
Enhanced Trapdoor Hashing from DDH and DCR

Aditya Hegde
JHU

EUROCRYPT 2025

Geoffroy Couteau
CNRS, IRIF

Universitè Paris Citè

Sihang Pu
CNRS, IRIF

Universitè Paris Citè

Setting: Two-Round Sender-Receiver Computation

x y

Public function 𝖥

Sender Receiver

Setting: Two-Round Sender-Receiver Computation

x y

Public function 𝖥

Sender Receiver

Setting: Two-Round Sender-Receiver Computation

x y

Public function 𝖥

Sender Receiver

Setting: Two-Round Sender-Receiver Computation

x y

Public function 𝖥

𝖥(x, y)

Sender Receiver

Setting: Two-Round Sender-Receiver Computation

x y

Public function 𝖥

𝖥(x, y)

Sender Receiver

Privacy: does not learn y

does not learn x

Setting: Two-Round Sender-Receiver Computation

x y

Public function 𝖥

𝖥(x, y)

Sender Receiver

Privacy: does not learn y

does not learn x

What is the minimum communication cost of semi-honest secure protocols?

Setting: Two-Round Sender-Receiver Computation

X y

Public function 𝖥

𝖥(X, y)

Sender Receiver

Privacy: does not learn y

does not learn X

What is the minimum communication cost of semi-honest secure protocols?

Long input Short input

Ideal World Two-Round Sender-Receiver Computation

X y

Public function 𝖥

Sender Receiver

Ideal World Two-Round Sender-Receiver Computation

X y

Public function 𝖥

Sender Receiver

y

Ideal World Two-Round Sender-Receiver Computation

X y

Public function 𝖥

Sender Receiver

y

F(X, y)

Ideal World Two-Round Sender-Receiver Computation

X y

Public function 𝖥

Sender Receiver

y

F(X, y)

Total communication: |y | + |F(X, y) |

Ideal World Two-Round Sender-Receiver Computation

X y

Public function 𝖥

Sender Receiver

y

F(X, y)

Total communication: |y | + |F(X, y) |

Can secure protocols achieve similar efficiency?

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

Public function 𝖥

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

𝖾𝗄y
𝗍𝖽

Public function 𝖥

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

𝖾𝗄y
𝗍𝖽

h ← 𝖧𝖺𝗌𝗁(X)

Public function 𝖥

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

𝖾𝗄y
𝗍𝖽

h ← 𝖧𝖺𝗌𝗁(X)
e ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖾𝗄y, X)

Public function 𝖥

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

𝖾𝗄y
𝗍𝖽

h ← 𝖧𝖺𝗌𝗁(X)
e ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖾𝗄y, X) h, e

F(X, y) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, h, e)

Public function 𝖥

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

𝖾𝗄y
𝗍𝖽

h ← 𝖧𝖺𝗌𝗁(X)
e ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖾𝗄y, X) h, e

F(X, y) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, h, e)

Public function 𝖥

Privacy: hides 𝖾𝗄y y

 hides (h, e) X

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

𝖾𝗄y
𝗍𝖽

h ← 𝖧𝖺𝗌𝗁(X)
e ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖾𝗄y, X) h, e

F(X, y) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, h, e)

Public function 𝖥

Privacy: hides 𝖾𝗄y y

 hides (h, e) X

Efficiency: is small i.e., h |h | = o(|X |) ⋅ 𝗉𝗈𝗅𝗒(λ)

Trapdoor Hash Functions (TDH)
[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

X y

𝖾𝗄y
𝗍𝖽

h ← 𝖧𝖺𝗌𝗁(X)
e ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖾𝗄y, X) h, e

F(X, y) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, h, e)

Public function 𝖥

Privacy: hides 𝖾𝗄y y

 hides (h, e) X

Efficiency: is small i.e., h |h | = o(|X |) ⋅ 𝗉𝗈𝗅𝗒(λ)
 has high rate i.e., e |e | ≈ |F(X, y) | Rate:

|F(X, y) |
|e |

Trapdoor Hash Functions (TDH)

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

Trapdoor Hash Functions (TDH)

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

F(X, y) = ∑
i

xi ⋅ yi

Trapdoor Hash Functions (TDH)

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

O(λ ⋅ |y |)

F(X, y) = ∑
i

xi ⋅ yi

Trapdoor Hash Functions (TDH)

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

O(λ ⋅ |y |)

𝗉𝗈𝗅𝗒(λ)

F(X, y) = ∑
i

xi ⋅ yi

Trapdoor Hash Functions (TDH)

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

O(λ ⋅ |y |)

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

F(X, y) = ∑
i

xi ⋅ yi

Trapdoor Hash Functions (TDH)

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

O(λ ⋅ |y |)

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

Assumptions: DCR, DDH, QR, LWE

F(X, y) = ∑
i

xi ⋅ yi

Trapdoor Hash Functions (TDH)

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

O(λ ⋅ |y |)

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

Assumptions: DCR, DDH, QR, LWE

F(X, y) = ∑
i

xi ⋅ yi

Can we improve the functionality of TDH
from group-based assumptions?

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

h, e

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

h, e

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

F(X, y) =
n

∑
i=1

fi(X) ⋅ gi(y)

𝖭𝖢1

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

h, e

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

F(X, y) =
n

∑
i=1

fi(X) ⋅ gi(y)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

|y | + 𝗉𝗈𝗅𝗒(λ) ⋅ |y | 2/3

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

Reusability

Reusable encoding key with
functions chosen on-the-fly

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

Reusability

Reusable encoding key with
functions chosen on-the-fly

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

Reusability

Reusable encoding key with
functions chosen on-the-fly

F1 F2 F3

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

Reusability

Reusable encoding key with
functions chosen on-the-fly

F1 F2 F3

h ← 𝖧𝖺𝗌𝗁(X)

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

Reusability

Reusable encoding key with
functions chosen on-the-fly

F1 F2 F3

h ← 𝖧𝖺𝗌𝗁(X)
e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄y, X)
e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄y, X)
e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄y, X)

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

h, e1, e2, e3

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

Reusability

Reusable encoding key with
functions chosen on-the-fly

F1 F2 F3

h ← 𝖧𝖺𝗌𝗁(X)
e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄y, X)
e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄y, X)
e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄y, X)

F1(X, y) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, h, e1)
F2(X, y) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, h, e2)
F3(X, y) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, h, e3)

Enhanced Trapdoor Hash Functions from DDH and DCR

X y𝖾𝗄y

h, e

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

𝗉𝗈𝗅𝗒(λ) |F(X, y) |

This work

X y𝖾𝗄y

h, e

F(X, y) = ∑
i

xi ⋅ yi

O(λ ⋅ |y |)

F(X, y) =
n

∑
i=1

fi(X) ⋅ gi(y)

Expressivity
Supports computing

Bilinear- programs𝖭𝖢1

Compactness
Encoding keys of size

|y | (1 + o(1))

|y | + 𝗉𝗈𝗅𝗒(λ) ⋅ |y | 2/3

Reusability

Reusable encoding key with
functions chosen on-the-fly

DDH: |F(X, y) | ⋅ (1 + 1/λ)
DCR: |F(X, y) |

Applications 1: Compactness

Batch-OT with optimal rate from DDH

OT
α
β α

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

…y =X= α1, …, αn, β1, …, βn

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

𝖾𝗄y

h e

…y =X= α1, …, αn, β1, …, βn

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

𝖾𝗄y

h e

o(n)

…y =X= α1, …, αn, β1, …, βn

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

𝖾𝗄y

h e

o(n) n ⋅ (1 + o(1))

…y =X= α1, …, αn, β1, …, βn

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

𝖾𝗄y

h e

o(n) n ⋅ (1 + o(1))

n ⋅ (1 + o(1)) …y =X= α1, …, αn, β1, …, βn

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

𝖾𝗄y

h e

o(n) n ⋅ (1 + o(1))

n ⋅ (1 + o(1)) …y =X= α1, …, αn, β1, …, βn

Communication: bits2 ⋅ n ⋅ (1 + o(1))

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

𝖾𝗄y

h e

o(n) n ⋅ (1 + o(1))

n ⋅ (1 + o(1)) …y =X= α1, …, αn, β1, …, βn

Communication: bits2 ⋅ n ⋅ (1 + o(1))

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Applications 1: Compactness

Batch-OT with optimal rate from DDH

Batch-OT
α1

β1

…α2 αn…

β2…βn α1 β2 αn…

Ideal World Communication: bits2n

𝖾𝗄y

h e

o(n) n ⋅ (1 + o(1))

n ⋅ (1 + o(1)) …y =X= α1, …, αn, β1, …, βn

Communication: bits2 ⋅ n ⋅ (1 + o(1))

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Before:
[Brakerski-Branco-Döttling-Pu’22]:

DDH + LPN

[Boyle-Giboa-Ishai’17]:

 bits communicationn ⋅ (4 + o(1))

 rate1 + o(1)

DDH

PKI setup

Applications 1: Compactness

Batch-OT with optimal rate from DDH

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu’22]:
DDH + LPN

[Boyle-Giboa-Ishai’17]:
 bits communicationn ⋅ (4 + o(1))

 rate1 + o(1) DDH

PKI setup

Applications 1: Compactness

Batch-OT with optimal rate from DDH

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu’22]:
DDH + LPN

[Boyle-Giboa-Ishai’17]:
 bits communicationn ⋅ (4 + o(1))

 rate1 + o(1) DDH

PKI setup

Implications of Batch-OT with optimal rate

Applications 1: Compactness

Batch-OT with optimal rate from DDH

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu’22]:
DDH + LPN

[Boyle-Giboa-Ishai’17]:
 bits communicationn ⋅ (4 + o(1))

 rate1 + o(1) DDH

PKI setup

Implications of Batch-OT with optimal rate

String OT: bits sender-to-receiver communication and bits receiver-to-sender communicationo(n) n ⋅ (1 + o(1))

Applications 1: Compactness

Batch-OT with optimal rate from DDH

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu’22]:
DDH + LPN

[Boyle-Giboa-Ishai’17]:
 bits communicationn ⋅ (4 + o(1))

 rate1 + o(1) DDH

PKI setup

Implications of Batch-OT with optimal rate

String OT: bits sender-to-receiver communication and bits receiver-to-sender communicationo(n) n ⋅ (1 + o(1))

Lossy Trapdoor Functions (LTDF): Rate-1 LTDF with public key size bitsn ⋅ (1 + o(1))
Rate-1 LTDF with public key size bits with CRS o(n)

Applications 1: Compactness

Batch-OT with optimal rate from DDH

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu’22]:
DDH + LPN

[Boyle-Giboa-Ishai’17]:
 bits communicationn ⋅ (4 + o(1))

 rate1 + o(1) DDH

PKI setup

Implications of Batch-OT with optimal rate

String OT: bits sender-to-receiver communication and bits receiver-to-sender communicationo(n) n ⋅ (1 + o(1))

Lossy Trapdoor Functions (LTDF): Rate-1 LTDF with public key size bitsn ⋅ (1 + o(1))
Rate-1 LTDF with public key size bits with CRS o(n)

Private Information Retrieval:
Database size: 2n

Client computation 𝗉𝗈𝗅𝗒(n, λ)
Upload communication bitsn + 𝗉𝗈𝗅𝗒(λ)
Download communication bitsn ⋅ 𝗉𝗈𝗅𝗒(λ)

Applications 1: Compactness

Batch-OT with optimal rate from DDH

This Work: rate1 + o(1)
Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu’22]:
DDH + LPN

[Boyle-Giboa-Ishai’17]:
 bits communicationn ⋅ (4 + o(1))

 rate1 + o(1) DDH

PKI setup

Implications of Batch-OT with optimal rate

String OT: bits sender-to-receiver communication and bits receiver-to-sender communicationo(n) n ⋅ (1 + o(1))

Lossy Trapdoor Functions (LTDF): Rate-1 LTDF with public key size bitsn ⋅ (1 + o(1))
Rate-1 LTDF with public key size bits with CRS o(n)

Private Information Retrieval:
Database size: 2n

Client computation 𝗉𝗈𝗅𝗒(n, λ)
Upload communication bitsn + 𝗉𝗈𝗅𝗒(λ)
Download communication bitsn ⋅ 𝗉𝗈𝗅𝗒(λ)

Other Implications
Branching programs over

encrypted data
Correlated symmetric PIR

Applications 2: Compactness + Expressivity

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Applications 2: Compactness + Expressivity

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear- -depth circuits𝖭𝖢1 ⊇ log log

Applications 2: Compactness + Expressivity

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear- -depth circuits𝖭𝖢1 ⊇ log log

This Work: |x | + (2 + o(1)) ⋅
|C |

log log |C |
+ |y | 2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) bits communication

Applications 2: Compactness + Expressivity

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear- -depth circuits𝖭𝖢1 ⊇ log log

This Work: |x | + (2 + o(1)) ⋅
|C |

log log |C |
+ |y | 2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) bits communication

Linear communication in
computationally secure input

Sublinear communication in
statistically secure input

Applications 2: Compactness + Expressivity

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear- -depth circuits𝖭𝖢1 ⊇ log log

This Work: |x | + (2 + o(1)) ⋅
|C |

log log |C |
+ |y | 2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) bits communication

Linear communication in
computationally secure input

Sublinear communication in
statistically secure input

Sublinear in size of circuit

Applications 2: Compactness + Expressivity

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear- -depth circuits𝖭𝖢1 ⊇ log log

This Work: |x | + (2 + o(1)) ⋅
|C |

log log |C |
+ |y | 2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) bits communication

Linear communication in
computationally secure input

Sublinear communication in
statistically secure input

Sublinear in size of circuit

Before: Similar results only known from FHE

Applications 2: Compactness + Expressivity

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear- -depth circuits𝖭𝖢1 ⊇ log log

This Work: |x | + (2 + o(1)) ⋅
|C |

log log |C |
+ |y | 2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) bits communication

Linear communication in
computationally secure input

Sublinear communication in
statistically secure input

Sublinear in size of circuit

Before: Similar results only known from FHE

[Couteau-Meyer-Passelégue-Riahinia’23]: |x |+ |y |+
|C |

log log |C |
+ 𝗉𝗈𝗅𝗒(λ)

Circular security of Paillier

Layered circuits over ℤN

bits communication

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Pre-processing

Public function 𝖥

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Pre-processing

y1

Public function 𝖥

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Pre-processing

y1

Public function 𝖥

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Pre-processing

y1

𝖥(X, y1)

Public function 𝖥

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Pre-processing

y1

𝖥(X, y1)

Public function 𝖥

y2

𝖥(X, y2)

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Pre-processing

y1

𝖥(X, y1)

Public function 𝖥

y2

𝖥(X, y2)

⋮

y3

𝖥(X, y3)

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

h ← 𝖧𝖺𝗌𝗁(X)
h

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h 𝖾𝗄k

𝗍𝖽

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)

𝖾𝗄k
𝗍𝖽

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1

𝖾𝗄k
𝗍𝖽

 ensures privacy of z1 y1

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

𝖾𝗄k
𝗍𝖽

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄k, X) e1

𝖾𝗄k
𝗍𝖽

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄k, X) e1 F(X, y1) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e1, h)

𝖾𝗄k
𝗍𝖽

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄k, X) e1 F(X, y1) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e1, h)

𝖾𝗄k
𝗍𝖽

z2 = y2 ⊕ 𝖯𝖱𝖥(k, 2)
z2𝖥𝟤(X, k) = F(X, z2 ⊕ 𝖯𝖱𝖥(k, 2))

e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄k, X)
e2 F(X, y2) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e2, h)
⋮

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1

e1 F(X, y1) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e1, h)

𝖾𝗄k
𝗍𝖽

z2 = y2 ⊕ 𝖯𝖱𝖥(k, 2)
z2

e2 F(X, y2) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e2, h)
⋮

𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄k, X)

𝖥𝟤(X, k) = F(X, z2 ⊕ 𝖯𝖱𝖥(k, 2))

e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄k, X)

Reusability Encoding of can be reused
with functions chosen on-the-fly

⟹ k

𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

𝖥𝟤(X, k) = F(X, z2 ⊕ 𝖯𝖱𝖥(k, 2))

e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄k, X)

Applications 3: Compactness + Expressivity + Reusability
Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

F(X, y1) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e1, h)

𝖾𝗄k
𝗍𝖽

z2 = y2 ⊕ 𝖯𝖱𝖥(k, 2)
z2

e2 F(X, y2) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e2, h)
⋮

e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄k, X)

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1

e1

|z1 | = |y1 |

DCR: |e1 | = |F(X, k) |

Optimal communication per query from DCR

Applications 3: Compactness + Expressivity + Reusability

Optimal preprocessing symmetric Private Information Retrieval from DCR

|X |= n
n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ)

log n

1

Applications 3: Compactness + Expressivity + Reusability

Optimal preprocessing symmetric Private Information Retrieval from DCR

|X |= n
n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ)

log n

1

Rate- Private Set Intersection (PSI) and Fuzzy-PSI from DCR
1
2

|X |= n
n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ)

|y | y
|y | PSI: y ∈ X

Fuzzy-PSI: Is close to an element in y X

Constructing Enhanced TDH

Constructing Enhanced TDH

+Staged Homomorphic Secret Sharing

[Couteau-Meyer-Passelégue-Riahinia’23]

Trapdoor Hash Functions

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

Alternative view: Extending Succinct HSS [Abram-Roy-Scholl’24] using Staged HSS

Staged Homomorphic Secret Sharing

X y

Staged Homomorphic Secret Sharing

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Staged Homomorphic Secret Sharing

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

Staged Homomorphic Secret Sharing

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Staged Homomorphic Secret Sharing

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Staged Homomorphic Secret Sharing

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B
𝗈𝗎𝗍A + 𝗈𝗎𝗍A = F(X, y)

Bilinear- program𝖭𝖢1

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Staged Homomorphic Secret Sharing

y
𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B
𝗈𝗎𝗍A + 𝗈𝗎𝗍A = F(X, y)

Bilinear- programs𝖭𝖢1

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Key Ingredient: Secure and succinct protocol to distribute input shares

Staged Homomorphic Secret Sharing

y
𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B
𝗈𝗎𝗍A + 𝗈𝗎𝗍A = F(X, y)

Bilinear- programs𝖭𝖢1

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Key Ingredient: Secure and succinct protocol to distribute input shares

Staged Homomorphic Secret Sharing

y
𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B
𝗈𝗎𝗍A + 𝗈𝗎𝗍A = F(X, y)

Bilinear- programs𝖭𝖢1

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Key Ingredient: Secure and succinct protocol to distribute input shares

𝗌𝗁𝖺𝗋𝖾A

Staged Homomorphic Secret Sharing

y
𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B
𝗈𝗎𝗍A + 𝗈𝗎𝗍A = F(X, y)

Bilinear- programs𝖭𝖢1

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Key Ingredient: Secure and succinct protocol to distribute input shares

𝗌𝗁𝖺𝗋𝖾A

Staged Homomorphic Secret Sharing

y
𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B
𝗈𝗎𝗍A + 𝗈𝗎𝗍A = F(X, y)

Bilinear- programs𝖭𝖢1

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Key Ingredient: Secure and succinct protocol to distribute input shares

𝗌𝗁𝖺𝗋𝖾A

𝗌𝗁𝖺𝗋𝖾B

Staged Homomorphic Secret Sharing

y
𝖼𝗍y ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, y)

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾A

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍A

𝖼𝗍y 𝗌𝗁𝖺𝗋𝖾B

𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅

𝗈𝗎𝗍B
𝗈𝗎𝗍A + 𝗈𝗎𝗍A = F(X, y)

Bilinear- programs𝖭𝖢1

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X

𝗌𝗁𝖺𝗋𝖾A, 𝗌𝗁𝖺𝗋𝖾B ← 𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)

Key Ingredient: Secure and succinct protocol to distribute input shares

𝗉𝗈𝗅𝗒(λ) ⋅ o(|X |)𝗌𝗁𝖺𝗋𝖾A

𝗌𝗁𝖺𝗋𝖾B

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

X y
Public function 𝖥

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

, 𝗈𝗎𝗍A

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

, 𝗈𝗎𝗍A

Compute from 𝗌𝗁𝖺𝗋𝖾B

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

, 𝗈𝗎𝗍A

Compute from 𝗌𝗁𝖺𝗋𝖾B

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾B
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅𝗈𝗎𝗍B

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

, 𝗈𝗎𝗍A

Compute from 𝗌𝗁𝖺𝗋𝖾B

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾B
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅𝗈𝗎𝗍B

𝗈𝗎𝗍A + 𝗈𝗎𝗍B = F(X, y)

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

, 𝗈𝗎𝗍A

Compute from 𝗌𝗁𝖺𝗋𝖾B

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾B
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅𝗈𝗎𝗍B

𝗈𝗎𝗍A + 𝗈𝗎𝗍B = F(X, y)

Encoding key 𝖾𝗄y

|𝖾𝗄y | = |y | (1 + o(1))

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

, 𝗈𝗎𝗍A

Compute from 𝗌𝗁𝖺𝗋𝖾B

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾B
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅𝗈𝗎𝗍B

𝗈𝗎𝗍A + 𝗈𝗎𝗍B = F(X, y)

Encoding key 𝖾𝗄y

|𝖾𝗄y | = |y | (1 + o(1))

Hash h
|h | = o(|X |) ⋅ 𝗉𝗈𝗅𝗒(λ)

Enhanced TDH = Staged HSS + Succinct Distribution of Shares

(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
𝖼𝗍k ← 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(𝗉𝗄, k)𝖼𝗍k, z,Compute from𝗌𝗁𝖺𝗋𝖾A

, 𝗈𝗎𝗍A

Compute from 𝗌𝗁𝖺𝗋𝖾B

Evaluate: 𝖥′ (X, k) = F(X, z ⊕ 𝖯𝖱𝖦(k))
𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾A
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅 𝗈𝗎𝗍A

𝖼𝗍k

𝗌𝗁𝖺𝗋𝖾B
𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅𝗈𝗎𝗍B

𝗈𝗎𝗍A + 𝗈𝗎𝗍B = F(X, y)

Encoding key 𝖾𝗄y

|𝖾𝗄y | = |y | (1 + o(1))

Hash h
|h | = o(|X |) ⋅ 𝗉𝗈𝗅𝗒(λ)

Encoding e
|e | = |F(X, y) |

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

gr1 grn…

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

gr1 grn…

 only consists of the random
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

gr1 grn…

 only consists of the random
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Attempt:

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

gr1 grn…

 only consists of the random
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Attempt:
k ← {0, 1}λ

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

gr1 grn…

 only consists of the random
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Attempt:

k, 𝗉𝗄
k ← {0, 1}λ

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

gr1 grn…

 only consists of the random
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Attempt:

k, 𝗉𝗄

g𝗌𝗄⋅r1 … g𝗌𝗄⋅rn

k ← {0, 1}λ

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

gr1 grn…

 only consists of the random
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Attempt:

k, 𝗉𝗄

g𝗌𝗄⋅r1 … g𝗌𝗄⋅rn

k ← {0, 1}λ

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…
Alice needs to compute but

sending this would be insecure
gb g𝗌𝗄⋅ri ⋅ gb⋅xi

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit of b 𝗌𝗄

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)

gr1 grn…

 only consists of the random
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Observation: Can be computed succinctly using techniques from
Trapdoor Hashing [Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

…

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= (
n

∏
i=1

gxi
i)

𝗌𝗄⋅r1

⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= (
n

∏
i=1

gxi
i)

𝗌𝗄⋅r1

⋅ gb⋅x1 = h𝗌𝗄⋅r1 ⋅ gb⋅x1

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= (
n

∏
i=1

gxi
i)

𝗌𝗄⋅r1

⋅ gb⋅x1

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

h𝗌𝗄⋅r1 ⋅ gb⋅x1

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= (
n

∏
i=1

gxi
i)

𝗌𝗄⋅r1

⋅ gb⋅x1

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

h𝗌𝗄⋅r1 ⋅ gb⋅x1

A change in “base” from to
does not affect staged HSS evaluation

g𝗌𝗄⋅r1 h𝗌𝗄⋅r1

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= (
n

∏
i=1

gxi
i)

𝗌𝗄⋅r1

⋅ gb⋅x1 h𝗌𝗄⋅r1 ⋅ gb⋅x1

A change in “base” from to
does not affect staged HSS evaluation

g𝗌𝗄⋅r1 h𝗌𝗄⋅r1

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

= h𝗌𝗄⋅r1 ⋅ gb⋅x1(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, r2 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r2
1 , g𝗌𝗄⋅r2

2 ⋅ gb, …, g𝗌𝗄⋅r2
n)

= h𝗌𝗄⋅r2 ⋅ gb⋅x2(g𝗌𝗄⋅r2
1 , g𝗌𝗄⋅r2

2 ⋅ gb, …, g𝗌𝗄⋅r2
n) ⋅ XT

= h𝗌𝗄⋅r1 ⋅ gb⋅x1(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

⋮

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

h

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

h hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

h hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

Hash needs to be
randomized for security

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n)

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

⋮

h

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n)

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

⋮

h

O(λ ⋅ n2)

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n)

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

⋮

h

O(λ ⋅ n2)

O(λ)

= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n) ⋅ XT

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n) ⋅ XT

⋮

hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n)

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

⋮

h

O(λ ⋅ n2)

O(λ)

Can be reused with multiple hashes
rebalancing gives total

communication

⟹
O(n2/3 ⋅ λ)

Conclusion

• Discussed approach assumes circular security of ElGamal. Constructing from plain DDH and DCR requires extending to
circular-secure variants [Boneh-Halevi-Hamburg-Ostrovsky’08] [Brakerski-Goldwasser’10]

• DDH-based Staged HSS evaluation has noticeable error probability which affects privacy. Requires developing new techniques
to build trapdoor hash functions

Conclusion

• Discussed approach assumes circular security of ElGamal. Constructing from plain DDH and DCR requires extending to
circular-secure variants [Boneh-Halevi-Hamburg-Ostrovsky’08] [Brakerski-Goldwasser’10]

• DDH-based Staged HSS evaluation has noticeable error probability which affects privacy. Requires developing new techniques
to build trapdoor hash functions

Thank You

