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• Disadvantages of asynchronous networks 

• Lower fault tolerance 

• Input deprivation  compute approximation of ⟹ f

• Hybrid networks:  initial synchronous rounds followed by 
asynchronous computation [BHN10,CHP13,PR18] 

• Assume synchronous broadcast channel in first  
rounds

R
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Perfect HMPC

• Open Problem [PR18]: Perfectly secure MPC protocol over hybrid network  

• Two synchronous rounds 

• Tolerating  corruptions 

• With synchronous broadcast channel 

• Guaranteed output delivery 

• Input provision impossible in this setting [PR18]

t < n/3
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[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi
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⋮
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⋮

⋮
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⋮

⋮

[ci]
⋮
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[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples  correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb( . )
k

fc( . )
2k

fa( . )
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

fc( . ) = fa( . )fb( . )

If  
multiplication 

triples

2k + 1⟹

xi, yi, zi
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k

[a1] [b1] [c1]
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[a2k+1]
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⋮
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⋮

⋮
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⋮

⋮
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⋮
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[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples  correlated random triples→

• Completely asynchronous instantiation in [CP17]

[x2], [y2], [z2]
[x1], [y1], [z1]

fb( . )
k

fc( . )
2k

fa( . )
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

fc( . ) = fa( . )fb( . )

If  
multiplication 

triples

2k + 1⟹

ai, bi, zi
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x1 y1
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u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]
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x1 y1
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y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]
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[u1] [v1]
[u2]
[u3]

[v2]
[v3]
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x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

fa( . ) fb( . ) fc( . )

𝖲𝗁
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x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′ i]

𝖲𝗁
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x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′ i]−[ci] 𝖱𝖾𝖼𝗈𝗇

≠ 0

Pi

𝖲𝗁
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x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′ i]

 
if all checks hold

fc( . ) = fa( . )fb( . )

−[ci] 𝖱𝖾𝖼𝗈𝗇
≠ 0

Pi

𝖲𝗁
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x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′ i]

 
if all checks hold

fc( . ) = fa( . )fb( . )

−[ci] 𝖱𝖾𝖼𝗈𝗇
≠ 0

Pi

[ fa(5)], [ fb(5)], [ fc(5)]

𝖲𝗁
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𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

Random and private 
multiplication triple.

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

[ fc(4)][ fb(4)][ fa(4)]
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𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases 

• Triple generation phase 

• Input phase 

• Circuit evaluation and 
output phase

𝖲𝗁

Circuit Evaluation 
• Addition: Local 
• Multiplication:  
• Output: 

𝖡𝖾𝖺𝗏𝖾𝗋
𝖱𝖾𝖼𝗈𝗇
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𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases 

• Triple generation phase 

• Input phase 

• Circuit evaluation and 
output phase

𝖲𝗁

f(a, b, c, d)

f(a, b, c, d) f(a, b, c, d)

c

a b

d

Can wait for 
input of at most 

2 parties.
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• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]
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• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol
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P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4
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Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18] 

• One synchronous round VSS protocol 

• Efficient reconstruction protocol

s = s 1 + s 2 + s 3 + s 4
Completely 

Asynchronous

𝖱𝖾𝖼𝗈𝗇

s i

s i

H( s i)
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• Triple generation similar to 
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• Cryptographically secure HMPC 

• Triple generation phase and input phase use 1 synchronous round 

• Circuit evaluation is completely asynchronous 

• Input provision

• Cryptographically secure AMPC 

• Similar to Cryptographically secure HMPC 

• No synchronous broadcast   and  

• No input provision

⟹ 𝖠𝖢𝖺𝗌𝗍 𝖠𝖢𝖲
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Conclusion

• Open problems 

• Perfect HMPC protocol for general case 

• Bridging the gap between synchronous and asynchronous MPC protocols
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