
High Throughput Secure MPC Over Small Population in Hybrid
Networks

Ashish Choudhury, Aditya Hegde  INDOCRYPT 2020

Secure Multi-Party Computation (MPC)

• Distrusting parties compute a function on
private inputs a b

cd

f(a, b, c, d)

Secure Multi-Party Computation (MPC)

• Distrusting parties compute a function on
private inputs

• Equivalent to interacting with a Trusted Third
Party (TTP)

Secure Multi-Party Computation (MPC)

a b

cd

• Distrusting parties compute a function on
private inputs

• Equivalent to interacting with a Trusted Third
Party (TTP)

Secure Multi-Party Computation (MPC)

a b

cd

f(a, b, c, d)

f(a, b, c, d) f(a, b, c, d)

f(a, b, c, d)

• Distrusting parties compute a function on
private inputs

• Equivalent to interacting with a Trusted Third
Party (TTP)

Secure Multi-Party Computation (MPC)

a b

cd

f(a, b, c, d)

• Distrusting parties compute a function on
private inputs

• Equivalent to interacting with a Trusted Third
Party (TTP)

• MPC over small population

• Simple and efficient Practical
applications

⟹

Secure Multi-Party Computation (MPC)

a b

cd

f(a, b, c, d)

• Distrusting parties compute a function on
private inputs

• Equivalent to interacting with a Trusted Third
Party (TTP)

• MPC over small population

• Simple and efficient Practical
applications

⟹

• Setting

• ,

• Malicious adversary

n = 4 t = 1

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

• Synchronous networks

• Global clock

• Publicly known upper bound on message delay

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

• Synchronous networks

• Global clock

• Publicly known upper bound on message delay

t1

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

• Synchronous networks

• Global clock

• Publicly known upper bound on message delay

t1

t1 + Δ

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

• Synchronous networks

• Global clock

• Publicly known upper bound on message delay

t1

t1 + Δ

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

• Synchronous networks

• Global clock

• Publicly known upper bound on message delay

• Asynchronous networks [BCG93,Canetti95]

• No synchronisation

• Adversary schedules messages

• Eventual delivery

t1

t1 + Δ

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

• Synchronous networks

• Global clock

• Publicly known upper bound on message delay

• Asynchronous networks [BCG93,Canetti95]

• No synchronisation

• Adversary schedules messages

• Eventual delivery

t1

t1 + Δ

Cannot distinguish
between delayed and

unsent message

Communication Model - Synchronous and Asynchronous Networks

• Pairwise private and authentic channels

• Synchronous networks

• Global clock

• Publicly known upper bound on message delay

• Asynchronous networks [BCG93,Canetti95]

• No synchronisation

• Adversary schedules messages

• Eventual delivery

t1

t1 + Δ

Cannot distinguish
between delayed and

unsent message

Can only wait for
 messages at

each step
n − t

Communication Model - Hybrid Networks
• Advantages of asynchronous networks

• Better model for real-world networks

• Small communication delays faster than
synchronous networks

⟹

Communication Model - Hybrid Networks
• Advantages of asynchronous networks

• Better model for real-world networks

• Small communication delays faster than
synchronous networks

⟹

• Disadvantages of asynchronous networks

• Lower fault tolerance

• Input deprivation compute approximation of ⟹ f

Communication Model - Hybrid Networks
• Advantages of asynchronous networks

• Better model for real-world networks

• Small communication delays faster than
synchronous networks

⟹

• Disadvantages of asynchronous networks

• Lower fault tolerance

• Input deprivation compute approximation of ⟹ f

• Hybrid networks: initial synchronous rounds followed by
asynchronous computation [BHN10,CHP13,PR18]

• Assume synchronous broadcast channel in first
rounds

R

R

 roundsR

Our Contributions

• Perfectly secure MPC protocol over hybrid network
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid
network with R = 1

• Cryptographically secure MPC protocol over
asynchronous network

Our Contributions

• Perfectly secure MPC protocol over hybrid network
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid
network with R = 1

• Cryptographically secure MPC protocol over
asynchronous network

Optimal number of
synchronous rounds

Our Contributions

• Perfectly secure MPC protocol over hybrid network
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid
network with R = 1

• Cryptographically secure MPC protocol over
asynchronous network

Rely only on symmetric key
primitives

Optimal number of
synchronous rounds

Our Contributions

• Perfectly secure MPC protocol over hybrid network
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid
network with R = 1

• Cryptographically secure MPC protocol over
asynchronous network

Rely only on symmetric key
primitives

Optimal number of
synchronous rounds

Optimal resilience and
Guaranteed Output Delivery

Our Contributions

• Perfectly secure MPC protocol over hybrid network
with R = 2
• First protocol in this setting

• Cryptographically secure MPC protocol over hybrid
network with R = 1

• Cryptographically secure MPC protocol over
asynchronous network

• Implementation and benchmarks

Rely only on symmetric key
primitives

Optimal number of
synchronous rounds

Optimal resilience and
Guaranteed Output Delivery

Overview - Circuit Evaluation

a b c d

a + b c + d

(a + b)(c + d)

+

×

+

• represented as arithmetic circuit over finite fieldf

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput +

×

+

[a] [b] [c] [d]

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

+

×

+

[a] [b] [c] [d]

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

+

×

+

[a] [b] [c] [d]

[e = a + b] [f = c + d]

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

+

×

+

[a] [b] [c] [d]

[e = a + b] [f = c + d]

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [f = c + d]

[x], [y], [z = xy]

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [f = c + d]

[x], [y], [z = xy] [e + x] → e + x
[f + y] → f + y

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [f = c + d]

[x], [y], [z = xy] [e + x] → e + x
[f + y] → f + y

[ef] = (e + x)(f + y) − (e + x)[f] − (f + y)[e] + [z]

Overview - Circuit Evaluation

• represented as arithmetic circuit over finite fieldf

• Shared circuit evaluation using a LSS scheme

• High throughput

• Linearity: p[x] + q[y] = [px + qy]

• Evaluation

• Addition gates: Locally evaluated

• Multiplication gates: Random and private
multiplication triples [Beaver91a]

+

×

+

[a] [b] [c] [d]

[e = a + b] [f = c + d]

[x], [y], [z = xy] [e + x] → e + x
[f + y] → f + y

[ef] = (e + x)(f + y) − (e + x)[f] − (f + y)[e] + [z]

𝖡𝖾𝖺𝗏𝖾𝗋

Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])

Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])
• Multiplication triple
• Triple known to party

Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol • Triple extraction protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])

([x], [y], [xy])

• Multiplication triple
• Triple known to party

Overview - Generating Multiplication Triples

• Triple generation framework of [CP17]

• Triple sharing protocol • Triple extraction protocol

([x1], [y1], [x1y1]) ([x2], [y2], [x2y2]) ([x3], [y3], [x3y3]) ([x4], [y4], [x4y4])

([x], [y], [xy])
• Multiplication triple
• Random and private triple

• Multiplication triple
• Triple known to party

Perfect HMPC

• Open Problem [PR18]: Perfectly secure MPC protocol over hybrid network

• Two synchronous rounds

• Tolerating corruptions

• With synchronous broadcast channel

• Guaranteed output delivery

• Input provision impossible in this setting [PR18]

t < n/3

Perfect HMPC - Linear Secret Sharing Scheme

• Replicated Secret Sharing [ISN89]

• [s] = (s1, s2, s3, s4)

• s = s1 + s2 + s3 + s4

Perfect HMPC - Linear Secret Sharing Scheme

• Replicated Secret Sharing [ISN89]

• [s] = (s1, s2, s3, s4)

• s = s1 + s2 + s3 + s4

• does not have Pi si

(s2, s3, s4)

P1 P2 P3 P4

(s3, s4, s1) (s4, s1, s2) (s1, s2, s3)

Perfect HMPC - Linear Secret Sharing Scheme

• Replicated Secret Sharing [ISN89]

• [s] = (s1, s2, s3, s4)

• s = s1 + s2 + s3 + s4

• does not have Pi si

• All other parties except
have

Pi
si

(s2, s3, s4)

P1 P2 P3 P4

(s3, s4, s1) (s4, s1, s2) (s1, s2, s3)

Perfect HMPC - Linear Secret Sharing Scheme

• Replicated Secret Sharing [ISN89]

• [s] = (s1, s2, s3, s4)

• s = s1 + s2 + s3 + s4

• does not have Pi si

• All other parties except
have

Pi
si

(s2, s3, s4)

P1 P2 P3 P4

(s3, s4, s1) (s4, s1, s2) (s1, s2, s3)

[cs] = (cs1, cs2, cs3, cs4)
[s + s′￼] = (s1 + s′￼1, s2 + s′￼2, s3 + s′￼3, s4 + s′￼4)

Perfect HMPC - Linear Secret Sharing Scheme

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

Pj si Pi

Pi
si

si
si si

s = s1 + s2 + s3 + s4

𝖱𝖾𝖼𝗈𝗇

Perfect HMPC - Linear Secret Sharing Scheme

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

Pj si Pi

Pi
si

si
si si

s = s1 + s2 + s3 + s4

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

Perfect HMPC - Linear Secret Sharing Scheme

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

Pj si Pi

Pi
si

• VSS with Party Elimination

• Secret sharing or dispute set

si
si si

s = s1 + s2 + s3 + s4

𝖲𝗁

s [s]
Dealer

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

Perfect HMPC - Linear Secret Sharing Scheme

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

• VSS with Party Elimination

• Secret sharing or dispute set

Pj si Pi

Pi
si

si
si si

s = s1 + s2 + s3 + s4

𝖲𝗁

s

Dealer

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

Perfect HMPC - Linear Secret Sharing Scheme

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

• VSS with Party Elimination

• Secret sharing or dispute set

Pj si Pi

Pi
si

si
si si

s = s1 + s2 + s3 + s4

𝖲𝗁

s

Dealer

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

Perfect HMPC - Linear Secret Sharing Scheme

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

• VSS with Party Elimination

• Secret sharing or dispute set

Pj si Pi

Pi
si

si
si si

s = s1 + s2 + s3 + s4

𝖲𝗁

s

Dealer

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

Perfect HMPC - Linear Secret Sharing Scheme

si
si si

s = s1 + s2 + s3 + s4

𝖲𝗁

s

Dealer

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

• VSS with Party Elimination

• Secret sharing or dispute set

Pj si Pi

Pi
si

Perfect HMPC - Linear Secret Sharing Scheme

si
si si

s = s1 + s2 + s3 + s4

𝖲𝗁

s

Dealer

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

• VSS with Party Elimination

• Secret sharing or dispute set

Pj si Pi

Pi
si

Perfect HMPC - Linear Secret Sharing Scheme

si
si si

s = s1 + s2 + s3 + s4

𝖲𝗁

s [s′￼]

s′￼

Dealer

Completely
Asynchronous

𝖱𝖾𝖼𝗈𝗇

• Reconstruction

• sends to

• waits to receive 2 identical copies
of

• VSS with Party Elimination

• Secret sharing or dispute set

Pj si Pi

Pi
si

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D P1 P2 P3 P4

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D P1 P2 P3 P4

(a2, a3, a4) (b3, b4, b1) (c4, c1, c2) (d1, d2, d3)

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D P1 P2 P3 P4

(a2, a3, a4) (b3, b4, b1) (c4, c1, c2) (d1, d2, d3)

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D

• Round 2

• Parties broadcast masked shares

P1 P2 P3 P4

(a2, a3, a4) (b3, b4, b1) (c4, c1, c2) (d1, d2, d3)

P1

a3+ , a3+

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D

• Round 2

• Parties broadcast masked shares

• Local computation

• If shares inconsistent, output dispute
set

• Else output with secret shares

P1 P2 P3 P4

(a2, a3, a4) (b3, b4, b1) (c4, c1, c2) (d1, d2, d3)

P1

a3+ , a3+

a3+

a3+ b3+

b3+

≠

≠

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D

• Round 2

• Parties broadcast masked shares

• Local computation

• If shares inconsistent, output dispute
set

• Else output with secret shares

P1 P2 P3 P4

(a2, a3, a4) (b3, b4, b1) (c4, c1, c2) (d1, d2, d3)

P1

a3+ , a3+

a3+

a3+ b3+

b3+

≠

≠

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D

• Round 2

• Parties broadcast masked shares

• Local computation

• If shares inconsistent, output dispute
set

• Else output with secret shares

P1 P2 P3 P4

(a2, a3, a4) (b3, b4, b1) (c4, c1, c2) (d1, d2, d3)

P1

a3+ , a3+

a3+

a3+ b3+

b3+

≠

≠

Perfect HMPC - VSS with Party Elimination

• Round 1

• sends share to each party

• Parties exchange random pad for
each common element in share

D

• Round 2

• Parties broadcast masked shares

• Local computation

• If shares inconsistent, output dispute
set

• Else output with secret shares

P1 P2 P3 P4

(a2, a3, a4) (b3, b4, b1) (c4, c1, c2) (d1, d2, d3)

P1

a3+ , a3+

a3+

a3+ b3+

b3+

≠

≠

⟹

Perfect HMPC - Triple Sharing with Party Elimination Functionality

• Triple sharing with Party Elimination

• Verified multiplication triple or dispute set

𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer

Perfect HMPC - Triple Sharing with Party Elimination Functionality

• Triple sharing with Party Elimination

• Verified multiplication triple or dispute set

[x], [y], [xy]
𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer

Perfect HMPC - Triple Sharing with Party Elimination Functionality

• Triple sharing with Party Elimination

• Verified multiplication triple or dispute set

[x], [y], [xy]
𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer 𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer

Perfect HMPC - Triple Sharing with Party Elimination Functionality

• Triple sharing with Party Elimination

• Verified multiplication triple or dispute set

[x], [y], [xy]
𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer 𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer

Perfect HMPC - Triple Sharing with Party Elimination Functionality

• Triple sharing with Party Elimination

• Verified multiplication triple or dispute set

[x], [y], [xy]
𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer 𝖳𝗋𝗂𝗉𝖲𝗁

x, y

Dealer

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fc(.)
2k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fc(.)
2k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fc(.)
2k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fc(.)
2k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

fc(.) = fa(.)fb(.)

If
multiplication

triples

2k + 1⟹

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fc(.)
2k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

fc(.) = fa(.)fb(.)

If
multiplication

triples

2k + 1⟹

xi, yi, zi

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fc(.)
2k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

fc(.) = fa(.)fb(.)

If
multiplication

triples

2k + 1⟹

ai, bi, zi

Perfect HMPC - Triple Transform Functionality

[x2k+1], [y2k+1], [z2k+1]
⋮

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

• Random triples correlated random triples→

• Completely asynchronous instantiation in [CP17]

[x2], [y2], [z2]
[x1], [y1], [z1]

fb(.)
k

fc(.)
2k

fa(.)
k

[a1] [b1] [c1]
[a2]

[a2k+1]

[b2]

[b2k+1]

[c2]

[c2k+1]

⋮

[ai]
⋮

⋮

[bi]
⋮

⋮

[ci]
⋮

fa(i) = ai fb(i) = bi fc(i) = ci

If zi = xiyi ci = aibi

fc(.) = fa(.)fb(.)

If
multiplication

triples

2k + 1⟹

ai, bi, zi

Perfect HMPC - Triple Sharing with Party Elimination Protocol

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

x1y1
x2y2
x3y3

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4]

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4]

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4]

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4]

fa(.) fb(.) fc(.)

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

fa(.) fb(.) fc(.)

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′￼i]

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′￼i]−[ci] 𝖱𝖾𝖼𝗈𝗇

≠ 0

Pi

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′￼i]

if all checks hold

fc(.) = fa(.)fb(.)

−[ci] 𝖱𝖾𝖼𝗈𝗇
≠ 0

Pi

𝖲𝗁

Perfect HMPC - Triple Sharing with Party Elimination Protocol

x1 y1
x2
x3

y2
y3

u1 v1

u2 v2 u3 v3 u4 v4
x1y1
x2y2
x3y3
u1v1

u2v2 u3v3 u4v4

[x1] [y1]
[x2]
[x3]

[y2]
[y3]

[z1]
[z2]
[z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌
[u1] [v1]
[u2]
[u3]

[v2]
[v3]

[w1]
[w2]
[w3]

[u4] [v4] [w4][a4] [b4] [c4]

[ui] [vi] [wi]
[ai] [bi] 𝖡𝖾𝖺𝗏𝖾𝗋 [c′￼i]

if all checks hold

fc(.) = fa(.)fb(.)

−[ci] 𝖱𝖾𝖼𝗈𝗇
≠ 0

Pi

[fa(5)], [fb(5)], [fc(5)]

𝖲𝗁

Perfect HMPC - Triple Generation with Party Elimination

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

Perfect HMPC - Triple Generation with Party Elimination

𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

Perfect HMPC - Triple Generation with Party Elimination

𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

Perfect HMPC - Triple Generation with Party Elimination

𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

Perfect HMPC - Triple Generation with Party Elimination

𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

Perfect HMPC - Triple Generation with Party Elimination

𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

[fc(4)][fb(4)][fa(4)]

Perfect HMPC - Triple Generation with Party Elimination

𝖳𝗋𝗂𝗉𝖲𝗁 [x1] [y1] [z1]

𝖳𝗋𝗂𝗉𝖲𝗁 [x2] [y2] [z2]

𝖳𝗋𝗂𝗉𝖲𝗁 [x3] [y3] [z3]

[a1] [b1]
[a2]
[a3]

[b2]
[b3]

[c1]
[c2]
[c3]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

Random and private
multiplication triple.

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

[fc(4)][fb(4)][fa(4)]

Perfect HMPC

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases

• Triple generation phase

• Input phase

• Circuit evaluation and
output phase

𝖲𝗁

Circuit Evaluation
• Addition: Local
• Multiplication:
• Output:

𝖡𝖾𝖺𝗏𝖾𝗋
𝖱𝖾𝖼𝗈𝗇

Perfect HMPC

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases

• Triple generation phase

• Input phase

• Circuit evaluation and
output phase

𝖲𝗁

Perfect HMPC

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases

• Triple generation phase

• Input phase

• Circuit evaluation and
output phase

𝖲𝗁

Perfect HMPC

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases

• Triple generation phase

• Input phase

• Circuit evaluation and
output phase

𝖲𝗁

c

a b

d

Perfect HMPC

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases

• Triple generation phase

• Input phase

• Circuit evaluation and
output phase

𝖲𝗁

f(a, b, c, d)

f(a, b, c, d) f(a, b, c, d)

c

a b

d

Perfect HMPC

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

• 3 phases

• Triple generation phase

• Input phase

• Circuit evaluation and
output phase

𝖲𝗁

f(a, b, c, d)

f(a, b, c, d) f(a, b, c, d)

c

a b

d

Can wait for
input of at most

2 parties.

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4

s1 s1 s1 s1

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4

s1 s1 s1 s1s2 s2 s2

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4

s1 s1 s1 s1s2 s2 s2s3 s3 s3

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4

s1 s1 s1 s1s2 s2 s2s3 s3 s3r r r

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4

s1 s1 s1 s1s2 s2 s2s3 s3 s3r r r

α = s − s1 − s2 − s3 − r

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

P2 P3 P4

P1 P3 P4

P4P1 P2

P1 P2 P3

P1 P3 P4P2

P1 P2 P3 P4

s1 s1 s1 s1s2 s2 s2s3 s3 s3r r r

α = s − s1 − s2 − s3 − r

(s2, s3, α + r) (s3, α + r, s1) (α + r, s1, s2) (s1, s2, s3)

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

• Efficient reconstruction protocol

𝖱𝖾𝖼𝗈𝗇

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

• Efficient reconstruction protocol

𝖱𝖾𝖼𝗈𝗇

s i

s i

H(s i)

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

• Efficient reconstruction protocol

s = s 1 + s 2 + s 3 + s 4

𝖱𝖾𝖼𝗈𝗇

s i

s i

H(s i)

Cryptographically Secure HMPC - Secret Sharing and Reconstruction

• Assume symmetric-key setup for PRF [AFL+16,CCP+19,MR18]

• One synchronous round VSS protocol

• Efficient reconstruction protocol

s = s 1 + s 2 + s 3 + s 4
Completely

Asynchronous

𝖱𝖾𝖼𝗈𝗇

s i

s i

H(s i)

Cryptographically Secure HMPC - Triple Generation Protocol

• Triple sharing similar to

• Dealer shares triples
instead of 3 triples

• Other parties don’t share
triples

𝖳𝗋𝗂𝗉𝖲𝗁

2l + 1

Cryptographically Secure HMPC - Triple Generation Protocol

• Triple sharing similar to

• Dealer shares triples
instead of 3 triples

• Other parties don’t share
triples

𝖳𝗋𝗂𝗉𝖲𝗁

2l + 1
[x2l+1], [y2l+1], [z2l+1]

⋮
[x2], [y2], [z2]
[x1], [y1], [z1]

Cryptographically Secure HMPC - Triple Generation Protocol

• Triple sharing similar to

• Dealer shares triples
instead of 3 triples

• Other parties don’t share
triples

𝖳𝗋𝗂𝗉𝖲𝗁

2l + 1
[x2l+1], [y2l+1], [z2l+1]

⋮
[x2], [y2], [z2]
[x1], [y1], [z1]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

[a1] [b1] [c1]
[a2]

[a2l+1]

[b2]

[b2l+1]

[c2]

[c2l+1]
⋮ ⋮ ⋮

Cryptographically Secure HMPC - Triple Generation Protocol

• Triple sharing similar to

• Dealer shares triples
instead of 3 triples

• Other parties don’t share
triples

𝖳𝗋𝗂𝗉𝖲𝗁

2l + 1
[x2l+1], [y2l+1], [z2l+1]

⋮
[x2], [y2], [z2]
[x1], [y1], [z1]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

[a1] [b1] [c1]
[a2]

[a2l+1]

[b2]

[b2l+1]

[c2]

[c2l+1]
⋮ ⋮ ⋮

r

Cryptographically Secure HMPC - Triple Generation Protocol

• Triple sharing similar to

• Dealer shares triples
instead of 3 triples

• Other parties don’t share
triples

𝖳𝗋𝗂𝗉𝖲𝗁

2l + 1
[x2l+1], [y2l+1], [z2l+1]

⋮
[x2], [y2], [z2]
[x1], [y1], [z1]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

[a1] [b1] [c1]
[a2]

[a2l+1]

[b2]

[b2l+1]

[c2]

[c2l+1]
⋮ ⋮ ⋮

fa(.) fb(.) fc(.)

r

[fc(r)], [fa(r)], [fb(r)] 𝖱𝖾𝖼𝗈𝗇 fc(r) ?= fa(r)fb(r)

Cryptographically Secure HMPC - Triple Generation Protocol

• Triple sharing similar to

• Dealer shares triples
instead of 3 triples

• Other parties don’t share
triples

𝖳𝗋𝗂𝗉𝖲𝗁

2l + 1
[x2l+1], [y2l+1], [z2l+1]

⋮
[x2], [y2], [z2]
[x1], [y1], [z1]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

[a1] [b1] [c1]
[a2]

[a2l+1]

[b2]

[b2l+1]

[c2]

[c2l+1]
⋮ ⋮ ⋮

fa(.) fb(.) fc(.)

r

[fc(r)], [fa(r)], [fb(r)] 𝖱𝖾𝖼𝗈𝗇 fc(r) ?= fa(r)fb(r)

 multiplication triplesl
 shares of l ([0], [0], [0])

Cryptographically Secure HMPC - Triple Generation Protocol

• Triple sharing similar to

• Dealer shares triples
instead of 3 triples

• Other parties don’t share
triples

𝖳𝗋𝗂𝗉𝖲𝗁

2l + 1

• Triple generation similar to

• Each instance outputs
triples

𝖳𝗋𝗂𝗉𝖦𝖾𝗇

l

[x2l+1], [y2l+1], [z2l+1]
⋮

[x2], [y2], [z2]
[x1], [y1], [z1]

𝖳𝗋𝗂𝗉𝖳𝗋𝖺𝗇𝗌

[a1] [b1] [c1]
[a2]

[a2l+1]

[b2]

[b2l+1]

[c2]

[c2l+1]
⋮ ⋮ ⋮

fa(.) fb(.) fc(.)

r

[fc(r)], [fa(r)], [fb(r)] 𝖱𝖾𝖼𝗈𝗇 fc(r) ?= fa(r)fb(r)

 multiplication triplesl
 shares of l ([0], [0], [0])

Cryptographically Secure HMPC and AMPC

• Cryptographically secure HMPC

• Triple generation phase and input phase use 1 synchronous round

• Circuit evaluation is completely asynchronous

• Input provision

Cryptographically Secure HMPC and AMPC

• Cryptographically secure HMPC

• Triple generation phase and input phase use 1 synchronous round

• Circuit evaluation is completely asynchronous

• Input provision

• Cryptographically secure AMPC

• Similar to Cryptographically secure HMPC

• No synchronous broadcast and

• No input provision

⟹ 𝖠𝖢𝖺𝗌𝗍 𝖠𝖢𝖲

Conclusion

0 1 2 3 4
Number of A೯ected Parties

0.0

0.5

1.0

1.5

2.0

2.5

La
te
nc

y
(s
)

0 1 2 3 4
Number of A೯ected Parties

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
te
nc

y
(s
)

LAN WAN

Conclusion

• Open problems

• Perfect HMPC protocol for general case

• Bridging the gap between synchronous and asynchronous MPC protocols

0 1 2 3 4
Number of A೯ected Parties

0.0

0.5

1.0

1.5

2.0

2.5

La
te
nc

y
(s
)

0 1 2 3 4
Number of A೯ected Parties

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
te
nc

y
(s
)

LAN WAN

References
• [Beaver91a] - D. Beaver. Efficient Multiparty Protocols Using Circuit Randomization. CRYPTO 1991.

• [BHN10] - Z. Beerliová-Trubíniová, M. Hirt, and J. B. Nielsen. On the Theoretical Gap between Synchronous and Asynchronous MPC Protocols. PODC
2010.

• [CHP13] - A. Choudhury, M. Hirt, and A. Patra. Asynchronous multiparty computation with linear communication complexity. DISC 2013.

• [AFL+16] - T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest
Majority. CCS 2016.

• [CP17] - A. Choudhury and A. Patra. An Efficient Framework for Unconditionally Secure Multiparty Computation. IEEE Trans. Information Theory 2017.

• [MR18] - P. Mohassel and P. Rindal. ABY3: A Mixed Protocol Framework for Machine Learning. CCS 2018.

• [PR18] - A. Patra and D. Ravi. On the Power of Hybrid Networks in Multi-Party Computation. IEEE Trans. Information Theory 2018.

• [CCP+19] - H. Chaudhari, A. Choudhury, A. Patra, and A. Suresh. ASTRA: High Throughput 3PC over Rings with Application to Secure Prediction. In
CCSW@CCS 2019.

Thank You

