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Total communication: |y | + |F(X, y) |

Can secure protocols achieve similar efficiency? 
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Assumptions: DCR, DDH, QR, LWE

F(X, y) = ∑
i

xi ⋅ yi

Can we improve the functionality of TDH 
from group-based assumptions?
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Other Implications
Branching programs over 

encrypted data
Correlated symmetric PIR
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Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear-   -depth circuits𝖭𝖢1 ⊇ log log

This Work: |x | + (2 + o(1)) ⋅
|C |

log log |C |
+ |y | 2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) bits communication

Linear communication in 
computationally secure input

Sublinear communication in 
statistically secure input

Sublinear in size of circuit

Before: Similar results only known from FHE

[Couteau-Meyer-Passelégue-Riahinia’23]: |x |+ |y |+
|C |

log log |C |
+ 𝗉𝗈𝗅𝗒(λ)

Circular security of Paillier 

Layered circuits over ℤN

bits communication
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Public function 𝖥
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y3

𝖥(X, y3)
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Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1

e1 F(X, y1) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e1, h)

𝖾𝗄k
𝗍𝖽

z2 = y2 ⊕ 𝖯𝖱𝖥(k, 2)
z2

e2 F(X, y2) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e2, h)
⋮

𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄k, X)

𝖥𝟤(X, k) = F(X, z2 ⊕ 𝖯𝖱𝖥(k, 2))

e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄k, X)

Reusability  Encoding of  can be reused 
with functions chosen on-the-fly

⟹ k



𝖥𝟣(X, k) = F(X, z1 ⊕ 𝖯𝖱𝖥(k, 1))

𝖥𝟤(X, k) = F(X, z2 ⊕ 𝖯𝖱𝖥(k, 2))

e2 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥2, 𝖾𝗄k, X)
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Improving Communication in the Amortized Setting

X
Public function 𝖥

k ← {0,1}λ

h ← 𝖧𝖺𝗌𝗁(X)
h

y1

F(X, y1) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e1, h)

𝖾𝗄k
𝗍𝖽

z2 = y2 ⊕ 𝖯𝖱𝖥(k, 2)
z2

e2 F(X, y2) ← 𝖣𝖾𝖼𝗈𝖽𝖾(𝗍𝖽, e2, h)
⋮

e1 ← 𝖤𝗇𝖼𝗈𝖽𝖾(𝖥1, 𝖾𝗄k, X)

z1 = y1 ⊕ 𝖯𝖱𝖥(k, 1)
z1

e1

|z1 | = |y1 |

DCR: |e1 | = |F(X, k) |

Optimal communication per query from DCR
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Optimal preprocessing symmetric Private Information Retrieval from DCR

|X |= n
n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ)

log n

1

Rate-  Private Set Intersection (PSI) and Fuzzy-PSI from DCR
1
2

|X |= n
n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ) n2/3 ⋅ 𝗉𝗈𝗅𝗒(λ)

|y | y
|y | PSI: y ∈ X

Fuzzy-PSI: Is  close to an element in y X
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Constructing Enhanced TDH

+Staged Homomorphic Secret Sharing

[Couteau-Meyer-Passelégue-Riahinia’23]

Trapdoor Hash Functions

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

Alternative view: Extending Succinct HSS [Abram-Roy-Scholl’24] using Staged HSS
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|𝖾𝗄y | = |y | (1 + o(1))
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(𝗉𝗄, 𝗌𝗄) ← 𝖪𝖾𝗒𝖦𝖾𝗇(1λ)
X y

Public function 𝖥

k ← {0, 1}λ

z = y ⊕ 𝖯𝖱𝖦(k)
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𝖼𝗍k
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𝖲𝗍𝖺𝗀𝖾𝖽𝖤𝗏𝖺𝗅𝗈𝗎𝗍B

𝗈𝗎𝗍A + 𝗈𝗎𝗍B = F(X, y)

Encoding key 𝖾𝗄y

|𝖾𝗄y | = |y | (1 + o(1))

Hash h
|h | = o( |X | ) ⋅ 𝗉𝗈𝗅𝗒(λ)

Encoding e
|e | = |F(X, y) |
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Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit  of b 𝗌𝗄

gr1 grn…

 only consists of the random 
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Attempt:

k, 𝗉𝗄

g𝗌𝗄⋅r1 … g𝗌𝗄⋅rn

k ← {0, 1}λ

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…

r1, …, rn ← 𝖯𝖱𝖦(k)

gr1 grn…
Alice needs  to compute  but 

sending this would be insecure
gb g𝗌𝗄⋅ri ⋅ gb⋅xi

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)…



Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ x1) 𝖤𝗅𝖦𝖺𝗆𝖺𝗅(𝗉𝗄, b ⋅ xn)…

For each bit  of b 𝗌𝗄

=

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1) (gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)

gr1 grn…

 only consists of the random 
component of the ciphertext

𝗌𝗁𝖺𝗋𝖾B

𝖲𝗁𝖺𝗋𝖾(𝗉𝗄, X)
𝗌𝗁𝖺𝗋𝖾A 𝗌𝗁𝖺𝗋𝖾B

Observation: Can be computed succinctly using techniques from 
Trapdoor Hashing [Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

…
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄



Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮



Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

= (
n

∏
i=1

gxi
i )

𝗌𝗄⋅r1

⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

= (
n

∏
i=1

gxi
i )

𝗌𝗄⋅r1

⋅ gb⋅x1 = h𝗌𝗄⋅r1 ⋅ gb⋅x1



= h𝗌𝗄⋅r1 ⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

= (
n

∏
i=1

gxi
i )

𝗌𝗄⋅r1

⋅ gb⋅x1

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

h𝗌𝗄⋅r1 ⋅ gb⋅x1



= h𝗌𝗄⋅r1 ⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄gr1 … grn

Goal

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

= (
n

∏
i=1

gxi
i )

𝗌𝗄⋅r1

⋅ gb⋅x1

(gr1, g𝗌𝗄⋅r1 ⋅ gb⋅x1)

h𝗌𝗄⋅r1 ⋅ gb⋅x1

A change in “base” from  to  
does not affect staged HSS evaluation

g𝗌𝗄⋅r1 h𝗌𝗄⋅r1



= h𝗌𝗄⋅r1 ⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

= (
n

∏
i=1

gxi
i )

𝗌𝗄⋅r1

⋅ gb⋅x1 h𝗌𝗄⋅r1 ⋅ gb⋅x1

A change in “base” from  to  
does not affect staged HSS evaluation

g𝗌𝗄⋅r1 h𝗌𝗄⋅r1

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

= h𝗌𝗄⋅r1 ⋅ gb⋅x1(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, r2 ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r2
1 , g𝗌𝗄⋅r2

2 ⋅ gb, …, g𝗌𝗄⋅r2
n )

= h𝗌𝗄⋅r2 ⋅ gb⋅x2(g𝗌𝗄⋅r2
1 , g𝗌𝗄⋅r2

2 ⋅ gb, …, g𝗌𝗄⋅r2
n ) ⋅ XT

= h𝗌𝗄⋅r1 ⋅ gb⋅x1(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn



= h𝗌𝗄⋅r1 ⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n ) ⋅ XT

⋮

⋮

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn



= h𝗌𝗄⋅r1 ⋅ gb⋅x1

Succinct Distribution of Staged Input Shares
Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n ) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn



= h𝗌𝗄⋅r1 ⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n ) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

h

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn



= h𝗌𝗄⋅r1 ⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n ) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

h hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn



= h𝗌𝗄⋅r1 ⋅ gb⋅x1
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Structure of Staged Input Shares

X= (x1, …, xn)
𝔾, g
𝗌𝗄 ← ℤp

𝗉𝗄 = g𝗌𝗄

Goal

g1, …, gn ← 𝔾

r1, …rn ← ℤp

(g1, …, gn)
(g𝗌𝗄⋅r1

1 ⋅ gb, g𝗌𝗄⋅r1
2 , …, g𝗌𝗄⋅r1

n )

h = (g1, …, gn) ⋅ XT =
n

∏
i=1

gxi
i

(g𝗌𝗄⋅r1
1 ⋅ gb, g𝗌𝗄⋅r1

2 , …, g𝗌𝗄⋅r1
n ) ⋅ XT

(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 , …, g𝗌𝗄⋅rn
n ⋅ gb)

= h𝗌𝗄⋅rn ⋅ gb⋅xn(g𝗌𝗄⋅rn
1 , g𝗌𝗄⋅rn

2 ⋅ gb, …, g𝗌𝗄⋅rn
n ) ⋅ XT

⋮

⋮

 can be computed similarlyhr1, …, hrn

h hr1, …, hrn

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅x1)

(hr1, h𝗌𝗄⋅r1 ⋅ gb⋅xn)
⋮

hr1 … hrn

Hash needs to be 
randomized for security
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⟹
O(n2/3 ⋅ λ)



Conclusion

• Discussed approach assumes circular security of ElGamal. Constructing from plain DDH and DCR requires extending to 
circular-secure variants [Boneh-Halevi-Hamburg-Ostrovsky’08] [Brakerski-Goldwasser’10] 

• DDH-based Staged HSS evaluation has noticeable error probability which affects privacy. Requires developing new techniques 
to build trapdoor hash functions
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