Enhanced Trapdoor Hashing from DDH and DCR EUROCRYPT 2025

Geoffroy Couteau

CNRS, IRIF Universitè Paris Citè

Aditya Hegde

JHU

Sihang Pu CNRS, IRIF Universitè Paris Citè

Public function \mathbf{F}

Public function F

F(x, y)

Public function F

F(x, y)

does not learn y

does not learn x

Public function F

F(x, y)

does not learn y

does not learn x

What is the **minimum communication** cost of **semi-honest** secure protocols?

What is the **minimum communication** cost of **semi-honest** secure protocols?

Public function F

y

Public function F

y

F(X, y)

Total communication: |y| + |F(X, y)|

Total communication: |y| + |F(X, y)|

Can secure protocols achieve similar efficiency?

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

 $h \leftarrow \mathsf{Hash}(X)$

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

 $h \leftarrow \mathsf{Hash}(X)$

 $e \leftarrow \text{Encode}(ek_y, X)$

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

 $h \leftarrow \mathsf{Hash}(X)$

 $e \leftarrow \text{Encode}(ek_v, X)$

Public function F

 ek_v

h, *e*

$F(X, y) \leftarrow \mathsf{Decode}(\mathsf{td}, h, e)$

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

 $h \leftarrow \mathsf{Hash}(X)$

 $e \leftarrow \text{Encode}(ek_v, X)$

Privacy: ek_y hides y

Public function F

 $F(X, y) \leftarrow \mathsf{Decode}(\mathsf{td}, h, e)$

(h, e) hides X

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

 $h \leftarrow \mathsf{Hash}(X)$

 $e \leftarrow \text{Encode}(ek_v, X)$

Privacy: ek_v hides y

Public function F

 $F(X, y) \leftarrow \mathsf{Decode}(\mathsf{td}, h, e)$

(h, e) hides X

Efficiency: *h* is small i.e., $|h| = o(|X|) \cdot poly(\lambda)$

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

 $h \leftarrow \mathsf{Hash}(X)$

 $e \leftarrow \text{Encode}(ek_v, X)$

Privacy: ek_y hides y

Efficiency: *h* is small i.e., $|h| = o(|X|) \cdot poly(\lambda)$ Rate: |F(X, y)|e has high rate i.e., $|e| \approx |F(X, y)|$ e

Public function **F**

 $F(X, y) \leftarrow \mathsf{Decode}(\mathsf{td}, \boldsymbol{h}, \boldsymbol{e})$

(h, e) hides X

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

Assumptions: DCR, DDH, QR, LWE

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

Assumptions: DCR, DDH, QR, LWE

Can we improve the functionality of TDH from group-based assumptions?

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

This work

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

Expressivity

Supports computing Bilinear-NC¹ programs This work

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

This work

$$F(X, y) = \sum_{i=1}^{n} f_i(X) \cdot g_i(y)$$

Compactness

Encoding keys of size |y|(1 + o(1))

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

This work

Compactness

Encoding keys of size |y|(1 + o(1))

Reusability

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

This work

Compactness

Encoding keys of size |y|(1 + o(1))

Reusability

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

This work

Compactness

Encoding keys of size |y|(1 + o(1))

Reusability

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

This work

Compactness

Encoding keys of size |y|(1 + o(1))

Reusability

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

Expressivity

Supports computing Bilinear-NC¹ programs

Compactness Encoding keys of size |y|(1 + o(1))

This work

Reusability
Enhanced Trapdoor Hash Functions from DDH and DCR

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

Expressivity

Supports computing Bilinear-NC¹ programs

Compactness Encoding keys of size |y|(1 + o(1))

This work

$$F_1 \quad F_2 \quad F_3$$

Reusability

Reusable encoding key with functions chosen on-the-fly

Enhanced Trapdoor Hash Functions from DDH and DCR

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

$$F(X, y) = \sum_{i} x_i \cdot y_i$$

This work

Reusable encoding key with functions chosen on-the-fly

Ideal World Communication: 2n bits

Ideal World Communication: 2n bits

$$\begin{array}{c} \alpha_{1} \alpha_{2} \cdots \alpha_{n} \\ \beta_{1} \beta_{2} \cdots \beta_{n} \end{array} \quad \text{Batch-OT} \quad \begin{array}{c} \alpha_{1} \beta_{2} \cdots \alpha_{n} \\ \alpha_{1} \beta_{2} \cdots \alpha_{n} \end{array}$$

Ideal World Communication: 2n bits

$$\begin{array}{c} \alpha_{1} \alpha_{2} \cdots \alpha_{n} \\ \beta_{1} \beta_{2} \cdots \beta_{n} \end{array} \quad \text{Batch-OT} \quad \begin{array}{c} \alpha_{1} \beta_{2} \cdots \alpha_{n} \\ \alpha_{1} \beta_{2} \cdots \alpha_{n} \end{array}$$

Ideal World Communication: 2n bits

$$\begin{array}{c} \alpha_1 \alpha_2 \cdots \alpha_n \\ \beta_1 \beta_2 \cdots \beta_n \end{array} \quad \text{Batch-OT} \quad \begin{array}{c} \alpha_1 \beta_2 \cdots \alpha_n \\ \alpha_1 \beta_2 \cdots \alpha_n \end{array}$$

Ideal World Communication: 2n bits

$$\begin{array}{c} \alpha_{1} \alpha_{2} \cdots \alpha_{n} \\ \beta_{1} \beta_{2} \cdots \beta_{n} \end{array} \quad \text{Batch-OT} \quad \begin{array}{c} \alpha_{1} \beta_{2} \cdots \alpha_{n} \\ \alpha_{1} \beta_{2} \cdots \alpha_{n} \end{array}$$

Ideal World Communication: 2n bits

$$\begin{array}{c} \alpha_{1} \alpha_{2} \cdots \alpha_{n} \\ \beta_{1} \beta_{2} \cdots \beta_{n} \end{array} \quad \text{Batch-OT} \quad \begin{array}{c} \alpha_{1} \beta_{2} \cdots \alpha_{n} \\ \alpha_{1} \beta_{2} \cdots \alpha_{n} \end{array}$$

Ideal World Communication: 2n bits

Communication: $2 \cdot n \cdot (1 + o(1))$ bits

$$\begin{array}{c} \alpha_{1} \alpha_{2} \cdots \alpha_{n} \\ \beta_{1} \beta_{2} \cdots \beta_{n} \end{array} \quad \text{Batch-OT} \quad \begin{array}{c} \alpha_{1} \beta_{2} \cdots \alpha_{n} \\ \alpha_{1} \beta_{2} \cdots \alpha_{n} \end{array}$$

Ideal World Communication: 2n bits

Communication: $2 \cdot n \cdot (1 + o(1))$ bits

Batch-OT with optimal rate from DDH

This Work: 1 + o(1) rate

Semi-honest statistical sender privacy

$$\begin{array}{c} \alpha_{1} \alpha_{2} \cdots \alpha_{n} \\ \beta_{1} \beta_{2} \cdots \beta_{n} \end{array} \quad \text{Batch-OT} \quad \begin{array}{c} \alpha_{1} \beta_{2} \cdots \alpha_{n} \\ \alpha_{1} \beta_{2} \cdots \alpha_{n} \end{array}$$

Ideal World Communication: 2n bits

Communication: $2 \cdot n \cdot (1 + o(1))$ bits

Batch-OT with optimal rate from DDH

```
This Work: 1 + o(1) rate
```

Semi-honest statistical sender privacy

Before:

```
[Brakerski-Branco-Döttling-Pu'22]:
       1 + o(1) rate
       DDH + LPN
[Boyle-Giboa-Ishai'17]:
       DDH
       n \cdot (4 + o(1)) bits communication
       PKI setup
```


This Work: 1 + o(1) rate

Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu'22]: 1 + o(1) rate DDH + LPN

Batch-OT with optimal rate from DDH

[Boyle-Giboa-Ishai'17]:

DDH $n \cdot (4 + o(1))$ bits communication PKI setup

This Work: 1 + o(1) rate

Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu'22]: 1 + o(1) rate DDH + LPN

Implications of Batch-OT with optimal rate

Batch-OT with optimal rate from DDH

[Boyle-Giboa-Ishai'17]: DDH

 $n \cdot (4 + o(1))$ bits communication PKI setup

This Work: 1 + o(1) rate

Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu'22]: 1 + o(1) rate DDH + LPN

Implications of Batch-OT with optimal rate

String OT: o(n) bits sender-to-receiver communication and $n \cdot (1 + o(1))$ bits receiver-to-sender communication

This Work: 1 + o(1) rate

Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu'22]: 1 + o(1) rate DDH + LPN

Implications of Batch-OT with optimal rate

String OT: o(n) bits sender-to-receiver communication and $n \cdot (1 + o(1))$ bits receiver-to-sender communication

Lossy Trapdoor Functions (LTDF): Rate-1 LTDF with public key size $n \cdot (1 + o(1))$ bits

Batch-OT with optimal rate from DDH

Rate-1 LTDF with public key size o(n) bits with CRS

This Work: 1 + o(1) rate

Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu'22]: 1 + o(1) rate DDH + LPN

Implications of Batch-OT with optimal rate

String OT: o(n) bits sender-to-receiver communication and $n \cdot (1 + o(1))$ bits receiver-to-sender communication

Lossy Trapdoor Functions (LTDF): Rate-1 LTDF with public key size $n \cdot (1 + o(1))$ bits Rate-1 LTDF with public key size o(n) bits with CRS

Private Information Retrieval: Client computation $poly(n, \lambda)$ Upload communication $n + poly(\lambda)$ bits Database size: 2^n Download communication $n \cdot \text{poly}(\lambda)$ bits

```
[Boyle-Giboa-Ishai'17]: DDH
                        n \cdot (4 + o(1)) bits communication
                        PKI setup
```


This Work: 1 + o(1) rate

Semi-honest statistical sender privacy

Before:

[Brakerski-Branco-Döttling-Pu'22]: 1 + o(1) rate DDH + LPN

String OT: o(n) bits sender-to-receiver communication and $n \cdot (1 + o(1))$ bits receiver-to-sender communication

Lossy Trapdoor Functions (LTDF): Rate-1 LTDF with public key size $n \cdot (1 + o(1))$ bits

Private Information Retrieval: Client computation $poly(n, \lambda)$ Upload communication $n + poly(\lambda)$ bits Database size: 2^n Download communication $n \cdot \text{poly}(\lambda)$ bits

Batch-OT with optimal rate from DDH

```
[Boyle-Giboa-Ishai'17]: DDH
                        n \cdot (4 + o(1)) bits communication
                        PKI setup
```

Implications of Batch-OT with optimal rate

```
Rate-1 LTDF with public key size o(n) bits with CRS
```

Other Implications

Branching programs over encrypted data Correlated symmetric PIR

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear-NC¹ \supseteq log log-depth circuits

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear-NC¹ $\supseteq \log \log$ -depth circuits

This Work: $|x| + (2 + o(1)) \cdot \frac{1}{\log 2}$

$$\frac{|C|}{\log \log |C|} + |y|^{2/3} \cdot \operatorname{poly}(\lambda) \quad \text{bits communication}$$

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear-NC¹ \supseteq log log-depth circuits

Linear communication in **computationally** secure input

Sublinear communication in statistically secure input

This Work: $|x| + (2 + o(1)) \cdot \frac{|C|}{\log \log |C|} + |y|^{2/3} \cdot \operatorname{poly}(\lambda)$ bits communication

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Bilinear-NC¹ $\supseteq \log \log$ -depth circuits

Sublinear communication in statistically secure input

 $|x| + (2 + o(1)) \cdot \frac{|C|}{\log \log |C|} + |y|^{2/3} \cdot \operatorname{poly}(\lambda)$ bits communication

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Before: Similar results only known from FHE

Bilinear-NC¹ $\supseteq \log \log$ -depth circuits

Sublinear communication in statistically secure input

 $|x| + (2 + o(1)) \cdot \frac{|C|}{\log \log |C|} + |y|^{2/3} \cdot \operatorname{poly}(\lambda)$ bits communication

Sublinear 2PC from DCR, with one-sided statistical security for layered circuits

Before: Similar results only known from FHE

[Couteau-Meyer-Passelégue-Riahinia'23]: $|x| + |y| + \frac{|C|}{\log \log |C|} + \operatorname{poly}(\lambda)$ bits communication

Bilinear-NC¹ \supseteq log log-depth circuits

Sublinear communication in statistically secure input

This Work: $|x| + (2 + o(1)) \cdot \frac{|C|}{\log \log |C|} + |y|^{2/3} \cdot \operatorname{poly}(\lambda)$ bits communication

Circular security of Paillier

Layered circuits over \mathbb{Z}_N

Public function F

*y*₁

Improving Communication in the Amortized Setting

Public function F

*y*₁

Improving Communication in the Amortized Setting

Improving Communication in the Amortized Setting

X

Improving Communication in the Amortized Setting

X

Improving Communication in the Amortized Setting

Improving Communication in the Amortized Setting

Improving Communication in the Amortized Setting

$$y_1$$
$$z_1 = y_1 \oplus \mathsf{PRF}(k, 1)$$

Improving Communication in the Amortized Setting

 z_1 ensures privacy of y_1

Improving Communication in the Amortized Setting

$F_1(X, k) = F(X, z_1 \oplus PRF(k, 1))$

Improving Communication in the Amortized Setting

 $F_1(X, k) = F(X, z_1 \oplus PRF(k, 1))$

 $e_1 \leftarrow \text{Encode}(\mathsf{F}_1, \mathsf{ek}_k, X)$

Improving Communication in the Amortized Setting

Public function F

 $F_1(X, k) = F(X, z_1 \oplus PRF(k, 1))$

 $e_1 \leftarrow \text{Encode}(\mathsf{F}_1, \mathsf{ek}_k, X)$

Improving Communication in the Amortized Setting

Public function F

 $F_1(X, k) = F(X, z_1 \oplus PRF(k, 1))$

 $e_1 \leftarrow \text{Encode}(\mathsf{F}_1, \mathsf{ek}_k, X)$

 $F_2(X, k) = F(X, z_2 \oplus PRF(k, 2))$

 $e_2 \leftarrow \text{Encode}(\mathsf{F}_2, \mathsf{ek}_k, X)$

Improving Communication in the Amortized Setting

 $F_1(X, k) = F(X, z_1 \oplus PRF(k, 1))$

 $e_1 \leftarrow \text{Encode}(\mathsf{F}_1, \mathsf{ek}_k, X)$

 $F_2(X, k) = F(X, z_2 \oplus PRF(k, 2))$

 $e_2 \leftarrow \text{Encode}(\mathsf{F}_2, \mathsf{ek}_k, X)$

Improving Communication in the Amortized Setting

Optimal preprocessing symmetric Private Information Retrieval from **DCR**

$$|X| = n \sum_{\substack{n^{2/3} \cdot \operatorname{poly}(\lambda) \\ \log n}} \frac{n^{2/3} \cdot \operatorname{poly}(\lambda)}{1}$$

Optimal preprocessing symmetric Private Information Retrieval from **DCR**

$$|X| = n \underbrace{n^{2/3} \cdot \operatorname{poly}(\lambda)}_{1} \underbrace{n^{2/3} \cdot \operatorname{poly}(\lambda)}_{1}$$

Rate $\frac{1}{2}$ Private Set Intersection (PSI) and Fuzzy-PSI from

$$|X| = n \underbrace{n^{2/3} \cdot \operatorname{poly}(\lambda)}_{1} \underbrace{n^{2/3} \cdot \operatorname{poly}(\lambda)}_{1} \underbrace{y}_{1}$$

m DCR

 $y \in X$

Fuzzy-PSI: Is y close to an element in X

Constructing Enhanced TDH

Constructing Enhanced TDH

Staged Homomorphic Secret Sharing

[Couteau-Meyer-Passelégue-Riahinia'23]

Alternative view: Extending Succinct HSS [Abram-Roy-Scholl'24] using Staged HSS

+

Trapdoor Hash Functions

[Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

 $ct_y \leftarrow Encrypt(pk, y)$

share_A, share_B \leftarrow Share(pk, X)

 $ct_y \leftarrow Encrypt(pk, y)$

share_A, share_B \leftarrow Share(pk, X)

 $ct_y \leftarrow Encrypt(pk, y)$

- $ct_y \leftarrow Encrypt(pk, y)$
- share_A, share_B \leftarrow Share(pk, X)

share_A, share_B \leftarrow Share(pk, X)

Key Ingredient: Secure and succinct protocol to distribute input shares

 $ct_y \leftarrow Encrypt(pk, y)$

 $(\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{KeyGen}(1^{\lambda})$

Public function \mathbf{F}

Public function \mathbf{F}

Public function \mathbf{F}

Public function F

 $\mathsf{Ct}_k, \quad \mathcal{Z},$

 $\label{eq:public function} F$

Compute share_A from

 $\mathsf{ct}_k, z,$

 $\label{eq:public function} F$

, out_A

 $\label{eq:public function} F$

Compute share_B from

 $\label{eq:public function} F$

 $out_A + out_B = F(X, y)$

Enhanced TDH = Staged HSS + Succinct Distribution of Shares Public function **F** Encoding key ek_v $|ek_y| = |y|(1 + o(1))$ $k \leftarrow \{0, 1\}^{\lambda}$ $z = y \oplus \mathsf{PRG}(k)$ Compute share_A from $\mathsf{Ct}_k, \quad \mathcal{Z},$ $ct_k \leftarrow Encrypt(pk, k)$ share $A \rightarrow$ StagedEval $\rightarrow \text{out}_A$ Evaluate: F'(X, $\mathsf{ct}_k \longrightarrow$ Compute share_B from

$$, k) = F(X, z \oplus \mathsf{PRG}(k))$$

out_A

•

$$\operatorname{out}_A + \operatorname{out}_B = F(X, y)$$

Enhanced TDH = Staged HSS + Succinct Distribution of Shares Public function **F** Encoding key ek_y $|ek_y| = |y|(1 + o(1))$ $k \leftarrow \{0, 1\}^{\lambda}$ $z = y \oplus \mathsf{PRG}(k)$ Compute share_A from $\mathsf{Ct}_k, \quad \mathcal{Z},$ $ct_k \leftarrow Encrypt(pk, k)$ share $A \rightarrow$ StagedEval \rightarrow out_A Evaluate: F'(X, $\mathsf{ct}_k \longrightarrow$ Compute share_B from out_A $out_B \leftarrow$ StagedEval $- ct_k$ Hash h $|h| = o(|X|) \cdot \operatorname{poly}(\lambda)$

$$, k) = F(X, z \oplus \mathsf{PRG}(k))$$

$$\operatorname{out}_A + \operatorname{out}_B = F(X, y)$$
Enhanced TDH = Staged HSS + Succinct Distribution of Shares Public function F Encoding key ek_v $|\mathsf{ek}_{y}| = |y|(1 + o(1))$ $k \leftarrow \{0, 1\}^{\lambda}$ $z = y \oplus \mathsf{PRG}(k)$ Compute share_A from $\mathsf{ct}_k, \quad \mathcal{Z},$ $ct_k \leftarrow Encrypt(pk, k)$ share $A \rightarrow$ StagedEval \rightarrow out_A Evaluate: $F'(X, k) = F(X, z \oplus PRG(k))$ $\mathsf{ct}_k \rightarrow$ Compute share_B from out_A , StagedEval $out_B \leftarrow$ $\leftarrow \mathsf{ct}_k$ Hash h Encoding *e* $|h| = o(|X|) \cdot \operatorname{poly}(\lambda)$ |e| = |F(X, y)|

Structure of Staged Input Shares

Share(pk, *X*)

Structure of Staged Input Shares

Share(pk, X)

$$k \leftarrow \{0, 1\}^{\lambda}$$
$$r_1, \dots, r_n \leftarrow \mathsf{PRG}(k)$$
$$g^{r_1} \dots g^{r_n}$$

$$r_1, \dots, r_n \leftarrow \mathsf{PRG}(k)$$

 $g^{r_1} \dots g^{r_n}$

k, pk

 $k \leftarrow \{0, 1\}^{\lambda}$ $r_1, \ldots, r_n \leftarrow \mathsf{PRG}(k)$ $g^{r_1}\ldots g^{r_n}$

 $r_1, \ldots, r_n \leftarrow \mathsf{PRG}(k)$ $g^{r_1}\ldots g^{r_n}$ $g^{\mathbf{sk}\cdot \mathbf{r}_1}$... $g^{\mathbf{sk}\cdot \mathbf{r}_n}$

k, pk

 $k \leftarrow \{0, 1\}^{\lambda}$ $r_1, \ldots, r_n \leftarrow \mathsf{PRG}(k)$ $g^{r_1}\ldots g^{r_n}$

$$r_1, \dots, r_n \leftarrow \mathsf{PRG}(k)$$
$$g^{r_1} \dots g^{r_n}$$
$$g^{\mathsf{sk} \cdot r_1} \dots g^{\mathsf{sk} \cdot r_n}$$

sending this would be insecure

Observation: Can be computed succinctly using techniques from Trapdoor Hashing [Döttling-Garg-Ishai-Malavolta-Mour-Ostrovsky'19]

Succinct Distribution of Staged Input Shares Structure of Staged Input Shares Goal \mathbb{G}, g

$$g_1, \ \dots, \ g_n \leftarrow \mathbb{G}$$
$$r_1 \leftarrow \mathbb{Z}_p$$

$$h = (g_1, ..., g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

Structure of Staged Input Shares

$$h = (g_1, \dots, g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

 $(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T$

$$h = (g_1, ..., g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

$$(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T$$
$$= \left(\prod_{i=1}^n g_i^{x_i}\right)^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}\cdot x_1}$$

$$X = (x_1, \dots, x_n)$$

$$(g^{r_1}, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{b} \cdot x_1})$$

$$(g^{r_1}, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{b} \cdot x_n})$$

$$h = (g_1, \dots, g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

$$(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T$$
$$= \left(\prod_{i=1}^n g_i^{x_i}\right)^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}\cdot x_1} = h^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}\cdot x_1}$$

Structure of Staged Input Shares

 $X = (x_1, \dots, x_n)$ $(g^{r_1}, g^{\mathbf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_1})$ $(g^{r_1}, g^{\mathbf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$

 $h = (g_1, ..., g_n) \cdot X^T = \prod_{i=1}^{n} g_i^{x_i}$

 $(g_1^{\operatorname{sk} \cdot r_1} \cdot g^b, g_2^{\operatorname{sk} \cdot r_1}, \dots, g_n^{\operatorname{sk} \cdot r_1}) \cdot X^T$

 $= \left(\prod_{i=1}^{n} g_{i}^{x_{i}}\right)^{\mathbf{s}\mathbf{k}\cdot\mathbf{r}_{1}} \cdot g^{\mathbf{b}\cdot\mathbf{x}_{1}} = h^{\mathbf{s}\mathbf{k}\cdot\mathbf{r}_{1}} \cdot g^{\mathbf{b}\cdot\mathbf{x}_{1}}$

 $(g_1, ..., g_n)$ $(g_1^{\text{sk} \cdot r_1} \cdot g^b, g_2^{\text{sk} \cdot r_1}, ..., g_n^{\text{sk} \cdot r_1})$ $g_1, ..., g_n \leftarrow G$

 $r_1 \leftarrow \mathbb{Z}_p$

Structure of Staged Input Shares

 $X = (x_1, \dots, x_n)$ $(g^{r_1}, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_1})$ $(g^{r_1}, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$ $(g_1, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$ $(g_1, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_2, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_1, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_2, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_1, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_2, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_3, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_4, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_5, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$ $(g_6, g^{\mathsf{sk} \cdot r_1} \cdot g^{\mathsf{sk} \cdot r_1})$

 $(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathsf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T$ $= \left(\prod_{i=1}^n g_i^{x_i}\right)^{\mathsf{sk}\cdot r_1} \cdot g^{\mathsf{b}\cdot x_1} = h^{\mathsf{sk}\cdot r_1} \cdot g^{\mathsf{b}\cdot x_1}$

 $(g_1, ..., g_n)$

Structure of Staged Input Shares

 $X = (x_1, \dots, x_n)$ $(h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_1})$ \vdots $(h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$

A change in "base" from $g^{\text{sk} \cdot r_1}$ to $h^{\text{sk} \cdot r_1}$ $h = (g_1, ..., does not affect staged HSS evaluation$

 $(g_1^{\operatorname{sk} \cdot r_1} \cdot g^b, g_2^{\operatorname{sk} \cdot r_1}, \dots, g_n^{\operatorname{sk} \cdot r_1}) \cdot X^T$ $=\left(\prod_{i=1}^{n} g_{i}^{x_{i}}\right)^{\mathsf{sk}\cdot r_{1}} \cdot g^{\boldsymbol{b}\cdot x_{1}} = h^{\mathsf{sk}\cdot r_{1}} \cdot g^{\boldsymbol{b}\cdot x_{1}}$

 $(g_1, ..., g_n)$

Structure of Staged Input Shares

$$X = (x_1, \dots, x_n) \qquad (h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_1}) \qquad \vdots \qquad (h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$$

$$h = (g_1, \dots, g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

 $(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T = h^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}\cdot x_1}$

 $(g_1, ..., g_n)$ $(g_1^{\mathsf{sk}\cdot r_1} \cdot g^b, g_2^{\mathsf{sk}\cdot r_1}, ..., g_n^{\mathsf{sk}\cdot r_1})$

$$g_1, \ \dots, \ g_n \leftarrow \mathbb{G}$$
$$r_1 \leftarrow \mathbb{Z}_p$$

Structure of Staged Input Shares

$$h = (g_1, ..., g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

 $(g_1^{\operatorname{sk} \cdot r_1} \cdot g^b, g_2^{\operatorname{sk} \cdot r_1}, \dots, g_n^{\operatorname{sk} \cdot r_1}) \cdot X^T = h^{\operatorname{sk} \cdot r_1} \cdot g^{b \cdot x_1}$ $(g_1^{\mathsf{sk}\cdot r_2}, g_2^{\mathsf{sk}\cdot r_2} \cdot g^{\mathbf{b}}, \dots, g_n^{\mathsf{sk}\cdot r_2}) \cdot X^T = h^{\mathsf{sk}\cdot r_2} \cdot g^{\mathbf{b}\cdot x_2}$

 $(g_1, ..., g_n)$ $(g_1^{\mathsf{sk}\cdot r_1} \cdot g^b, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \qquad g_1, \dots, g_n \leftarrow \mathbb{G}$ $(g_1^{\mathsf{sk}\cdot r_2}, g_2^{\mathsf{sk}\cdot r_2} \cdot g^b, \dots, g_n^{\mathsf{sk}\cdot r_2}) \qquad r_1, r_2 \leftarrow \mathbb{Z}_p$

$$X = (x_1, \dots, x_n)$$

$$(h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_1})$$

$$(h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$$

$$h = (g_1, \dots, g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

$$(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T = h^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}\cdot x_1}$$
$$\vdots$$
$$(g_1^{\mathsf{sk}\cdot r_n}, g_2^{\mathsf{sk}\cdot r_n} \cdot g^{\mathbf{b}}, \dots, g_n^{\mathsf{sk}\cdot r_n}) \cdot X^T = h^{\mathsf{sk}\cdot r_n} \cdot g^{\mathbf{b}\cdot x_n}$$

 (g_{1}, \dots, g_{n}) $(g_{1}^{\mathsf{sk} \cdot r_{1}} \cdot g^{\mathsf{b}}, g_{2}^{\mathsf{sk} \cdot r_{1}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{1}})$ \vdots $(g_{1}^{\mathsf{sk} \cdot r_{n}}, g_{2}^{\mathsf{sk} \cdot r_{n}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{n}} \cdot g^{\mathsf{b}})$ $(g_{1}^{\mathsf{sk} \cdot r_{n}}, g_{2}^{\mathsf{sk} \cdot r_{n}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{n}} \cdot g^{\mathsf{b}})$

$$(g_1^{\mathsf{sk}\cdot r_1}\cdot g_1)$$

$$h = (g_1, \dots, g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

$$(g_{1}^{\mathsf{sk}\cdot r_{1}} \cdot g^{\mathbf{b}}, g_{2}^{\mathsf{sk}\cdot r_{1}}, \dots, g_{n}^{\mathsf{sk}\cdot r_{1}}) \cdot X^{T} = h^{\mathsf{sk}\cdot r_{1}} \cdot g^{\mathbf{b}\cdot x_{1}}$$

$$\vdots$$

$$(g_{1}^{\mathsf{sk}\cdot r_{n}}, g_{2}^{\mathsf{sk}\cdot r_{n}} \cdot g^{\mathbf{b}}, \dots, g_{n}^{\mathsf{sk}\cdot r_{n}}) \cdot X^{T} = h^{\mathsf{sk}\cdot r_{n}} \cdot g^{\mathbf{b}\cdot x_{n}}$$

$$h^{r_{1}}, \dots, h^{r_{n}} \text{ can be computed similarly}$$

 (g_{1}, \dots, g_{n}) $(g_{1}^{\mathsf{sk} \cdot r_{1}} \cdot g^{\mathsf{b}}, g_{2}^{\mathsf{sk} \cdot r_{1}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{1}})$ \vdots $(g_{1}^{\mathsf{sk} \cdot r_{n}}, g_{2}^{\mathsf{sk} \cdot r_{n}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{n}} \cdot g^{\mathsf{b}})$ $r_{1}, \dots r_{n} \leftarrow \mathbb{Z}_{p}$

Structure of Staged Input Shares

$$X = (x_1, \dots, x_n) \qquad (h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_1}) \\ \vdots \\ (h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$$

$$(g_1^{\mathsf{sk}\cdot r_1}\cdot g_1)$$

$$h = (g_1, ..., g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

$$(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T = h^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}\cdot x_1}$$
$$\vdots$$
$$(g_1^{\mathsf{sk}\cdot r_n}, g_2^{\mathsf{sk}\cdot r_n} \cdot g^{\mathbf{b}}, \dots, g_n^{\mathsf{sk}\cdot r_n}) \cdot X^T = h^{\mathsf{sk}\cdot r_n} \cdot g^{\mathbf{b}\cdot x_n}$$

 h^{r_1}, \ldots, h^{r_n} can be computed similarly

 (g_{1}, \dots, g_{n}) $(g_{1}^{\mathsf{sk} \cdot r_{1}} \cdot g^{\mathsf{b}}, g_{2}^{\mathsf{sk} \cdot r_{1}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{1}})$ \vdots $(g_{1}^{\mathsf{sk} \cdot r_{n}}, g_{2}^{\mathsf{sk} \cdot r_{n}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{n}} \cdot g^{\mathsf{b}})$ $(g_{1}^{\mathsf{sk} \cdot r_{n}}, g_{2}^{\mathsf{sk} \cdot r_{n}}, \dots, g_{n}^{\mathsf{sk} \cdot r_{n}} \cdot g^{\mathsf{b}})$

Structure of Staged Input Shares

$$X = (x_1, \dots, x_n) \qquad (h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_1}) \\ \vdots \\ (h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$$

$$(g_1^{\mathsf{sk}\cdot r_1}\cdot g_1)$$

h

$$h = (g_1, ..., g_n) \cdot X^T = \prod_{i=1}^n g_i^{x_i}$$

$$(g_1^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}}, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T = h^{\mathsf{sk}\cdot r_1} \cdot g^{\mathbf{b}\cdot x_1}$$
$$\vdots$$
$$(g_1^{\mathsf{sk}\cdot r_n}, g_2^{\mathsf{sk}\cdot r_n} \cdot g^{\mathbf{b}}, \dots, g_n^{\mathsf{sk}\cdot r_n}) \cdot X^T = h^{\mathsf{sk}\cdot r_n} \cdot g^{\mathbf{b}\cdot x_n}$$

 h^{r_1}, \ldots, h^{r_n} can be computed similarly

 $h^{r_1}, ..., h^{r_n}$

Structure of Staged Input Shares

 h^{r_1}, \ldots, h^{r_n} can be computed similarly

$$g_1, \ \dots, \ g_n \leftarrow \mathbb{G}$$
$$r_1, \ \dots, \ r_n \leftarrow \mathbb{Z}_p$$

$$h^{r_1}, ..., h^{r_n}$$

Structure of Staged Input Shares

 $(h^{r_1}, h^{\mathsf{sk} \cdot r_1} \cdot g^{\mathbf{b} \cdot x_n})$

 $(g_1^{\mathsf{sk}\cdot r_1} \cdot g^b, g_2^{\mathsf{sk}\cdot r_1}, \dots, g_n^{\mathsf{sk}\cdot r_1}) \cdot X^T = h^{\mathsf{sk}\cdot r_1} \cdot g^{b\cdot x_1}$ $(g_1^{\operatorname{sk} \cdot r_n}, g_2^{\operatorname{sk} \cdot r_n} \cdot g^b, \dots, g_n^{\operatorname{sk} \cdot r_n}) \cdot X^T = h^{\operatorname{sk} \cdot r_n} \cdot g^{b \cdot x_n}$

 $(g_1, ..., g_n)$

h

 h^{r_1},\ldots,h^{r_n}

Structure of Staged Input Shares

 $(g_1^{\operatorname{sk} \cdot r_n}, g_2^{\operatorname{sk} \cdot r_n} \cdot g^b, \dots, g_n^{\operatorname{sk} \cdot r_n}) \cdot X^T = h^{\operatorname{sk} \cdot r_n} \cdot g^{b \cdot x_n}$

h

 h^{r_1},\ldots,h^{r_n}

Structure of Staged Input Shares

 $(g_1^{\operatorname{sk} \cdot r_n}, g_2^{\operatorname{sk} \cdot r_n} \cdot g^b, \dots, g_n^{\operatorname{sk} \cdot r_n}) \cdot X^T = h^{\operatorname{sk} \cdot r_n} \cdot g^{b \cdot x_n}$

Structure of Staged Input Shares

 $(g_1^{\operatorname{sk} \cdot r_n}, g_2^{\operatorname{sk} \cdot r_n} \cdot g^b, \dots, g_n^{\operatorname{sk} \cdot r_n}) \cdot X^T = h^{\operatorname{sk} \cdot r_n} \cdot g^{b \cdot x_n}$

Can be reused with multiple hashes \implies rebalancing gives $O(n^{2/3} \cdot \lambda)$ total communication

 h^{r_1},\ldots,h^{r_n}

Conclusion

- circular-secure variants [Boneh-Halevi-Hamburg-Ostrovsky'08] [Brakerski-Goldwasser'10]
- \bullet to build trapdoor hash functions

Discussed approach assumes circular security of ElGamal. Constructing from plain DDH and DCR requires extending to

DDH-based Staged HSS evaluation has noticeable error probability which affects privacy. Requires developing new techniques

Conclusion

- ulletcircular-secure variants [Boneh-Halevi-Hamburg-Ostrovsky'08] [Brakerski-Goldwasser'10]
- to build trapdoor hash functions

Thank You

Discussed approach assumes circular security of ElGamal. Constructing from plain DDH and DCR requires extending to

DDH-based Staged HSS evaluation has noticeable error probability which affects privacy. Requires developing new techniques

