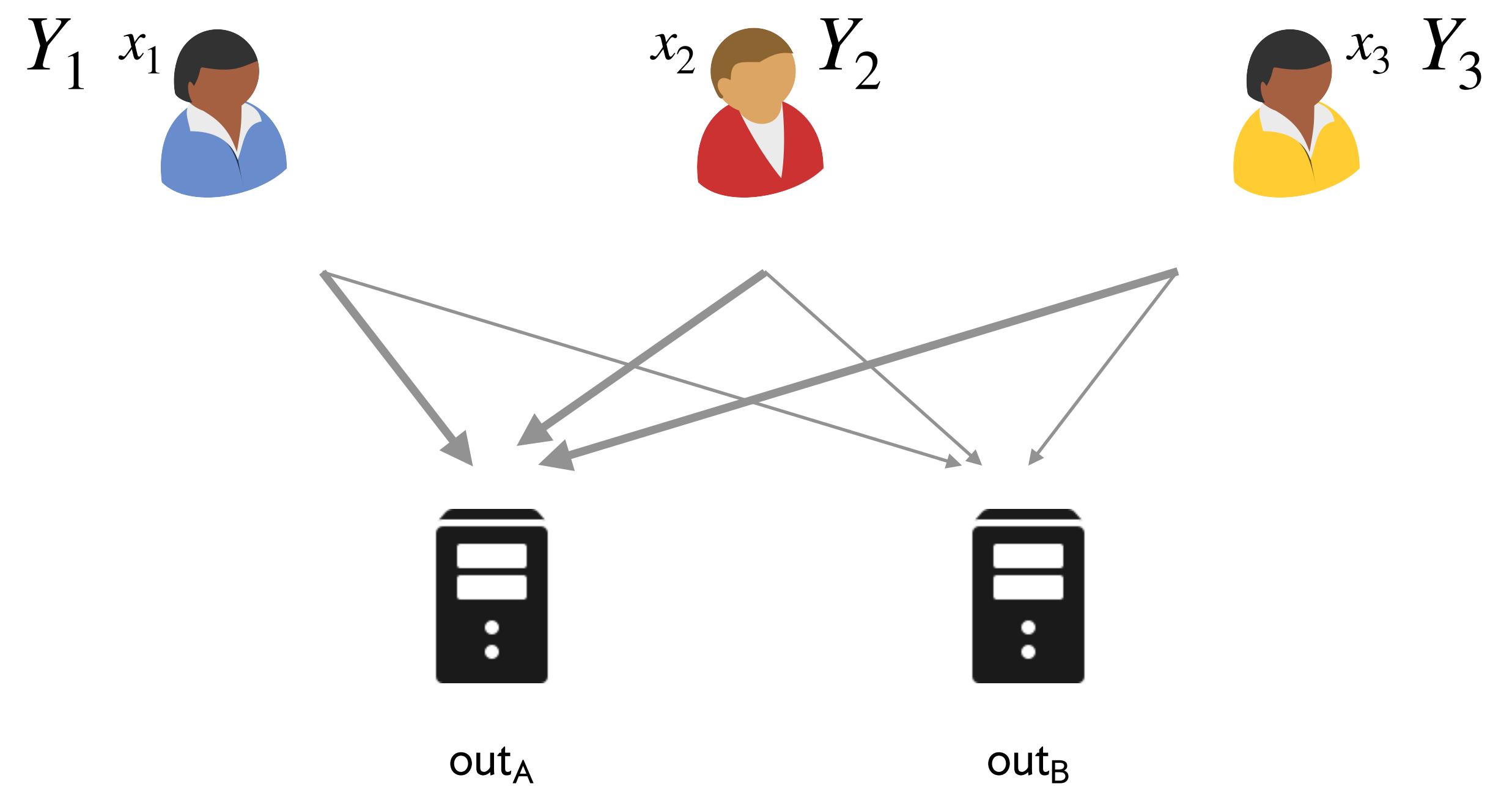
DDH, DCR, and class groups

Previously required **correlated setup** or supported only **two parties**

[Abram-Roy-Scholl'24]

[Couteau-H-Pu'24]

Common Reference String



$$out_A + out_B = C(x_1, x_2, x_3, Y_1, Y_2, Y_3)$$

Succinct Client-Server HSS

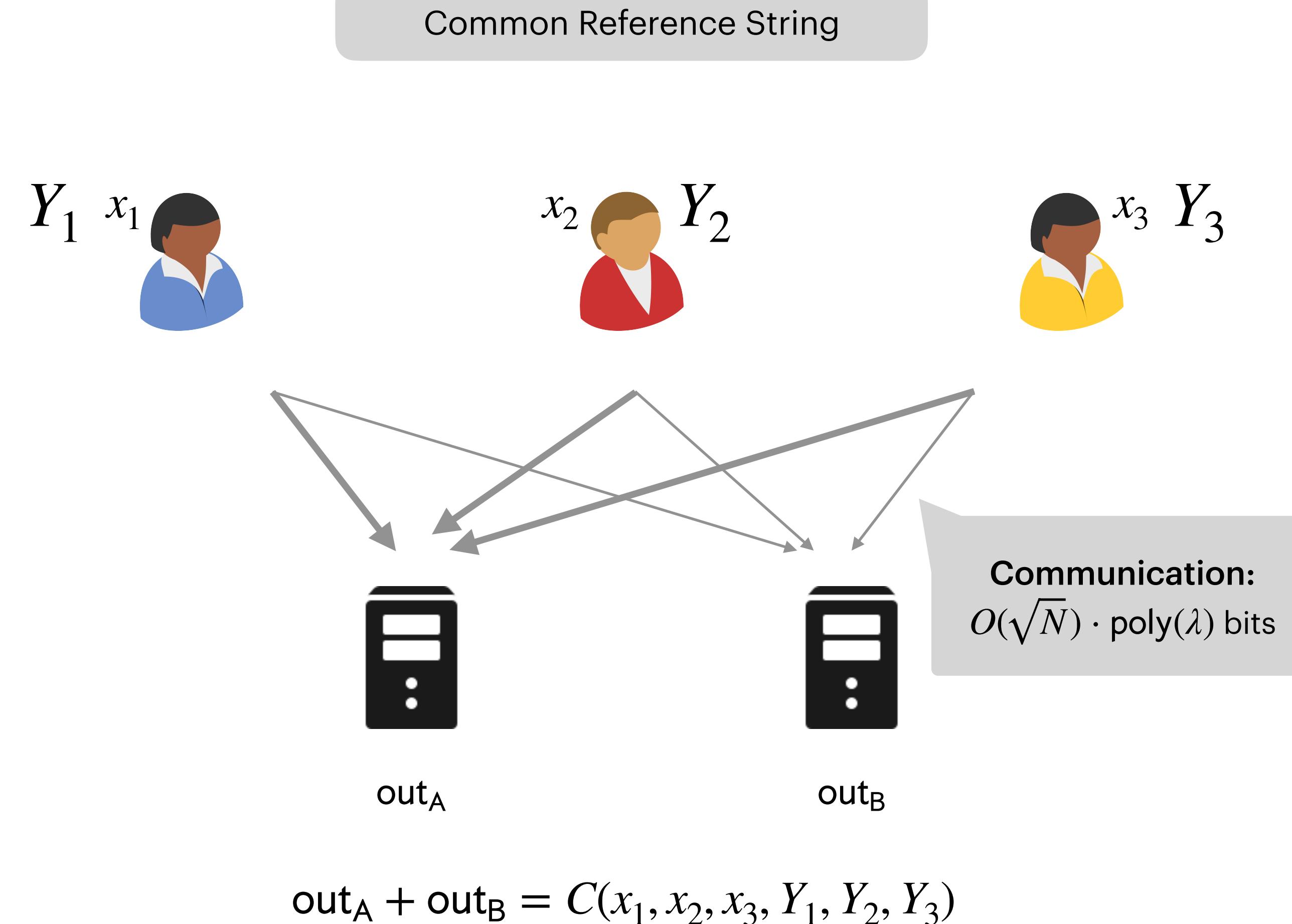
Succinct multi-client **two**-server HSS in the [CRS](#) model for [RMS](#) programs

DDH, DCR, and class groups

Previously required **correlated setup** or supported only **two parties**

[Abram-Roy-Scholl'24]

[Couteau-H-Pu'24]



Succinct Client-Server HSS

Succinct multi-client **two**-server HSS in the [CRS](#) model for [RMS](#) programs

DDH, DCR, and class groups

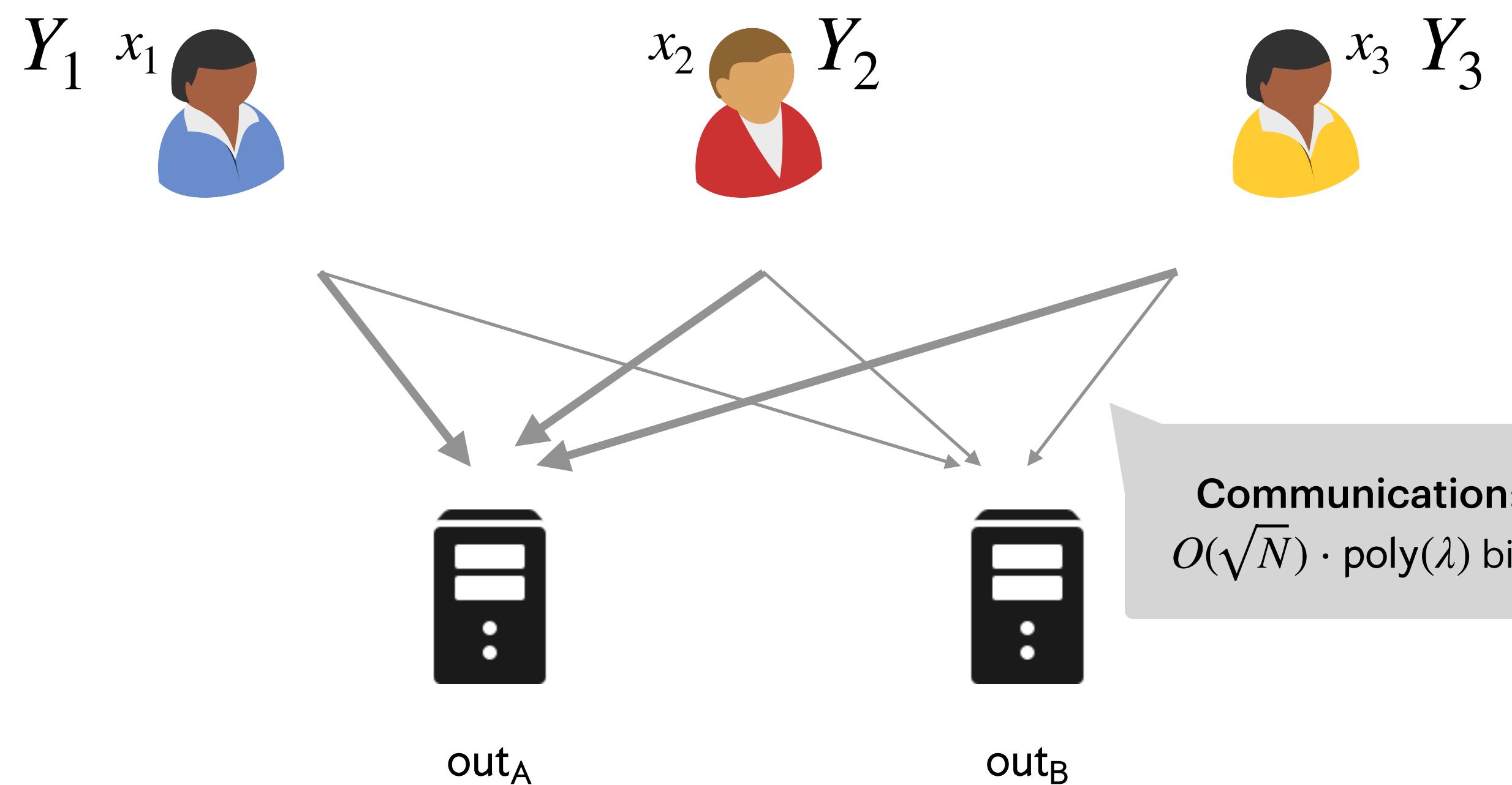
Previously required **correlated setup** or supported only **two parties**

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

Private long inputs

$$C \equiv \sum_{i,j} \text{RMS}(x_1, \dots, x_m) \cdot Y_i^{(j)}$$

Common Reference String



$$\text{out}_A + \text{out}_B = C(x_1, x_2, x_3, Y_1, Y_2, Y_3)$$

Succinct Client-Server HSS

Succinct multi-client **two**-server HSS in the [CRS](#) model for [RMS](#) programs

DDH, DCR, and class groups

Previously required **correlated setup** or supported only **two parties**

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

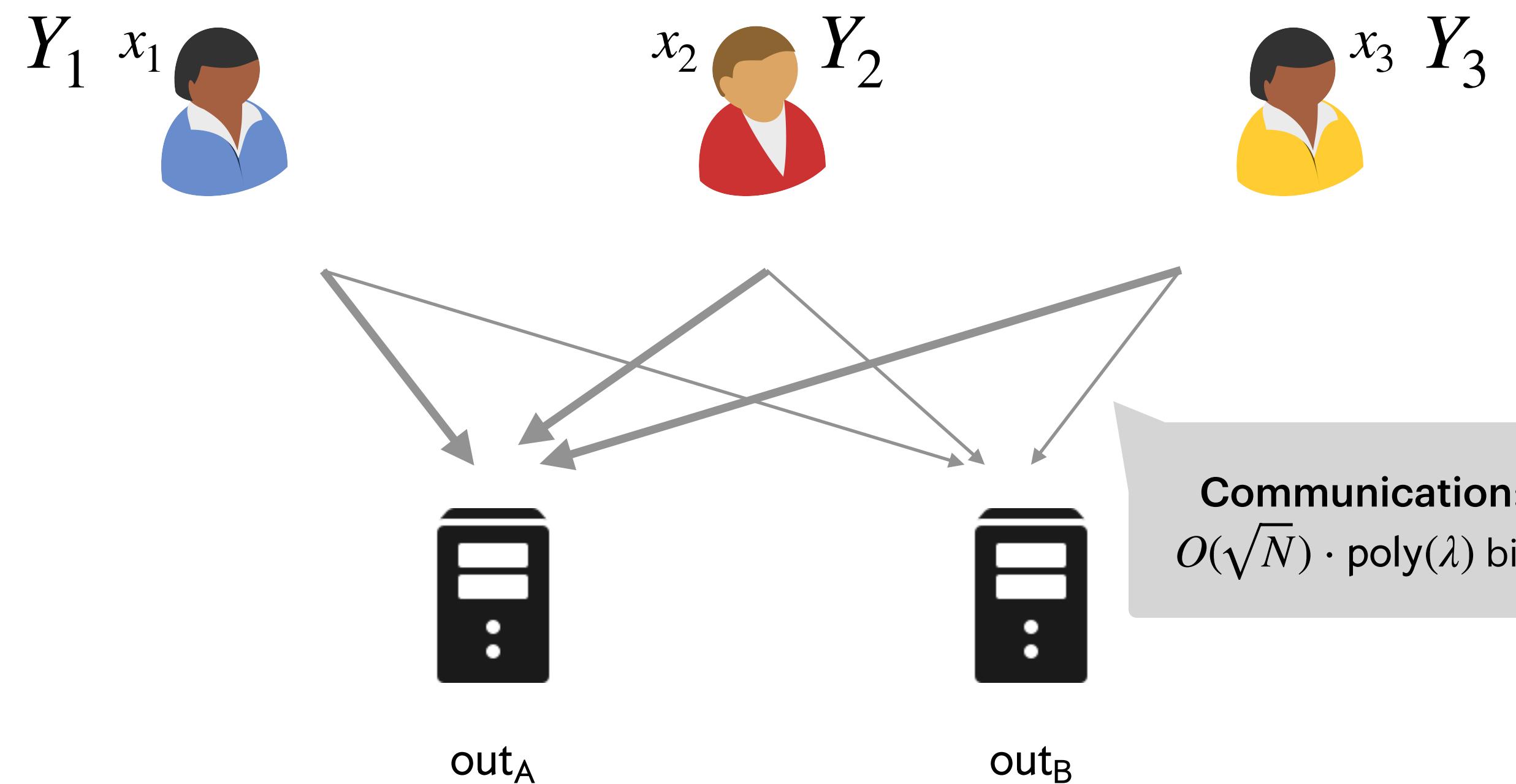
Private long inputs

$$C \equiv \sum_{i,j} \text{RMS}(x_1, \dots, x_m) \cdot Y_i^{(j)}$$

Public long inputs

$$C \equiv \text{RMS}(x_1, \dots, x_m) \cdot \mathsf{P/poly}(Y_1, \dots, Y_m)$$

Common Reference String



$$\text{out}_A + \text{out}_B = C(x_1, x_2, x_3, Y_1, Y_2, Y_3)$$

Succinct Client-Server HSS

Succinct multi-client **two**-server HSS in the [CRS](#) model for [RMS](#) programs

DDH, DCR, and class groups

Previously required **correlated setup** or supported only **two parties**

[Abram-Roy-Scholl'24]
[Couteau-H-Pu'24]

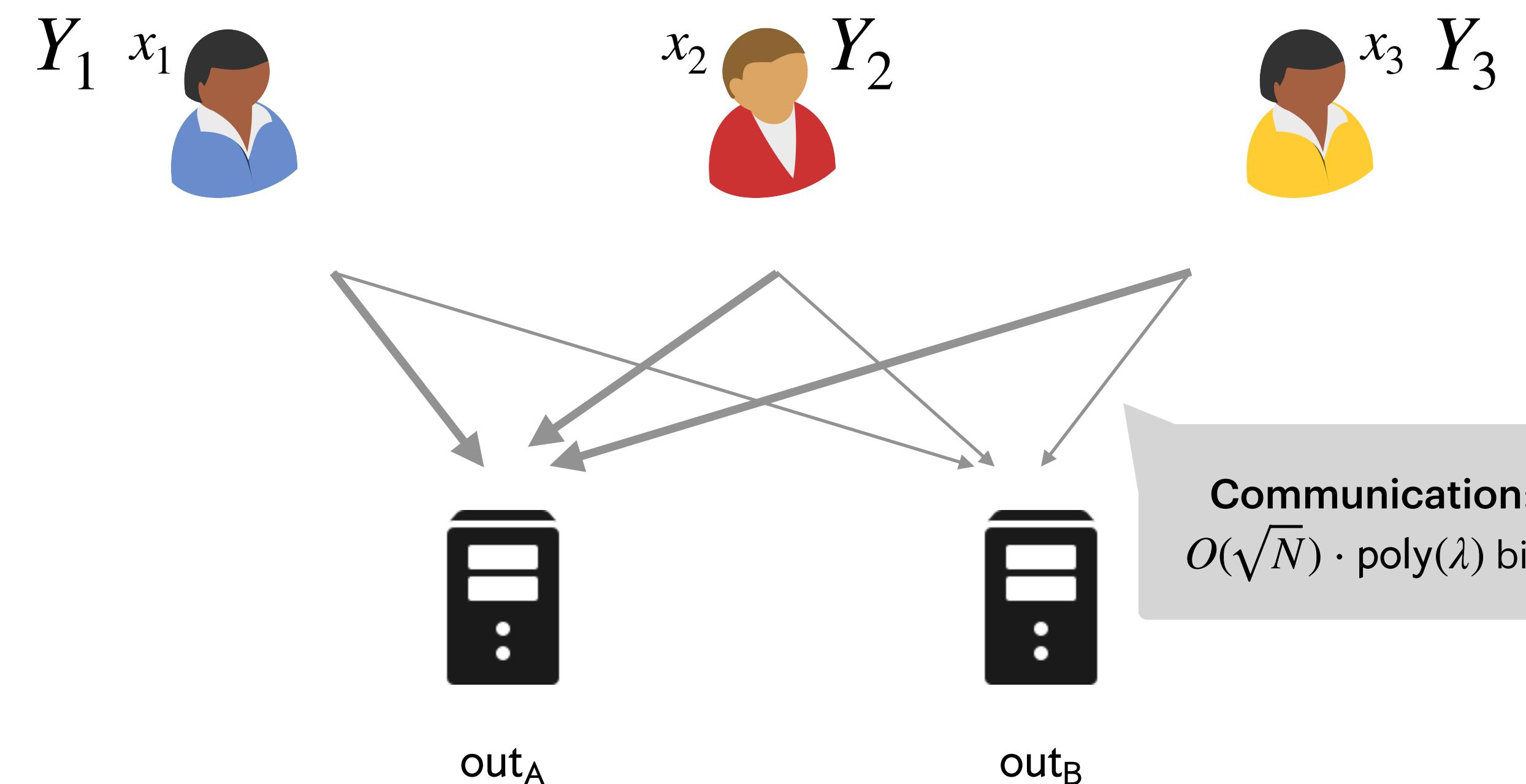
Private long inputs

$$C \equiv \sum_{i,j} \text{RMS}(x_1, \dots, x_m) \cdot Y_i^{(j)}$$

Public long inputs

$$C \equiv \text{RMS}(x_1, \dots, x_m) \cdot \text{P/poly}(Y_1, \dots, Y_m)$$

Common Reference String



Key Ingredient: Combine delegation and input-succinctness properties of NIM

Thank You