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• Disadvantages of asynchronous networks 

• Lower fault tolerance 

• Input deprivation  compute approximation of ⟹ f

• Hybrid networks:  initial synchronous rounds followed by 
asynchronous computation [BHN10,CHP13,PR18] 

• Assume synchronous broadcast channel in first  
rounds

R
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 roundsR



Our Contributions

• Perfectly secure MPC protocol over hybrid network 
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid 
network with R = 1

• Cryptographically secure MPC protocol over 
asynchronous network



Our Contributions

• Perfectly secure MPC protocol over hybrid network 
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid 
network with R = 1

• Cryptographically secure MPC protocol over 
asynchronous network

Optimal number of 
synchronous rounds



Our Contributions

• Perfectly secure MPC protocol over hybrid network 
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid 
network with R = 1

• Cryptographically secure MPC protocol over 
asynchronous network

Rely only on symmetric key 
primitives

Optimal number of 
synchronous rounds



Our Contributions

• Perfectly secure MPC protocol over hybrid network 
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid 
network with R = 1

• Cryptographically secure MPC protocol over 
asynchronous network

Rely only on symmetric key 
primitives

Optimal number of 
synchronous rounds

Optimal resilience and 
Guaranteed Output Delivery



Our Contributions

• Perfectly secure MPC protocol over hybrid network 
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid 
network with R = 1

• Cryptographically secure MPC protocol over 
asynchronous network

• Implementation and benchmarks

Rely only on symmetric key 
primitives

Optimal number of 
synchronous rounds

Optimal resilience and 
Guaranteed Output Delivery



Overview - Circuit Evaluation

a b c d

a + b c + d

(a + b)(c + d)

+

×

+

•  represented as arithmetic circuit over finite fieldf



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput +

×

+

[a] [b] [c] [d]



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

+

×

+

[a] [b] [c] [d]



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

+

×

+

[a] [b] [c] [d]

[e = a + b] [ f = c + d]



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

+

×

+

[a] [b] [c] [d]

[e = a + b] [ f = c + d]



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private 
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [ f = c + d]

[x], [y], [z = xy]



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private 
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [ f = c + d]

[x], [y], [z = xy] [e + x] → e + x
[ f + y] → f + y



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private 
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [ f = c + d]

[x], [y], [z = xy] [e + x] → e + x
[ f + y] → f + y

[ef ] = (e + x)( f + y) − (e + x)[ f ] − ( f + y)[e] + [z]



Overview - Circuit Evaluation

•  represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private 
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [ f = c + d]

[x], [y], [z = xy] [e + x] → e + x
[ f + y] → f + y

[ef ] = (e + x)( f + y) − (e + x)[ f ] − ( f + y)[e] + [z]

𝖡𝖾𝖺𝗏𝖾𝗋



Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]



Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])



Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])
• Multiplication triple 
• Triple known to party



Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol • Triple extraction protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])

([x], [y], [xy])

• Multiplication triple 
• Triple known to party



Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol • Triple extraction protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])

([x], [y], [xy])
• Multiplication triple 
• Random and private triple

• Multiplication triple 
• Triple known to party



Perfect HMPC

• Open Problem [PR18]: Perfectly secure MPC protocol over hybrid network  

• Two synchronous rounds 

• Tolerating  corruptions 

• With synchronous broadcast channel 

• Guaranteed output delivery 

• Input provision impossible in this setting [PR18]

t < n/3
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⋮
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⋮

⋮
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⋮

⋮
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⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi
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[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples  correlated random triples→

• Completely asynchronous instantiation in [CP17]

[x2], [y2], [z2]
[x1], [y1], [z1]

fb( . )
k

fc( . )
2k

fa( . )
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

fc( . ) = fa( . )fb( . )

If  
multiplication 

triples

2k + 1⟹

ai, bi, zi
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u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]
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u2v2 u3v3 u4v4

[x1] [y1]
[x2]
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[y2]
[y3]
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[z2]
[z3]

[a1] [b1]
[a2]
[a3]
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[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]
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[w2]
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[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′￼i]
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Pi
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x1 y1
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u1 v1

u2 v2 u3 v3 u4 v4
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x2y2
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u2v2 u3v3 u4v4
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[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]
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[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
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[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′￼i]

 
if all checks hold

fc( . ) = fa( . )fb( . )

−[ci] 𝖱𝖾𝖼𝗈𝗇
≠ 0

Pi

[ fa(5)], [ fb(5)], [ fc(5)]

𝖲𝗁
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𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

[a1] [b1]
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𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

Random and private 
multiplication triple.

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

[ fc(4)][ fb(4)][ fa(4)]



Perfect HMPC

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases 

• Triple generation phase 

• Input phase 

• Circuit evaluation and 
output phase

𝖲𝗁

Circuit Evaluation 
• Addition: Local 
• Multiplication:  
• Output: 

𝖡𝖾𝖺𝗏𝖾𝗋
𝖱𝖾𝖼𝗈𝗇
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𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases 

• Triple generation phase 

• Input phase 

• Circuit evaluation and 
output phase

𝖲𝗁

f(a, b, c, d)

f(a, b, c, d) f(a, b, c, d)

c

a b

d

Can wait for 
input of at most 

2 parties.
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Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18] 

• One synchronous round VSS protocol 

• Efficient reconstruction protocol

s = s 1 + s 2 + s 3 + s 4
Completely 

Asynchronous

𝖱𝖾𝖼𝗈𝗇

s i

s i

H( s i)
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• Triple generation similar to 
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• Circuit evaluation is completely asynchronous 

• Input provision

• Cryptographically secure AMPC 

• Similar to Cryptographically secure HMPC 

• No synchronous broadcast   and  

• No input provision

⟹ 𝖠𝖢𝖺𝗌𝗍 𝖠𝖢𝖲
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Conclusion

• Open problems 

• Perfect HMPC protocol for general case 

• Bridging the gap between synchronous and asynchronous MPC protocols
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